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Abstract

The SIR-model is adapted to the covid-19 pandemic through a modifi-
cation that consists in making the basic reproduction number variable. Inde-
pendent of it, another reproduction number is introduced, which is defined
similarly to the usual net reproduction number. Due to its simple analytic
form, it enables a clear interpretation for all values. A further parame-
ter, provisionally called acceleration parameter, is introduced and applied,
which enables a more differentiated characterization of the infection num-
ber dynamics. By a variable transformation the 3 equations of the modified
SIR-model can be reduced to 2. The latter are solved up to ordinary inte-
grations. The solutions are evaluated for current situations, yielding a pretty
good match with the data reported. Encouraged by this, a variety of possible
future developments is examined, including linear and exponential growth
of the infection numbers as well as sub- and super-exponential growth. In
particular, the behavior of the two reproduction numbers and the accelera-
tion parameter is studied, which in some cases leads to surprising results.
With regard to the number of unreported infections it is shown, that from the
solution for a special one solutions for others can be derived by similarity
transformations.
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1 Introduction
In this paper it is shown that the SIR-model [1] can pretty well be adjusted to the
data reported for the covid-19 pandemic by means of a modification, which con-
sists in allowing a dynamic variability of the usually constant basis reproduction
number R0. An additional reproduction number is introduced which is similarly
defined as the sensitive R-number of the Robert Koch Institute (RKI) or the net
reproduction rate. Another number turns out to be particularly useful, the values
of which allow even more differentiated informations about the progression of the
infection numbers. For it, the term acceleration parameter is proposed.

First, by a suitable transformation of variables the system of 3 coupled nonlin-
ear differential equations of the SIR-model is converted into a system with only 2
equations. The determination of the general solution of the latter is then carried
on so far that only ordinary integrations remain. This makes it unnecessary to
develop a numerical program for the solutions. Rather, the simplicity and clarity
of the solutions obtained make it possible to quickly achieve results for concrete
problems, especially when programs like MATHEMATICA are employed. With
regard to the number of unreported infections it turns out, that despite the non-
linearity of the equations, from the solution for a special one the solutions for
other numbers can be derived by similarity transformations under rather unobtru-
sive assumptions.

In applying the solutions to the covid-19 pandemic, the reported data for one
variable are replaced by a best least-squares fit function and thus integrated in
the expanded SIR-model. Thereupon, from this the associated solution for a fur-
ther variable is determined and compared with the corresponding reported data. It
turns out that at least for more advanced states there is fairly good agreement. This
encourages solutions to be explored, that continue preceding solutions to some ex-
tent into the future. Various assumptions about the further course of the infection
or reproduction numbers are thus examined and compared. Also considered are
the conditions under which the pandemic comes to an end. In the concluding
section, some more qualitative aspects of the pandemic are discussed.

In order to keep the health damage and death cases caused by the pandemic
as low as possible, significant restrictions and unfamiliar actions are expected of
the population. So that people understand why these are necessary, it is important
that the reasons for them are communicated as precise and intelligible as possi-
ble. This in turn presupposes that the knowledge about the various aspects of the
pandemic is as extensive as possible, while being precise and thorough. This ar-
ticle was written with the intention and hope of making a small contribution to
this. It is mainly based on the system of SIR-equations which were taken from
Wikipedia [2]. Therefore, only a few references are given.

2



2 Definitions, basic equations and solutions

2.1 Definitions and basic equations
Neglecting birth and non-covid death rates, the basic equations of the SIR-model
are

Ṡ(t) =−β SI/N (1)
İ(t) = β SI/N− γ I (2)
Ṙ(t) = γ I , (3)

where the following notations are used: S=susceptible individuals, I=infectious
individuals, R=removed individuals (recovered with acquired immunity to the dis-
ease or deceased), N=(invariable) total number of individuals, t=time with the unit
day, and Ṡ(t)=dS/dt etc. Furthermore, γ is the daily recovery rate of infected indi-
viduals, and β is the daily rate of new infections caused by an infected individual.
The SIR-model is based on the assumptions that individuals can be infected only
once, become contagious immediately after infection and remain so until they
gain immunity or die. The time-dependent variables of the SIR-equations satisfy
the relation

S+ I +R = N . (4)

We also use the basic reproduction number

R = β/γ , (5)

thereby omitting the subscript 0 of the usual notation R0 in view of a modification
specified further on.

Clearly, the numerical solution of the above equations is not a problem. How-
ever, considerable simplifications are possible that make it easier to answer spe-
cific questions and enable a better understanding of solution properties. In a first
step, the system of 3 equations (1)-(3) can be reduced to a system of 2 equations
by introducing the variable

Z(t) = I(t)+R(t) (6)

which is also used in the infection diagrams of institutions determining the infec-
tion numbers like the Robert Koch Institute (RKI) or the Johns Hopkins University
(JHU). Eliminating S and R by use of S=N−Z and R=Z−I (which follows from
Eqs. (4) and (6)), and using β=γR (which follows from Eq. (5)), Eqs. (2)-(3)
become

İ(t) = γ I[R (N−Z)/N−1] (7)
Ż(t) = γ I R (N−Z)/N . (8)
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With the definitions
a = I/N and z = Z/N , (9)

we switch from the extensive variables I and Z to the intensive variables a and z,
thus finally ending up with the equations

ȧ(t) = γ a[R (1− z)−1] (10)
ż(t) = γ aR (1− z) . (11)

With the help of Eqs. (4), (6) and (9), the solutions a(t) and z(t) of these equations
immediately lead to S(t)=N(1−z(t)) and R(t)=N(z(t)−a(t)).

2.2 Variable basic reproduction number and solutions
Dividing Eq. (10) by Eq. (11), with a′(z)=da/dz=ȧ(t)/ż(t) we obtain

a′(z) = 1− 1
R (1− z)

. (12)

For fixed R this is a differential equation for a with the solution

a(z) = a0 + z− z0 +
1
R

ln
1− z
1− z0

(13)

to the initial condition a(z0)=a0.
We also want to consider situations in which a(t) and/or z(t) are predetermined

by empirical data on the progress of the pandemic. In this case Eq. (13) cannot be
expected to be a suitable solution. However, it turns out that the SIR-model can
be adapted to the covid-19 pandemic by allowing the basic reproduction number
to be variable. In practice, such changes are brought about by ordering measures
to protect the population, such as quarantine, social distancing, hygienic wash-
ing of the hands or mandatory wearing of respirators, but also through sensible
and responsible behavior of the population. Only experience can teach how this
quantitatively affects R or the reproduction number Rz introduced further down.
Specifically, we introduce the replacement R→R(z), where R(z) is obtained by
resolving Eq. (12) with respect to R,

R(z) =
1

(1− z)(1−a′(z))
. (14)

Inserting this in Eq. (11) yields

ż(t) =
γ a(z)

1−a′(z)
or t ′(z) =

1
γ

(
1

a(z)
− d lna(z)

dz

)
, (15)
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where t(z) is the inverse function of z(t). ż(t) is the temporal increase of z(t),
which can be looked up in the daily records of the RKI [3] or JHU [4]. Integration
of Eq. (15b) 1 yields

t(z) = t0 +
1
γ

(∫ z

z0

dx
a(x)
− ln

a(z)
a(z0)

)
(16)

with t(z)=t0 for z=z0. (Eqs. (15)-(16) also apply to the case of fixed R.)
Eq. (16) is the solution for given a(z). We also consider the case where t(z) is

given and a solution for a(z) is sought. The differential equation from which a(z)
must be determined is Eq. (15a), which with ż(t)=1/t ′(z) can be converted into

a′(z)+ γ a(z) t ′(z) = 1 .

The solution to this equation is readily obtained by using the method of variation
of constants and is

a(z) =
(

a∗eγ t(z∗)+
∫ z

z∗
eγ t(x)dx

)
e−γ t(z) , (17)

where a∗ and z∗ are arbitrary fixed values in the range of possible a- and z-values.

Annotation: From a mathematical point of view, the modification R= const
to R=R(z) in the SIR-model means that the system (10)-(11) of 2 equations is
under-determined because it contains 3 unknown functions, z(t), a(t) and R(z).
However, this is not a problem because it would not even be desirable for R(z) to
be determined by the equations. In practical applications, there is the possibility
of specifying any of the 3 functions, either by adaption to empirical data or by
making assumptions about the future development

2.3 Additional reproduction number
The variable reduction number introduced in Eq. (14) does not allow a clear in-
terpretation of its values, even though we will see later on that it has values and
time variations similar to usual ones. For better comparison with the latter and
to enable better interpretability, we introduce a second reproduction number that
is similarly defined as the sensitive R-number of the RKI or the net reproduction
rate.

For this purpose we assume that a list of successive daily values Zn for the
total number of infected individuals is given. First, a best least-squares fit function
z(t) [5] to the corresponding data {tn,zn}, n=0,1,2, . . . [6] is constructed, which

1If there are 2 equations in one line, the first is labeled a and the second b.
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in many cases can be done using a power series z(t)=∑
N
0 an tn. (In this way, the

data is smoothed, as is also done in a similar way in the usual calculation of R
values by averaging). The current increase in z(t) is ż(t)∆t, and furthermore

ż(t−∆t) = ż(t)− z̈(t)∆t

holds. With this, we define our new reproduction factor as

Rz(t) =
ż(t)∆t

ż(t−∆t)∆t
=

ż(t)
ż(t)− z̈(t)∆t

.

We still relate it to the time unit day by putting ∆t=1, and after a slight reshaping
we finally get

Rz(t) =
1

1− z̈(t)/ż(t)
=

1
1− v̇z(t)/vz(t)

with vz(t) = ż(t) . (18)

(vz is the growth velocity of z(t).) On cursory inspection, it looks like Rz(t) is
an instantaneous value related only to the moment t. Contrary to this, in the
calculation of the sensitive R-value of the RKI, due to a time delay in the reported
infection data past values are included, and the data are smoothed by averaging
over several days to compensate for statistical fluctuations. On closer inspection,
however, this also applies to our Rz(t) because to determine the function z(t) via
a best least-squares fit to a data set {tn,zn}, past data are included as well as
smoothing takes place.

For the R-number of RKI and the usual net R-number the value 1 is easy to
understand, because on average every infected individual infects another one dur-
ing its contagious stage, whence the number of newly infected individuals remains
constant. For values 6= 1 a similarly simple explanation is not possible, except that
a deviation downwards or upwards is more favorable or unfavorable the larger it
is. For our Rz-number the situation is slightly better, because Eq. (18) can be
used to quantify the conditions under which a deviation increases or decreases:
the greater the relative acceleration v̇z/vz, the greater the deviation from 1 where
Rz(t)≡1 for constant ż(t) as above. It would even be possible to use the number

Q(t) =
z̈(t)
ż(t)

=
v̇z(t)
vz(t)

(19)

as another number for characterizing the state of the pandemic. However, in the
next section it is shown that a modification of Q(t) is a much better choice.

We would like to apply our reproduction number also where not z(t) is speci-
fied but its inverse t(z). For this purpose, we differentiate the identity t ′(z) ż(t) =
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(dt/dz)/(dz/dt) ≡ 1 with respect to t, obtaining t ′′(z) ż2(t) + t ′(z) z̈(t) = 0 or
z̈(t)/ż(t)=−t ′′(z) ż(t)/t ′(z)=−t ′′(z)/(t ′(z))2, and by insertion into Eq. (18) get

Rz(z) =−
1

1− t ′′(z)/(t ′(z))2 . (20)

For the case of given a(z) addressed in Section 3.1.1, we still determine how R(z)
can be expressed in terms of a(z). From Eq. (11) with R→R(z) we get

z̈(t) = γ
[
R ′(z)(1− z)a(z)−R a(z)+R(z)(1− z)a′(z)

]
ż(t) .

Dividing by ż(t) and using

R(z)(1− z)a′(z) = R(z)(1− z)−1 ,

which follows from Eq. (14), we get

Rz(z) =
1

1−Q(z)
with Q(z) = γ

[
R ′(z)(1−z)−R(z)

]
a(z)−R(z)(1−z)−1.

(21)
γ must be determined so that Rz(z0) coincides with the Rz(t0) of Eq. (18).

2.4 Acceleration parameter
The terms linear and exponential growth are often used to characterize the in-
crease in the number of infections, the net reproduction number being used to
distinguish them. As we will see, this is a rather vague and possibly misleading
characterization. In the following, another parameter is proposed that enables a
more differentiated assessment.

Combining Eq. (18) and Eq. (19) yields

Rz(t) =
1

1−Q(t)
or Rz(z) =

1
1−Q(z)

(22)

from which follows that Rz and Q offer the same information content. The accel-
eration parameter proposed by us consists in a modification of Q=z̈/ż and is

A(t) =
z(t) z̈(t)

ż2(t)
=

z(t) v̇z(t)
v2

z (t)
or A(t) =

z(t)Q(t)
ż(t)

. (23)

The relationship between A(t) and Q(t) shows that A(t) contains more information
than Q(t).
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Now, we first calculate A(t) for the case of exponential growth, z(t)=z0eα t .
With ż(t)=α z(t) and z̈(t)=α2 z(t) we get A(t)≡1. For other growth patterns we
expand z(t) around an arbitrary z0=z(t0) according to

z(t) = z0 + v0(t−t0)+A0(t−t0)2/2

and get with ż(t)=v0+A0 (t−t0) and z̈(t)=A0 for t→ t0 the value

A(t0) =
z0 A0

v2
0

. (24)

Let us now consider different values of A0 for the same values of z0 and v0. In the
case of exponential growth we have v0=α z0, A0=α2 z0 and from this A0=v2

0/z0
since A(t0)=1. For A0>v2

0/z0 (i.e. A(t0)>1, the curve z(t) is curved stronger up-
ward than an exponential curve of the same slope through the same point z0 and
therefore (locally) shows a super-exponential growth. For A0<v2

0z0 (or A(t0)<1),
it is less curved and shows a sub-exponential growth. For A0=0 it is not curved
and (locally) linear, and for A0<0 its growth is slower than linear and stops grow-
ing at all for v0→ 0 with the consequence A(t0)→−∞. These results are summa-
rized in the formula

A(t)



> 1 super-exponential
= 1 exponential
< 1 sub-exponential
= 0 linear
< 0 sub-linear
→−∞ no growth .

(25)

Applications are presented in later sections.
We still want to find out how A(t) and Rz(t) are related. According to Eq. (23b)

we have A=Qz/ż, and from Eq. (22) follows Q=(Rz−1)/Rz. Combining these
results yields

A(t) =
z(t)(Rz(t)−1)

ż(t) Rz(t)
=

Rz(t)−1
Rz(t) d lnz(t)/dt

. (26)

The function z(t), required to calculate A(t), is determined as discussed in the
last section. If, as in the practical determination of the net reproduction number,
only the data from the last 8 days are used, a best fit in the class of polynomials
z(t)=∑

N
0 antn should provide suitable results. Daily updating is easy to do by

omitting the oldest from the data and adding the newest. Although the parameter
A(t) provides more information than the reproduction number Rz(t), it is also not
sufficient for a complete assessment of the stage of the pandemic. For decisions
on measures to its containment or about the relaxation of such measures, still other
quantities (like ż(t) etc.) and results of statistical investigations must be consulted.
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2.5 Various growth possibilities of z(t)
2.5.1 Linear growth:

The general solution for linear growth is

z(t) = z0 +α t (27)

with constant z0 and α . Inserting the resulting relations ż(t)=α and z̈(t)=0 in
Eq. (18) yields

Rz = 1 , (28)

and vice versa Eq. (27) follows from Eq. (28).
Inserting ż(t)=α in Eq. (15a) leads to α=γ a(z)/(1−a′(z)) or

a′(z)+δ a(z) = 1 with δ = γ/α .

The solution to this equation is a(z)=1/δ so that a′(z)=0, and with this Eq. (14)
delivers

R(z) =
1

(1− z)
. (29)

Rz and R agree only for z=0. In order to keep the number of infectious individuals
(I or a resp.) constant, Rz must be held fixed at the value 1, while R increases
continuously according to Eq. (29) with Eq. (27).

2.5.2 Exponential growth:

The general solution for exponential growth is

z(t) = z0 eα t with z0 = z(0) . (30)

With ż(t)=α z(t) and z̈(t)=α2 z(t) Eq. (18) yields

Rz = 1/(1−α) , (31)

and from Eq. (11) we get

R(z) =
α z

γ a(z)(1− z)
. (32)

In the last result a(z) still has to be calculated what Eq. (17) can be used for. The
inverse function t(z) to z(t) from Eq. (30) required for this is

t(z) =
1
α

ln
z
z0

(33)
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so that

eγ t(z) =

(
z
z0

)δ

with δ = γ/α . (34)

According to this t(z0)=0. Choosing z∗=z0 and a∗=a0 in Eq. (17), inserting in it
the result (32), and using∫ z

z0

xδ dx = (zδ+1− zδ+1
0 )/(δ +1) ,

we finally get

a(z) =
z

δ +1
+

(
a0−

z0

δ +1

)(
z0

z

)δ

. (35)

When this is inserted in Eq. (32), the solution R(z) is complete. The time behavior
of R is obtained by substituting z(t) from Eq. (30) for z in R(z).

2.5.3 Accelerated growth:

We are also interested in how constant acceleration or deceleration z̈(t)=v̇z(t)=α

of z(t) affects the reproduction number Rz. In this case we have

ż(t) = vz(t) = v0 +α t , z(t) = z0 + v0 t +α t2/2

and
Rz(t) =

1
1− (δ + t)−1 with δ =

v0

α
. (36)

For α>0 we have δ>0, Rz(0)=1/(1−1/δ )>1 and Rz(0)>Rz(t)>1. Asymptoti-
cally we get

Rz(t)→
1

1−1/t
→ 1 for t→ ∞ . (37)

In spite of an accelerated increase of z(t) the reproduction number Rz decreases.
This illustrates that the specification of a reproduction number, Rz in our case, is
not sufficient to characterize the pandemic.

For α<0 or δ<0 resp. we can write

Rz(t) =
1

1+(|δ |− t)−1

whence Rz(t)<Rz(0)<1, and asymptotically we get

Rz(t)→ 0 for t→ |δ | . (38)
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Figure 1: z(t) for A = 1.5 ,1 ,0.5 , 0 ,−10 in the order from top to bottom, the
curve for exponential growth being dashed.

2.5.4 Growth with fixed A(t)

For fixed A(t)=const=A, a conversion of Eq. (23) with use of vz=ż(t) yields

v̇z

vz
=

d
dt

ln
vz

v0
=

Aż(t)
z

=
d
dt

ln
vz

v0

and after integration

ln
vz

v0
= A ln

z
z0

or vz = ż(t) = v0

(
z
z0

)A

.

Further integration leads to the result

z(t) =
(

z1−A
0 + v0 (1−A)(t− t0)/zA

o

)1/(1−A)
. (39)

Fig. 1 shows z(t) for 5 different values of A as an illustration, the initial values z0
and v0 being arbitrarily chosen but equal for all curves z(t).

Annotation: Linear, exponential and super-exponential growth are all possible,
but due to z(t)≤ 1 they can only occur temporarily.

2.6 Linear growth of Rz (t)
After the surprising result that Rz(t) decreases when z(t) is accelerated, we are
interested under which circumstances Rz increases, and examine which conse-
quences result from the ansatz

Rz(t) = R∗+α t .
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With this we get from Eq. (18)

v̇z(t)
vz(t)

=
d(ln(vz(t)/v0)

dt
= 1− 1

R∗+α t
.

Integration with respect to t results in

ln(vz(t)/v0) = t− ln(1+α t/R∗)

or

vz(t) =
v0 et

(1+α t/R∗)
. (40)

vz(t) growth faster than exponentially (super-exponential growth) for increasing
Rz(t) (positive α) and slower than exponentially (sub-exponential growth) for de-
creasing Rz(t) (negativ α).

2.7 Similarity solutions
The data published by the RKI or JHU and updated daily refer to the reported
cases. Since many individuals are infected and do not know because they have
no symptoms of illness, there is a high number of unreported cases. This can be
taken into account by multiplying the reported data by factors. In the equations of
the modified SIR-model then the substitutions Z→ Z̃=δ Z with constant δ must
be made. Eq. (6) must be satisfied by both sets of variables, which means that

Z̃ = δ I +δR = Ĩ + R̃

must apply. We now make the (not compulsory) assumption that Ĩ=δ I holds, from
which R̃=δ R follows. (R̃ is the sum of those who have recovered and those who
have died. Since the latter are generally well known, practically none of them
are unreported. For the validity of R̃=δ R, this would have to be compensated
by multiplying the recovered ones by a somewhat higher factor.) To the specific
variables a and z the same relationships apply as for I and Z, i.e.

ã = δ a , z̃ = δ z . (41)

The multiplying factor δ is not known, but can be estimated 2 and be quite
high (e.g. 10 or even higher). It would be an unpleasant surprise if, after comple-
tion of a calculation, it turned out that the factor δ used for it was wrong and the

2The number of unreported cases can be roughly estimated from the ratio of death cases to the
total number of officially registered infected individuals. On July 4, 2020, the apparent death rate
caused by covid-19 was 4.7 % for the world and 4.6 % for Germany. According to preliminary
informations provided by the virologists, some of them based on statistical surveys but with some
uncertainty due to the low number of cases, the true death rate (lethal rate) is only about 0.5 %. In
order for this percentage to come out for the populations mentioned, the number of reported cases
e.g. in the world must be multiplied by the factor δ=4.7/0.5=9.4.
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whole calculation had to be repeated with another δ . The following shows that
this can be avoided under the above conditions.

Let a(z) be the function resulting from a concrete reported data set {an,zn} via
a best least-squares fit. The unreported cases are taken into account through the
replacements an→ ãn=δ an and zn→ z̃n=δ zn, and for the associated fit function
applies a(z)→ ã(z̃)=δ a(z) with z̃=δ z, in short

ã(z̃) = δ a(z̃/δ ) . (42)

(From this follows ã(z̃n)=ãn=δ an=δ a(zn) as required.) Using dz/dz̃=1/δ , the
derivation of this with respect to z̃ yields

ã′(z̃) = δ a′(z)
∣∣
z=z̃/δ

dz/dz̃ = a′(z)
∣∣
z=z̃/δ

. (43)

Eq. (14) must also apply to ã and z̃, why with use of Eqs. (41) and (43) we get

R̃ = R(z̃) =
1

(1− z̃)(1−a′(z)
∣∣
z=z̃/δ

)
(44)

and
R̃(t) = R(z̃(t)) =

1
(1−δ z(t))(1−a′(z)

∣∣
z(t))

. (45)

With z̃(t)=δ z(t), from Eqs. (18) and (19) we obtain

R̃z(t) =
1

1− z̈(t)/ż(t)
and Q̃ =

z̈(t)
ż(t)

. (46)

Finally we want to find out how the result (16) is influenced by δ . From Eq. (42)
follows

ã(z̃)
ã(z̃0)

=
a(z)
a(z0)

∣∣∣∣
z=z̃/δ

and ∫ z̃

z̃0

dx̃
ã(x̃)

=
∫

δ z

δ z0

δ dx
δ a(x̃/δ )

=
∫

δ z

δ z0

dx
a(x)

=
∫ z

z0

dx
a(x)

∣∣∣∣
z=z̃/δ

,

which eventually leads to the result

t(z̃) = t(z)
∣∣
z=z̃/δ

. (47)
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3 Investigation of concrete situations

3.1 Modified SIR-model adapted to specific cases
The SIR-model describes the average behavior of the statistical variables S, I and
R or z and a in our case. Good agreement with the data supplied by the RKI
or JHU can therefore only be expected when the number of cases is sufficiently
high. Our approach to checking the applicability of the modified SIR-model con-
sists in either specifying the function a(z) and calculating the function z(t) or t(z)
resp. from the SIR-equations, or vice versa. To be more precise, we first look
for an analytic function a(z) (or t(z)), whose values a(zi) (or t(zi)) at the posi-
tions zi agree as well as possible with the given data pairs {ai,zi}, i=0,1,2, . . . (or
{ti,zi}, i=0,1,2, . . . ). The function t(z) calculated from Eq. (16) (or a(z) calcu-
lated from Eq. (17)) is then compared with the corresponding reported data. The
parameter γ , which has not yet been determined, is used as a fit parameter.

There are several problems with the described procedure regarding accuracy.
In our calculations, we arbitrarily determined the number of unreported cases so
that all reported data ai and zi are multiplied by the same factor δ = 10. As more
and more people get tested for Covid-19, that number gets smaller, which we
didn’t take into account. Furthermore, the data ai of the infectious individuals are
less reliable than the total number zi of infections, which may be the cause why
they are not specified in the official dashboards (see e.g. [3] or [4]). Alos, the
determination of the functions a(z) or z(t) adapted to the given data is not straight
forward. The path we have chosen avoids too much effort and may not be the
best. However, in view of the other error sources, it is not worth investing too
much effort into it.

3.1.1 Given a(z)

We examine the case of given data for the function a(z), using the data reported
for the world as an example and multiplying them by δ=10 to account for unre-
ported cases. Corresponding data for the time interval from 3.1.2020 to 7.9.2020
(128 days) are taken from Ref. [7], and the function a(z) is the best least-squares
fit in the class of polynomials ∑

n
ν=0 cν zν , both plotted in Fig. 2.3 The function

a(z) was then used to calculate t(z) from Eq. (16), γ being determined such that
t(zi)=ti for a specific pair {zi, ti} of the data set from Ref. [7]. The comparison
of the solution t(z) with this data is also shown in Fig. 2. The correspondence
is not perfect, but good enough that one can infer the usefulness of the modified
SIR-model for certain questions, at least in terms of quality. Furthermore, the

3It suffices to consider the function a(z) because it runs through the same values as a(t) and
increases monotonically with t because of ż(t)≥ 0.
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Figure 2: Left figure: reported data {zn,an} (black dots) for the world and as-
sociated best fit curve a(z). Right figure: curve t(z) calculated from a(z) with
Eq. (16) together with the corresponding reported data {zn, tn}. An exponential
curve with the same initial values is entered above it, showing, that z(t) is initially
super-exponential.
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Figure 3: R(z) and for the world, same time interval as in Fig. 2.

reproduction number R(z) is shown in Fig. 3. (Rz is shown as a function of t in
Fig. 5.)

3.1.2 Given t(z)

The reverse case, in which the data for t(z) are given and a(z) is calculated, is
examined by the example of Germany. Corresponding data for the time interval
from 4.4.2020 to 7.13.2020 are taken from Ref. [8]. Instead of z(t), we determine
the inverse function t(z) as a fit to the reported data, but this time not in the class
of polynomials, because this resulted in a function with too many fluctuations.
(For similar reasons, only the range with decreasing values of the target function
a(z) was examined.) Instead, the approach

t(z) = (d + tan(z/a))/b
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Figure 4: Left figure: reported data {zn, tn} for Germany and associated fit
curve t(z). Right figure: curve a(z) calculated from t(z) with Eq. (17) together
with the reported data {zn,an}.

was used, the parameters a,b, and d being chosen to optimize the fit to the data
(see Fig. 4). a(z) was then calculated from Eq. (17) and γ determined such that
a(zi)=ai for a specific pair {zi,ai} of the data. The comparison of the solution
a(z) with the data is also shown in Fig. 4.

3.2 Application of the acceleration parameter A(t)
The acceleration parameter A(t) can be calculated directly from reported data
without recourse to the SIR-model, the function z(t) again being determined by a
(best) fit. Fig. 5 illustrates this process, using again the example of the world. For
A(t)>1, the growth becomes super-exponential, and almost linear around day 60.
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Figure 5: Left figure: reported data {tn,zn} for the world over a time interval of
128 days, and associated best fit curve z(t). In the shaded areas, z(t) is super-
exponential. Right figure: Associated parameters A(t) and Rz(t) calculated from
z(t) using Eqs. (18) and (23).
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4 Future projections
We have seen that the modified SIR-model is well applicable to the pandemic,
although in some cases rather only to its more advanced stage. We therefore
assume that it can also be applied to future developments to a certain extent. Of
particular interest is how a(t) and z(t) develop when certain assumptions about
the further course of R(t), Rz(t) or A(t) are made.

4.1 Forecast solutions
Predefined R(z): In this case, from Eq. (10) results the equation

a′(z) = 1− 1
(1− z)R(z)

,

which is solved by

a(z) = a∗+ z− z∗−
∫ z

z∗

dx
(1− x)R(x)

. (48)

The associated solution z(t) is given by its inverse function t(z) to be calculated
from Eq. (16). For γ , the value of the preceding solution can be used, to which the
forecast solution is linked.

Predefined Rz(t): For given Rz(t), from Eq. (18) results the equation

v̇z(t)/vz(t) = 1−1/Rz(t) ,

which is solved by

vz(t) = v0 et−
∫ t

0(1/Rz(τ))dτ for vz(0) = v0 , (49)

and integration of ż(t)=vz(t) yields

z(t) = z0 +
∫ t

0
vz(τ)dτ (50)

with vz(τ) given by Eq. (49). For determining the associated function a(t), we
draw on Eq. (15a) in the form

a′(z)+ γa/ż(t) = a′(z)+ γa/vz(t) = 1 .

Using ȧ(t)=a′(z) ż(t)=a′(z)vz(t) or a′(z)=ȧ(t)/vz(t), from this we get the equa-
tion

ȧ(t)+ γ a(t) = vz(t) ,

which is solved by

a(t) =
(

a0 +
∫ t

0
vz(τ)eγ τdτ

)
e−γ t . (51)
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Figure 6: The horizontal curve is Rz(t), the top-down curve vz(t)/v0.

Rz(t) oscillations around Rz=1: In practice, after the number of newly infected
individuals has dropped to a lower level, it is variously observed that the net re-
production number is close to 1 and alternately exceeds this value and falls below
it. We simulate this situation by making the ansatz

Rz(t) = 1+ ε sin(ω t) . (52)

According to this and Eq. (49) the relative rate of new infections is

ż(t) = vz(t) = v0 et−
∫ t

0(1/(1+ε sin(ω τ))dτ . (53)

The integral in the exponent can indeed be expressed through analytic functions,

∫ t

0

dτ

1+ ε sin(ω τ)
=

2arctan
(

ε+tan(ω t/2)√
1−ε2

)
ω
√

1− ε2
.

It is, however, rather tedious to get the various branches of the trigonometric
functions aligned correctly adjacent to each other. We have therefore evaluated
Eq. (53) numerically. The result is shown in Fig. 5. The surprising outcome is
that vz(t) gradually decreases. The upward exceedings of limit 1 by vz are there-
fore harmless if they are compensated for by undershoots of the same duration
and strength.
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4.2 End of the pandemic
A pandemic ends when there are no more infectious people, i.e. for I=0 or a=0.

Case of constant R: In this case Eq. (13) applies, and for a=0 we obtain

ln
1− z
1− z0

=−R (a0 + z− z0) .

With the definitions

W =−R (z−1) , W0 =−R (z0−1) (54)

and by transition from the logarithm to the exponential function this results in

W eW =V with V =W0 eW0−R a0 . (55)

The resolution of this equation with respect to W is called Lambert-W-function,
omega function or product logarithm. It has several branches, of which the one
we need is called the principal solution W0(V ). Thus, in terms of W and V the
solution of our problem is W=W0(V ). Returning to our original variables by use
of Eqs. (54) and (55b), for the value z=z f , at which the pandemic ends, we get

z f = 1+W0(V )/R with V =−R (1− z0)e−(1+a0−z0) . (56)

Case of constant Rz: According to Eq. (18) for constant Rz we get

v̇z(t) = α vz(t) with α = (Rz−1)/Rz (57)

and from this
vz(t) = v0 eα t (58)

with v0 ≥ 0, because z(t) cannot decrease. This means that the constancy of Rz
implies exponential growth of vz(t). According to Eq. (11) the condition a=0 for
ending the pandemic calls for ż(t)=vz=0 which is not possible with α ≥ 0, and
for α<0 this is only achieved after an infinitely long time. With vz=ż(t) from
Eq. (58) results the differential equation ż(t)=v0 eα t which is solved by

z(t) = z0 +(vz(t)− v0)/α . (59)

According to the termination condition vz=0, from this and Eq. (58) we obtain

α ≤ 0 and z f = z0 + v0|α| . (60)

The final value z f that z(t) assumes at the end of the pandemic remains below its
maximum 1 only for |α|>v0/(1− z0).
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5 Concluding remarks
By many, the exponential growth in infection numbers is considered as the worst
of all possibilities, and it is assumed to occur immediately when the net repro-
duction number exceeds 1. The first assumption overlooks the fact that the term
exponential growth does not represent a complete and adequate characterization,
because there is slow and fast exponential growth (eα t with a small or large α) as
there can be slow and fast linear growth (ż(t)=α with a small or large α). Accord-
ingly, rapid linear growth can be worse than slow exponential growth over a long
period of time. So the growth of Z(t) in the world was almost linear from the be-
ginning of April to the middle of May, but unfortunately at very high speed. That
the second assumption is wrong can be seen from Eqs. (25)-(26). According to
them A(t)=0 for Rz(t)=1. If Rz(t) were to become a little larger from this value,
then A(t) would have to jump to 1 immediately for exponential growth, which is
impossible according to Eq. (26). 4 As we have seen, the modified SIR-model
allows for all growth possibilities, from sub-linear up to super-exponential. How
dangerous the current growth is depends, however, not only on its type as charac-
terized by A(t), but also on its current growth rate vz, and on how long this kind
of growth will last.

A question, that has been asked many times and the answer to which is im-
portant for the acceptance of restrictions that must be endured to contain the pan-
demic, is: Why do the latter still have to be maintained when the rate of new
infections (i.e. vz) has become sufficiently low. The answer to this is not easy, but
there is an analogy familiar to all of us which maybe contributes to some under-
standing. Imagine driving a car and pressing the accelerator halfway to maintain
a certain speed. If you want to drive faster, you have to push it further, e.g. three
quarters. If you would release the pedal now, you would fall back to lower speed.
In a similar way, you either have to maintain the measures undertaken for keeping
low the number of new infections, or to replace them with equally effective, but
more targeted and less restrictive measures. Note that this analogy is of a more
symbolic kind, because neither frictional forces nor inertia and energy supply can
be attributed to the pandemic. At most, in the case Rz<1 or A(t)<0 a constant neg-
ative acceleration v̇z(t)=α<0 (treated at the end of Section 2.5) can to a limited
extent be compared with the acceleration of a car. However, according to Eq. (5),
independently of α the final velocity vz is always zero due to the lack of friction.
The fact that it is so difficult to bring and keep Rz well below 1 or A(t) far below
zero can possibly be explained as follows: Either the effort to maintain a negative

4This does not conflict with the fact that according to Eqs. (58)-(59) vz(t) and z(t) grow expo-
nentially for constant Rz>1, because also A≥ 1 in this case. The consequence of this is that Rz may
not be constant. An example for A(t)<1 with simultaneous Rz(t)>1 is provided by z(t)=α t2/2,
for which A(t)=1/2 and Rz(t)=(1−1/t)−1.
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acceleration increases with decreasing vz(t), or else, there are processes that work
like negative friction. A third mechanism is discussed in the next paragraph.

When looking at the infection rates which the JHU releases for the different
countries of the world, one notices that for those who have weathered the crisis
rather well (e.g. Germany, Austria, Japan, South Korea or New Zealand), ż(t)
does not decrease completely down to zero, but only to a low and almost constant
level. One reason for this could also be, that the different countries do not form
closed systems, so that due to the pandemic nature of the covid-19 crisis infections
are always brought in from outside. Since the SIR-model only applies to closed
systems, this factor cannot be treated with it. That would be possible for the world
as a whole, but the latter is still far from low infection rates.
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