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Abstract 39 

Background. Fatty liver disease is the most common liver disease in the world. It is characterized by a 40 

build-up of excess fat in the liver that can lead to cirrhosis and liver failure. The link between fatty liver 41 

disease and gut microbiome has been known for at least 80 years. However, this association remains 42 

mostly unstudied in the general population because of underdiagnosis and small sample sizes. To 43 

address this knowledge gap, we studied the link between the Fatty Liver Index (FLI), a well-established 44 

proxy for fatty liver disease, and gut microbiome composition in a representative, ethnically 45 

homogeneous population sample in Finland. We based our models on biometric covariates and 46 

phylogenetically transformed gut microbiome compositions from shallow metagenome sequencing. 47 

Results. Our classification models were able to discriminate between individuals with a high FLI (≥ 48 

60, indicates likely liver steatosis) and low FLI (< 60) in our validation set, consisting of 30% of the 49 

data not used in model training, with an average AUC of 0.75. In addition to age and sex, our models 50 

included differences in 11 microbial groups from class Clostridia, mostly belonging to orders 51 

Lachnospirales and Oscillospirales. Pathway analysis of representative genomes of the FLI-associated 52 

taxa in (NCBI) Clostridium subclusters IV and XIVa indicated the presence of e.g., ethanol 53 

fermentation pathways. 54 

Conclusions. Through modeling the fatty liver index, our results provide with high resolution 55 

associations between gut microbiota composition and fatty liver in a large representative population 56 

cohort. Our results lend further support to the role of endogenous ethanol producers in the development 57 

of fatty liver. 58 

 59 

Keywords: Metagenomics, human gut, fatty liver, fatty liver index, population sample  60 
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Background 61 

Fatty liver disease affects roughly a quarter of the world’s population (Younossi et al., 2016). It is 62 

characterized by accumulation of fat in the liver cells and is intimately linked with pathophysiology of 63 

metabolic syndrome (Marchesini et al., 2003; Chalasani et al., 2012; Yki-Järvinen, 2014). Fatty liver 64 

disease can be broadly divided into two variants: non-alcoholic fatty liver disease (NAFLD), attributed 65 

to high caloric intake, and alcohol associated fatty liver disease, attributed to high alcohol consumption. 66 

Even though the rate of progressions and underlying causes of both diseases might be different, they 67 

can be broadly sub-divided into those who have fat accumulation in the liver with no or minimal 68 

inflammation or those who have additional features of cellular injury and active inflammation with or 69 

without fibrosis typically seen in peri-sinusoidal area. (Toshikuni et al., 2014). Patients with 70 

steatohepatitis may progress to cirrhosis and hepatocellular carcinoma and have increased risk of liver-71 

related morbidity and mortality, globally amounting to hundreds of thousands of deaths (Rinella and 72 

Charlton, 2016). 73 

 74 

The human gut harbors up to 1012 microbes per gram of content (Gilbert et al., 2018) and is intimately 75 

connected with the liver. Thus, it is no surprise that gut microbiome composition appears to have a 76 

strong connection with liver disease (Caussy et al., 2019). Numerous studies over the past 80 years 77 

have reported associations between gut microbial composition and liver disease (Compare et al., 2012). 78 

For example, gut permeability and overgrowth of bacteria in the small intestine (Miele et al., 2009), 79 

changes in Gammaproteobacteria and Erysipelotrichi abundance during choline deficiency (Spencer et 80 

al., 2011), elevated abundance of ethanol-producing bacteria (Zhu et al., 2013; Yuan et al., 2019), 81 

metagenomic signatures of specific bacterial species (Loomba et al., 2017; Jiao et al., 2019) have all 82 

been linked to NAFLD in small case-control patient samples. However, the microbial signatures often 83 

overlap between NAFLD and metabolic diseases, while those of more serious liver disease such as 84 
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steatohepatitis and cirrhosis are more clear (Aron-Wisnewsky et al., 2020). For example, oral taxa 85 

appear to invade the gut in liver cirrhosis (Qin et al., 2014), and this phenotype can accurately be 86 

detected by analyzing the fecal microbiome composition (AUC = 0.87 in a validation cohort; Caussy et 87 

al., 2019). Furthermore, we recently demonstrated good prediction accuracy for incident liver disease 88 

diagnoses (AUC = 0.83 for non-alcoholic liver disease, AUC = 0.96 for alcoholic liver disease, during 89 

~15 years), showing that the signatures of serious future liver disease are easy to detect (Liu et al., 90 

2020). 91 

 92 

The mechanisms underlying the contribution of gut microbiome content with fatty liver disease are 93 

thought to be primarily linked to gut bacterial metabolism. Bacterial metabolites can indeed be 94 

translocated from the gut through the intestinal barrier into the portal vein and transported to the liver, 95 

where they interact with liver cells, and can lead to inflammation and steatosis (Safari and Gérard, 96 

2019). Short-chain fatty acid production, conversion of choline into methylamines, modification of bile 97 

acids (BA) into secondary BA, and ethanol production, all of which are mediated by gut bacteria, are 98 

also known to be aggravating factors for NAFLD (Safari and Gérard, 2019). Recent studies have also 99 

suggested that endogenous ethanol production by gut bacteria could lead to an increase in gut 100 

membrane permeability (Yuan et al., 2019). This can facilitate the translocation of bacterial metabolites 101 

and cell components such as lipopolysaccharides from the gut to the liver, leading to further 102 

inflammation and possible development of NAFLD (Carpino et al., 2019). 103 

 104 

Liver biopsy assessment is the current gold standard for diagnosis of fatty liver disease and its severity 105 

(Li et al., 2018), but it is also impractical and unethical in a population-based setting. Ultrasound and 106 

MRI based assessment can help detect presence of fatty liver, however, this data is not available in our 107 

cohort. Regardless, recent studies have shown that indices based on anthropometric measurements and 108 
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standard blood tests can be a reliable tool for non-invasive diagnosis of fatty liver particularly in 109 

population-based epidemiologic studies (Koehler et al., 2013; Vanni and Bugianesi, 2015). 110 

Here, we designed and conducted computational analyses to examine the links between fatty liver and 111 

gut microbiome composition in a representative population sample of 7211 extensively phenotyped 112 

Finnish individuals (Salosensaari et al., 2020). Because fatty liver disease is generally underdiagnosed 113 

in the general population (Alexander et al., 2018), we used population-wide measurements of BMI, 114 

waist circumference, blood triglycerides and gamma-glutamyl-transferase (GGT) to calculate a 115 

previously validated Fatty Liver Index (FLI) for each participant as a proxy for fatty liver (Bedogni et 116 

al., 2006). In parallel, we used shallow shotgun sequencing to analyze gut microbiome composition 117 

(Hillmann et al., 2018), which also enabled the use of phylogenetic and pathway prediction methods. In 118 

this work, we describe high-resolution associations between fatty liver and individual gut microbial 119 

taxa and clades, which are generalizable at the population level.  120 

 121 

Results 122 

Bacterial community structure is correlated with Fatty Liver Index in a population 123 

sample 124 

To investigate the link between fatty liver disease (using FLI as a proxy; Figure 1A, 1B) and gut 125 

microbial composition, we used linear regression (adjusted R2 = 0.29) on the three first principal 126 

component (PC) axes of the fecal bacterial beta-diversity (between individuals), sex, age, and alcohol 127 

to model FLI. log10(FLI) significantly correlated with all three bacterial PC axes, sex, age, and alcohol 128 

use (all P <1×10-6). Correlations between FLI and archaeal PC axes were not significant (P > 0.05). 129 

The effect size estimate on log10(FLI) was a magnitude larger for PC1 (0.11 ± 0.008) than for PC2 130 

(0.04 ± 0.008) and PC3 (-0.06 ± 0.008). The relationships between FLI and the bacterial PC 131 

components representing their beta-diversity are visualized for each of the three components in Figure 132 
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1C. In our analyses, we classified our reads against the Genome Taxonomy Database (GTDB; Parks et 133 

al., 2018), and thus the taxonomy discussed in this study follows the standardized GTDB taxonomy, 134 

unless otherwise noted.  135 

 136 

Bacterial clades with the highest positive loadings on PC1 (and therefore associated with higher FLI 137 

values) included members of the Lachnospirales and Oscillospirales taxonomic orders, of the Bacilli 138 

class, and of the Ruminococcaceae, Bacteroidaceae and Lachnospiraceae families (Figure S2). These 139 

observations led us to further analyses within a machine learning framework to estimate the relative 140 

contributions of individual bacterial taxa to the differences in FLI between study participants.  141 

 142 

Bacterial lineages within the NCBI Clostridium subclusters IV and XIVa associate with 143 

FLI 144 

In our machine learning framework, we used the known covariates in addition to individual archaeal 145 

and bacterial “balances” as the predicting features. Briefly, each balance represents a single internal 146 

node in a phylogenetic tree, and its value is a log-ratio of the abundances of the two clades descending 147 

this node (for details see methods, and Silverman et al., 2017). Continuous FLI and differences 148 

between FLI groups (FLI < 60, N = 4359 and FLI ≥ 60, N = 1910; see Figures 1A, 1B) were modeled 149 

with gradient boosting regression or classification using Leave-One-Group-Out Cross-Validation 150 

(LOGOCV) between participants from different regions. 151 

 152 

After feature selection and Bayesian hyperparameter optimization, the correlation between the 153 

predictions of the final regression models (age, sex, self-reported alcohol use, and 18 bacterial balances 154 

as features; each trained on the data from 5/6 regions) and true values in unseen data from the omitted 155 

region averaged R2 = 0.30 (0.26 – 0.33). After feature selection and optimization, the main 156 
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classification models (age, sex, and 11 bacterial balances as features; each trained on the data from 5/6 157 

regions) averaged AUC = 0.75 (Table S1) and AUPRC = 0.56 (baseline at 0.30; Table S2) on (unseen) 158 

test data from the omitted region. Models trained using only the covariates averaged AUC = 0.71 159 

(AUPRC = 0.47) and using only the 11 bacterial balances they averaged AUC = 0.66 (AUPRC = 0.47) 160 

on test data. Alternative models were constructed by excluding participants with FLI between 30 and 161 

60 (N = 1583) and discerning between groups of FLI < 30 (N = 2776) and FLI ≥ 60 (N = 1910). These 162 

models averaged AUC = 0.80 (AUPRC = 0.75, baseline at 0.41) on their respective test data. They 163 

averaged AUC = 0.76 (AUPRC = 0.68) when using only the covariates, and AUC = 0.70 (AUPRC = 164 

0.63) when using only the 20 bacterial balances. 165 

 166 

Because training data from all 6 regions was used to prevent overfitting in the selection of core features 167 

for all of the models, and similarly in searching for common hyperparameters, participants from the 168 

validation region of each model (in the training partition) partly influenced these parameters. Thus, we 169 

also constructed classification models discerning between the FLI < 60 and FLI ≥ 60 groups, where 170 

data of the validation region was completely excluded in the feature selection and hyperparameter 171 

optimization of each LOGOCV model. These models, using their individual feature sets and 172 

hyperparameters, averaged AUC = 0.75 and AUPRC = 0.57 (baseline at 0.30) on test data from their 173 

respective validation regions (Table S3). Using only covariates, they averaged AUC = 0.71 (AUPRC = 174 

0.47), and AUC = 0.67 (AUPRC = 0.48) with only the bacterial balances. 175 

 176 

To facilitate interpretability of the results, we primarily continued examining the main classification 177 

models using a common set of core features. In these models, the median effect sizes of the features on 178 

the model predictions at their minimum and maximum values were highest for age, followed by sex, 179 

and the 11 balances in the phylogenetic tree (Figures S2, S3). All 11 associated balances were in 180 
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phylum Firmicutes, class Clostridia, and largely in the NCBI Clostridium subclusters IV and XIVa 181 

(Figure 2). The specific taxa represented standardized GTDB genera (NCBI in brackets) 182 

Negativibacillus (Clostridium), Clostridium M (Lachnoclostridium / Clostridium), CAG-81 183 

(Clostridium), Dorea (Merdimonas / Mordavella / Dorea / Clostridium / Eubacterium), Faecalicatena 184 

(Blautia / Ruminococcus / Clostridium), Blautia (Blautia),  Sellimonas (Sellimonas / Drancourtella), 185 

Clostridium Q (Lachnoclostridium [Clostridium]) and Tyzzerella (Tyzzerella / Coprococcus). Notably, 186 

all but one of the features in the main classification models (n226) were identified in the feature 187 

selection for the alternative models (constructed otherwise identically, but FLI < 30 was compared 188 

against FLI ≥ 60 in different data partitions), together with 10 additional balances (Figure S4). Only 189 

one of the balances in the alternative models was outside phylum Firmicutes (n1712 in Bacteroidota), 190 

and in addition, 4 balances were outside class Clostridia (n481 in Negativicutes; n826, n1009 and n918 191 

in Bacilli). 192 

 193 

In addition to blood test results, FLI is based on anthropometric markers linked to metabolic syndrome, 194 

waist circumference and BMI. This prompted us to attempt to dissect the index and identify which of 195 

the covariates and associated microbial balances from the phylogenetic tree can be linked to blood 196 

GGT and triglycerides measurements (see Figure 1B), and therefore would be more specific to hepatic 197 

steatosis and liver damage. To do so, we performed feature selection (similarly to continuous FLI) for 198 

GGT and triglycerides measurements in subsets of participants grouped by age, sex, and BMI. The 199 

feature selection identified two balances within the NCBI Clostridia XIVa subcluster (identified as 200 

n336 and n330) which were important for both GGT and triglyceride level prediction, and thus likely 201 

specific to liver function (Figure 2). Bacterial taxa were positively linked to liver function in these 202 

balances, and included (NCBI species) Clostridium clostridioforme, C. bolteae, C. citroniae, C. 203 

saccharolyticum and C. symbiosum. 204 
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 205 

Ethanol and acetate production pathways are identified in representative bacterial 206 

genomes from taxa linked to liver function  207 

The values of predictive balances in the phylogenetic tree cannot be summarized for individual taxa, 208 

which means that only a qualitative investigation of the associations between their metabolism and 209 

fatty liver was possible in this study. We identified genetic pathways predicted to encode for SCFA 210 

(acetate, propanoate, butanoate) and ethanol production, BA metabolism, and choline degradation to 211 

trimethylamine in representative genomes from the taxa we identified to be linked to liver function 212 

(Figure S3). These specific processes were chosen because they have been previously identified to 213 

have a mechanistic link to NAFLD (see e.g., Safari and Gérard, 2019).  214 

 215 

Acetate and ethanol production pathways appeared to be more abundant in the representative genomes 216 

of the taxa which had a positive association with FLI. In the liver function specific clades, n336 and 217 

n330, MetaCyc pathways for pyruvate fermentation to ethanol III (PWY-6587) and L-glutamate 218 

degradation V (via hydroxyglutarate; P162-PWY; produces acetate and butanoate) were present only in 219 

genomes positively associated with FLI. In balance n336, also heterolactic fermentation (P122-PWY; 220 

produces ethanol and lactate) was more often encoded in the FLI-associated clade (3/5) than the 221 

opposing clade (1/2). In representative genomes from the non-liver-specific balance n355, potential 222 

ethanol producers (PWY-6587) were seen in the positively associated clade, but for most balances such 223 

trends were not clear in the qualitative analysis. Furthermore, we did not detect any of these pathways 224 

in the representative genomes of two individual taxa positively associated with FLI, Negativibacillus 225 

sp000435195 and Phocea massiliensis (Figure S3). 226 

 227 
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Discussion 228 

The pathophysiology of fatty liver disease in general, and NAFLD in particular, is complex and its 229 

clinical diagnosis can be difficult (Haas et al., 2016). In this study, we leveraged multi-omics data 230 

from a large population study (FINRISK02) to identify broad links between the overall gut 231 

microbiome composition and fatty liver disease, using FLI as a recognized proxy (Figure 1C), and 232 

identified specific microbial taxa and lineages predictive of a higher FLI (Figure 2). Considering that 233 

the predictive ability of FLI for clinically diagnosed NAFLD ranges between AUC = 0.81 – 0.93, in 234 

populations of Caucasian ethnicity such as ours (Vanni and Bugianesi, 2015), our models were able to 235 

reasonably predict the FLI group with AUC = 0.75 (AUPRC = 0.56, baseline at 0.30), while 236 

extrapolating to a validation region not used in training of the model.  237 

 238 

Our additional analyses support these results. Excluding participants with intermediate FLI (between 239 

30 – 60) increased the accuracy slightly (to AUC = 0.8 and AUPRC = 0.75, baseline at 0.41). 240 

However, discerning between participants with probable fatty liver disease (FLI ≥ 60) from others 241 

presents a clinically more relevant target for detecting changes in microbiome composition associated 242 

with development of the disease. In another set of models, we negated the influence of validation 243 

region data in the individual models also for feature selection and hyperparameter optimization during 244 

training. This led to individualized sets of features and parameters in the models, but the average 245 

performance of the models was almost identical on validation region samples in the test data (AUC = 246 

0.75 and AUPRC 0.57, baseline at 0.30). The aim of our study was to find patterns in microbiome 247 

composition which would be generalizable across the 6 sampled geographic regions in Finland and 248 

easy to interpret. Thus, we consider the use of all training data to define the common core feature set 249 

justified. This goal also guided our overall modeling architecture and likely led to a lower 250 

performance than if we instead performed interpolation within a smaller scale (e.g., He et al., 2018).  251 
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 252 

When interpreting results, several different levels of associations can be considered according to 253 

types of fatty liver disease and the gut microbiome composition. Because FLI has been mostly 254 

validated with simple steatosis and NAFLD (Bedogni et al., 2006; Vanni and Bugianesi, 2015), we 255 

can conservatively contextualize our findings with previous associative work that used these 256 

diagnoses or clinical manifestations, only. 257 

 258 

FLI modeling reveals consistent associations between gram-positive Clostridia and fatty 259 

liver disease 260 

We found significant linear correlations between the first three bacterial PC-axes of our samples (a 261 

measure of beta diversity) and FLI (see results and Figure 1C). Previous studies have shown 262 

differences in beta diversity in relation to NAFLD (Kim et al., 2019). However, FLI used in our study 263 

as a proxy for liver disease also includes features such as BMI and waist circumference, which 264 

associate with metabolic syndrome and type 2 diabetes (Aron-Wisnewsky et al., 2020). Links 265 

between these diseases and gut microbiome composition are well documented in previous studies 266 

(Castaner et al., 2018). It is thus not surprising that bacterial beta diversity and FLI were correlated, 267 

but unfortunately this simple correlation does not enable untangling the relative contributions of fatty 268 

liver disease and other metabolic diseases to the differences in bacterial beta diversity. 269 

 270 

Several studies have reported highly specific changes in microbial abundances in relation to NAFLD 271 

(Wigg et al., 2001; Mouzaki et al., 2013; Zhu et al., 2013; Shen et al., 2017). In summary, while also 272 

conflicting results have been reported, generally increases in Lactobacillus and Escherichia genera, 273 

and a decrease in Coprococcus genus have been most often associated with a NAFLD diagnosis 274 

(Sharpton et al., 2019). Furthermore, increased abundance of several gram-positive bacteria belonging 275 
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to the Clostridium genus have often been positively linked with NAFLD (Jiang et al., 2015; Loomba 276 

et al., 2017). Differences in unconstrained between-samples (beta) diversity have been also 277 

documented for persistent NAFLD (Kim et al., 2019) and along the NAFLD-cirrhosis spectrum 278 

(Caussy et al., 2019). 279 

 280 

In our study, abundances of bacteria from the Coprococcus genus were not specifically associated 281 

with FLI, although the genus was nested inside our predictive balances. Strikingly, we did not 282 

identify any bacterial associations with FLI outside of the Firmicutes phylum. A possible reason for 283 

this might be the higher relative abundance of phylum Firmicutes at high latitudes, where Finland is 284 

(Suzuki and Worobey, 2014). Among the associations we identified, Faecalicatena gnavus (NCBI: 285 

Ruminococcus gnavus) was positively linked with FLI as part of 3 predictive balances, and associated 286 

in previous studies with liver cirrhosis (Qin et al., 2014). Interestingly, none of the oral Firmicutes, 287 

such as Veillonella, suggested to invade the gut, were identified in our own analyses. This might be 288 

caused by using FLI as a proxy, which is likely not closely associated with advanced liver disease, 289 

such as cirrhosis, and thus would target an earlier phase of liver disease progression. 290 

 291 

Two individual taxa, Negativibacillus sp000435195 and Phocea massiliensis, were highly predictive 292 

of FLI group (Figures 2, S2), but not of its liver function-specific components. The associations of 293 

these taxa with fatty liver disease have not been documented previously. However, a decreasing 294 

abundance of both bacteria, Negativibacillus sp000435195 (NCBI: Clostridium sp. CAG:169) and 295 

Phocea massiliensis (NCBI: Phocea massiliensis), were seen when the intake of meat and refined 296 

cereal was reduced isocalorically in favor of fruit, vegetables, wholegrain cereal, legumes, fish and 297 

nuts in overweight and obese subjects in Italy (Meslier et al., 2020). While comparisons between 298 

these studies are difficult due to annotation, bacteria such as Faecalicatena gnavus (NCBI: 299 
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Ruminococcus gnavus) and Clostridium Q saccharolyticum (NCBI: Clostridium saccharolyticum) 300 

were also found to respond negatively to the Mediterranean diet. Together with their positive 301 

association with FLI in our study, these observations would warrant further study on these species as 302 

plausible biomarkers for healthy diet choices. 303 

 304 

Most taxa in our study with a positive association with FLI belonged to the (broadly defined) 305 

Clostridium NCBI genus, which supports several previous observations (Jiang et al., 2015; Loomba et 306 

al., 2017). However, taxonomic standardization according to GTDB has identified the Clostridium 307 

genus as the most phylogenetically inconsistent of all bacterial genera in the NCBI taxonomy, and 308 

divides it into a total of 121 monophyletic genera in 29 distinct families (Parks et al., 2018). These 309 

reassignments, although more accurate and sensible, complicate comparisons to previous research 310 

studies. However, our results strongly suggest that this finer taxonomic resolution might robustly 311 

reveal novel discoveries. Thus, while (shallow) shotgun metagenomic sequencing is often more costly 312 

than amplicon sequencing, this might be justified by the increased resolution which is required to 313 

accurately identify specific taxon-based associations (e.g., Hillmann et al., 2018, 2020). 314 

 315 

Bacterial taxa associated with a high FLI have a genetic potential to exacerbate the 316 

development of fatty liver disease 317 

We identified several plausible new associations between individual taxa and clades of bacteria and 318 

fatty liver. All taxa were from class Clostridia, which are obligate anaerobes. We observed that 319 

reference genomes from the bacterial taxa positively associated with FLI in the liver-specific balances 320 

harbored several genetic pathways necessary for ethanol production. Specifically, genes predicted to 321 

enable the fermentation of pyruvate to ethanol (MetaCyc PWY-6587) appeared to be common. 322 

Endogenous production of ethanol has been known to both induce hepatic steatosis and increase 323 
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intestinal permeability (de Faria Ghetti et al., 2018) and several of the taxa identified in our study 324 

have also been experimentally shown to produce ethanol, such as C. M asparagiforme, C. M bolteae, 325 

C. M clostridioforme / C. M clostridioforme A (Mohan et al., 2006), and C. Q Saccharolyticum 326 

(Murray et al., 1982). The relative abundances of these putatively ethanol-producing taxa were 327 

predictive of FLI groups in previously unseen data. However, the self-reported alcohol consumption 328 

from the participants was not among the best predictors for the FLI groups, as it was excluded in the 329 

feature selection step. 330 

 331 

All reference genomes from taxa positively associated with FLI in balance n330 harboured genes 332 

predicted to encode for the L-glutamate fermentation V (P162-PWY; Figure S3) pathway, which 333 

results in the production of acetate and butanoate. Glutamate fermentation could lead to increased 334 

microbial protein fermentation in the gut, which has been previously been linked with obesity, 335 

diabetes and NAFLD (Diether and Willing, 2019). Recently, the combined intake of fructose and 336 

microbial acetate production in the gut was experimentally observed to contribute to lipogenesis in 337 

the liver in a mouse model (Zhao et al., 2020). Interestingly, C. Q saccharolyticum (in our study, a 338 

FLI-associated species deriving from balance n330), was experimentally shown to ferment various 339 

carbohydrates, including fructose, to acetate, hydrogen, carbon dioxide, and ethanol (Murray et al., 340 

1982). Furthermore, while our own pathway analysis did not detect BA modification pathways in the 341 

reference genome of C. Q saccharolyticum, a strain of this species has been highlighted as a probable 342 

contributor to NAFLD development through the synthesis of secondary BA (Jiao et al., 2019). The 343 

links between dietary intake and gene regulation, combined with microbial fermentation in the gut 344 

warrant further mechanistic experiments to elucidate their links with fatty liver, and likely other 345 

metabolic diseases. 346 

 347 
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Intriguingly, NAFLD-associated ethanol producing bacteria in previous cohort studies have all been 348 

gram-negatives, such as (NCBI-defined) Klebsiella pneumoniae (Yuan et al., 2019) and Escherichia 349 

coli (Zhu et al., 2013). In our population sample, instead of gram-negatives, bacteria from the C. M 350 

bolteae, C. M clostridioforme / C. M clostridioforme A and C. M citroniae species (linked in our 351 

study with FLI as deriving from balance n336) have been described as opportunistic pathogens 352 

(Dehoux et al., 2016), and are hypothesized to exacerbate fatty liver development similarly through 353 

endogenous ethanol production. This result suggests that geographical (He et al., 2018) and ethnic 354 

(Deschasaux et al., 2018) variability might also strongly affect gut microbiome composition and its 355 

associations with disease. In addition to putative endogenous ethanol producers, we identified other 356 

FLI-associated taxa deriving from balance n330, for which reference genomes harbored a genetic 357 

pathway predicted to encode for the ability to ferment L-lysine to acetate and butyrate. While the 358 

production of these SCFAs is often considered beneficial for gut health, other metabolism of 359 

proteolytic bacteria might negatively contribute to fatty liver disease (Canfora et al., 2019).  360 

 361 

Through modeling a previously validated risk index for fatty liver, we could associate specific 362 

members of the gut microbiome with the disease across geographical regions in this representative 363 

sample of the general population in Finland. In addition, sex and age of participants were also 364 

strongly predictive of the FLI group in our models (Figures 2, S2, Table S1). Their similar positive 365 

associations with fatty liver disease are known from previous studies (e.g., Cheng et al., 2013; 366 

Lonardo et al., 2019). The associated microbial balances could be used to improve the predictions 367 

above the baseline of these covariates on 5/6 regions in Finland. For example, in the model cross-368 

validated with Lapland the balances were more predictive of FLI group than the covariates by 369 

themselves, and their combination increased the AUC further. Yet, when testing the model where 370 

Turku/Loimaa region was used for cross-validation, the microbial balances were slightly predictive of 371 
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FLI group but failed to improve the AUC over the covariates (Table S1). This pattern might stem 372 

from the cultural and genetic west-east division in Finland (Näyhä, 1989; Kerminen et al., 2017), with 373 

a closer proximity of the Helsinki/Vantaa region to eastern regions than Turku/Loimaa, in both terms. 374 

It is thus likely that further incorporation and investigation on the use of spatial information in 375 

microbiome modeling would elucidate these geographical patterns in taxa-disease associations. 376 

 377 

Conclusions 378 

Modeling an established risk index for fatty liver enabled the detection of associations between the 379 

disease and gut microbiome composition, even to the level of individual taxa. These taxa and clades 380 

were all from the obligately anaerobic gram-positive class Clostridia, from several redefined GTDB 381 

genera previously included in the polyphyletic NCBI genus Clostridium. Many of the representative 382 

genomes of taxa positively associated with fatty liver had genomic potential for endogenous ethanol 383 

production. This suggests a possible mechanistic link to the pathophysiology of liver disease through 384 

increased gut permeability and induction of hepatic steatosis. Further mechanistic links with 385 

microbial production of SCFAs, especially acetate, and fatty liver development are also likely. Our 386 

models were able to predict the FLI group of participants across geographical regions in Finland, 387 

showing that the associations are robust and mostly generalizable in the sampled population. 388 

 389 

Methods 390 

Survey details and sample collection 391 

Cardiovascular disease risk factors have been monitored in Finland since 1972 by conducting a 392 

representative population survey every five years (Borodulin et al., 2018). In the FINRISK 2002 393 

survey, a stratified random population sample was conducted on six geographical regions in Finland. 394 
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These are North Karelia and Northern Savo in eastern Finland, Turku and Loimaa regions in 395 

southwestern Finland, the cities of Helsinki and Vantaa in the capital region, the provinces of Northern 396 

Ostrobothnia and Kainuu in northwestern Finland, and the province of Lapland in northern Finland.  397 

 398 

Briefly, at baseline examination the participants filled out a questionnaire form, and trained nurses 399 

carried out a physical examination and blood sampling in local health centers or other survey sites. 400 

Data was collected for physiological measures, biomarkers, and dietary, demographic and lifestyle 401 

factors. Stool samples were collected by giving willing participants a stool sampling kit with detailed 402 

instructions. These samples were mailed overnight between Monday and Thursday under Finnish 403 

winter conditions to the laboratory of the Finnish Institute for Health and Welfare, where they were 404 

stored at -20ºC. In 2017, the samples were shipped still unthawed to University of California San Diego 405 

for microbiome sequencing.  406 

 407 

Further details of the FINRISK cohorts and sampling have been extensively covered in previous 408 

publications (Borodulin et al., 2015; Salosensaari et al., 2020). The Coordinating Ethics Committee of 409 

the Helsinki University Hospital District approved our study protocol. All participants have given their 410 

written informed consent. 411 

 412 

Stool DNA extraction and shallow shotgun metagenome sequencing 413 

A miniaturized version of the Kapa HyperPlus Illumina-compatible library prep kit (Kapa Biosystems) 414 

was used for library generation, following the previously published protocol (Sanders et al., 2019). 415 

DNA extracts were normalized to 5 ng total input per sample in an Echo 550 acoustic liquid handling 416 

robot (Labcyte Inc). A Mosquito HV liquid-handling robot (TTP Labtech Inc was used for 1/10 scale 417 

enzymatic fragmentation, end-repair, and adapter-ligation reactions). Sequencing adapters were based 418 
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on the iTru protocol (Glenn et al., 2019), in which short universal adapter stubs are ligated first and 419 

then sample-specific barcoded sequences added in a subsequent PCR step. Amplified and barcoded 420 

libraries were then quantified by the PicoGreen assay and pooled in approximately equimolar ratios 421 

before being sequenced on an Illumina HiSeq 4000 instrument to an average read count of 422 

approximately 900,000 reads per sample.  423 

 424 

Taxonomic matching and phylogenetic transforms 425 

To improve the taxonomic assignments of our reads, we used a custom index (Méric et al., 2019) based 426 

on the Genome Taxonomy Database (GTDB) release 89 (Parks et al., 2018, 2020) taxonomic 427 

redefinitions for read classification with default parameters in Centrifuge 1.0.4 (Kim et al., 2016). After 428 

read classification, all following steps were performed with R version 3.5.2 (R Core Team, 2018). To 429 

reduce the number of spurious read assignments, and to facilitate more accurate phylogenetic 430 

transformations, only reads classified at the species level, matching individual GTDB reference 431 

genomes, were retained. Samples with less than 50,000 reads, from pregnant participants or recorded 432 

antibiotic use in the past 6 months were removed, resulting in a final number of 6,269 samples. We first 433 

filtered taxa not seen with more than 3 counts in at least 1% of samples and those with a coefficient of 434 

variation ≤ 3 across all samples, following (McMurdie and Holmes, 2013) with a slight adaption from 435 

20% of samples to 1% of samples, because of our larger sample size. The complete bacterial and 436 

archaeal phylogenetic trees of the GTDB release 89 reference genomes, constructed from an alignment 437 

of 120 bacterial or 122 archaeal marker genes (Parks et al., 2018), were then combined with our taxa 438 

tables. The resulting trees were thus subset only to species which were observed in at least one sample 439 

in our data. The read counts were transformed to phylogenetic node balances in both trees with PhILR 440 

(Silverman et al., 2017). The default method for PhILR inputs a pseudocount of 1 for taxa absent in an 441 

individual sample before the transform. 442 
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 443 

In this study, we did not specifically and solely use relative abundances at various taxonomic levels, as 444 

is common practice for microbiome studies. Instead, we applied a PhILR transformation to our 445 

microbial composition data (Silverman et al., 2017), introducing the concept of microbial “balances”. 446 

Indeed, evolutionary relationships of all species harbored in each microbiome sample can be 447 

represented on a phylogenetic tree, with species typically shown as external nodes that are related to 448 

each other by multiple branches connected by internal nodes. In this context, the value of a given 449 

microbial “balance” is defined as the log-ratio of the geometric mean abundance between two groups 450 

of microbes descending from the same corresponding internal node on a microbial phylogenetic tree. 451 

This phylogenetic transform was used because it i) addresses the compositionality of the metagenomic 452 

read data (Gloor et al., 2017), ii) permits simultaneous comparison of all clades without merging the 453 

taxa by predefined taxonomic levels, and iii) enables evolutionary insights into the microbial 454 

community. The links between microbes and their environment, such as the human gut, is mediated by 455 

their functions. Different functions are known to be conserved at different taxonomic resolutions, and 456 

most often at multiple different resolutions (Louca et al., 2018). Thus, associations between the 457 

microbes and the response variable are likely not best explained by predefined taxonomic levels. In the 458 

absence of functional data, concurrently analyzing all clades (partitioned by the nodes in the 459 

phylogenetic tree) would likely enable the detection of the associations at the appropriate resolution 460 

depending on the function and the local tree topography. 461 

 462 

Covariates 463 

Because fatty liver disease is underdiagnosed at the population level (Alexander et al., 2018) and our 464 

sampling did not have extensive coverage of liver fat measurements, we chose to use the Fatty Liver 465 

index (Bedogni et al., 2006) as a proxy for fatty liver. Furthermore, the index performs well in cohorts 466 
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of Caucasian ethnicity, such as ours, to diagnose the presence of NAFLD (Vanni and Bugianesi, 2015). 467 

We calculated FLI after Bedogni et al., (2006): (e0.953*log
e
(triglycerides mg/dL) + 0.139*BMI + 0.718*log

e
(GGT) + 468 

0.053*waist circumference - 15.745) / (1 + e0.953*log
e
(triglycerides mg/dL) + 0.139*BMI + 0.718*log

e
(GGT) + 0.053*waist circumference - 469 

15.745) * 100. We chose the cutoff at FLI ≥ 60 to identify participants likely to be diagnosed with hepatic 470 

steatosis (positive likelihood ratio = 4.3 and negative likelihood ratio = 0.5 in Bedogni et al., 2006). 471 

Triglycerides, gamma glutamyl transferase (GGT), BMI and waist circumference measurements had 472 

near complete coverage for the participants in our data. Self-reported alcohol use was calculated as 473 

grams of pure ethanol per week. Cases with missing values were omitted in linear regression models. 474 

At least one feature used for FLI calculation was missing for 20 participants (0.3%) and the self-475 

reported alcohol use was missing for 247 participants (3.9%). In the machine learning framework, 476 

missing values for FLI and self-reported alcohol use were mean imputed. However, for the feature 477 

selection to identify liver function-specific balances, GGT, triglycerides and BMI were not imputed but 478 

observations where any of these were missing were simply removed. 479 

 480 

Beta-diversity and linear modeling of FLI 481 

Beta-diversity was calculated as Euclidian distance of the PhILR balances through Principal 482 

Component Analysis (PCA) on bacterial and archaeal balances separately with ‘rda’ in vegan 2.5.6 483 

(Oksanen et al., 2018). A linear regression model was constructed for FLI with ‘lm’ in base R (R Core 484 

Team, 2018) with log10-transformed FLI as the dependent variable and with first three bacterial PCs, 485 

sex, age, and self-reported alcohol use as the independent variables. Archaeal PCs were dropped from 486 

the model because none of them were significantly correlated with FLI (all P > 0.05). Variation of the 487 

samples on the top two bacterial PC axes by their effect sizes in the model were plotted together with a 488 

unit vector of log10(FLI) to show their correlation. 489 

 490 
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FLI modeling within a machine learning framework 491 

In the machine learning framework, both regression and categorical models were constructed for FLI. 492 

The feature selection, hyperparameter optimization and cross-validation methods were identical for 493 

both approaches, unless otherwise stated. The continuous or categorical FLI (groups of FLI < 60 and 494 

FLI ≥ 60) were modeled with xgboost 0.90.0.2 (Chen and Guestrin, 2016) by using both bacterial and 495 

archaeal balances, sex, age, and self-reported alcohol use as preliminary predictor features. We used 496 

FLI 60 as the cutoff for ruling in fatty liver (steatosis) for the classification, after Bedogni et al., (2006). 497 

The data was first split to 70% train and 30% test sets while preserving sex and region balance. To take 498 

into account geographical differences (e.g., He et al., 2018) and to find robust patterns across all 6 499 

sampled regions in Finland between the features and FLI group, we used Leave-One-Group-Out Cross-500 

Validation (LOGOCV) inside the 70% train set to construct 6 separate models in each optimization 501 

step. Because of high dimensionality of the data (3423 predictor features) feature selection by filtering 502 

was first performed inside the training data, based on random forest permutation as recommended by 503 

Bommert et al., (2020). Briefly, permutation importance is based on accuracy, or specifically the 504 

difference in accuracy between real and permuted (random) values of the specific variable, averaged in 505 

all trees across the whole random forest. The permutation importance in models based on the 6 506 

LOGOCV subsets of the training data were calculated with mlr 2.16.0 (Bischl et al., 2016) and the 507 

simple intersect between the top 50 features in all LOGOCV subsets were retained as the final set of 508 

features. Thus, the feature selection was influenced by the training data from all 6 geographical regions, 509 

but this only serves to limit the number of chosen features because of the required simple intersect. 510 

This approach was used to obtain a set of core predictive features which would have potential for 511 

generalizability across the regions. The number of features included in the models by this approach was 512 

deemed appropriate, since the relative effect size of the last included predictor was very small (< 0.1 513 

change in classification probability across its range). 514 
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 515 

Bayesian hyperparameter optimization of the xgboost models was then performed with only the 516 

selected features. An optimal set of parameters for the xgboost models were searched over all 517 

LOGOCV subsets with ‘mbo’ in mlrMBO 1.1.3 (Bischl et al., 2018), using 30 preliminary rounds with 518 

randomized parameters, followed by 100 optimization rounds. Parameters in the xgboost models and 519 

their considered ranges were learning rate (eta) [0.001, 0.3], gamma [0.1, 5], maximum depth of a tree 520 

[2, 8], minimum child weight [1, 10], fraction of data subsampled per each iteration [0.2, 0.8], fraction 521 

of columns subsampled per tree [0.2, 0.9], and maximum number of iterations (nrounds) [50, 5000]. 522 

The parameters recommended by these searchers were as following for regression: eta=0.00889; 523 

gamma=2.08; max_depth=2; min_child_weight=8; subsample=0.783; colsample_bytree=0.672; 524 

nrounds=1810, and for classification: eta=0.00107; gamma=0.137; max_depth=5; 525 

min_child_weight=9; subsample=0.207; colsample_bytree=0.793; nrounds=4328. We used Root-526 

Mean-Square Error (RMSE) for the regression models and Area Under the ROC Curve (AUC) for the 527 

classification models to measure model fit on the left-out data (region) in each LOGOCV subset. The 528 

final models were trained on the LOGOCV subset training data, the data from one region thus omitted 529 

per model, and using the selected features and optimized hyperparameters. Validation of these models 530 

was conducted against participants only from the region omitted from each model, in the 30% test data 531 

which was not used in model training or optimization. Sensitivity analysis was conducted by using only 532 

the predictive covariates (sex and age) or balances separately, with the same hyperparameters, data 533 

partitions and final validation as for the full models. 534 

 535 

Partial dependence interpretation of the FLI classification models 536 

Because the classification models have a more clinically relevant modeling target for the difference 537 

between FLI < 60 and FLI ≥ 60, the latter used to rule in fatty liver (Bedogni et al., 2006), we further 538 
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interpreted the partial dependence of their predictions. Partial dependence of the classification model 539 

predictions on individual features was calculated with ‘partial’ in pdp 0.7.0 (Greenwell, 2017). The 540 

partial dependence of the features on the model predictions was also plotted, overlaying the results 541 

from each of the 6 models. For each feature, its relative effect on the model prediction was estimated as 542 

medians of the minimum and maximum yhat (output probability of the model for the FLI ≥ 60 class), 543 

calculated at the minimum and maximum values of the feature separately in each of the 6 models. The 544 

relative effects of the balances were then overlaid as a heatmap on a genome cladogram which covers 545 

all balances in the model with ggtree 2.1.1 (Yu et al., 2017). 546 

 547 

Construction of alternative classification models to discern between  548 

FLI < 30 and FLI ≥ 60 groups 549 

To assess robustness of the models and how removing the participants with intermediate FLI (between 550 

30 and 60) affects model performance, we removed this group (N = 1910) and constructed alternative 551 

classification models to discern between the FLI < 30 and FLI ≥ 60 groups. Other than removing the 552 

intermediate FLI participants and resulting new random split to the train (70%) and test (30%) sets, 553 

these models were constructed identically to the main models, including LOGOCV design, feature 554 

selection, and hyperparameter optimization. The recommended parameters for this classification task 555 

were eta=0.00102; gamma=3.7; max_depth=2; min_child_weight=5; subsample=0.49; 556 

colsample_bytree=0.631; nrounds=3119. Interpretation of partial dependence was also performed 557 

identically, but only the relative effects of the model features were plotted without a cladogram. 558 

 559 
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Exclusion of validation region data from feature selection and hyperparameter 560 

optimization 561 

Because training data from all 6 regions is used to inform the selection of optimal features and 562 

hyperparameters, the validation region data cannot be considered completely independent from the 563 

training of the LOGOCV models. Thus, we constructed a set of classification models for the FLI ≥ 60 564 

and FLI < 60 groups, where all validation region samples also in the training data were excluded from 565 

the simple intercept of top50 features in each LOGOCV set and from the subsequent hyperparameter 566 

optimization. These models with individualized features and hyperparameters were then tested on the 567 

validation region samples in the unseen test data to estimate how model performance was affected. The 568 

main test (70%) and train (30%) sets were identical to the main models, but additionally 6 randomized 569 

70/30 splits nested inside the test set (excluding the validation region) were used in hyperparameter 570 

optimization to reduce overfitting. Average optimal hyperparameters in the 6 models were 571 

eta=0.00106; gamma=4.3; max_depth=2; min_child_weight=7; subsample=0.36; 572 

colsample_bytree=0.613; nrounds=1772. 573 

 574 

Identification of predictive features specific to liver function 575 

Because the FLI also incorporates BMI and waist circumference, and they strongly contribute to the 576 

index (Bedogni et al., 2006), we deemed it necessary to further investigate which of the identified 577 

balances were specific to liver function. The participants were first grouped by age (< 40, 40 – 60, and 578 

60 <), sex (female or male) and BMI (< 25, 25 – 30, and 30 <) into 18 categories (N = 105 ~ 711 per 579 

category). We performed feature selection similarly to the FLI models by fitting random forest 580 

regressors for GGT and triglycerides with mlr 2.16.0 (Bischl et al., 2016). This was done separately in 581 

each of the 18 categories, and in each category, we again used LOGOCV with the regions to obtain 6 582 

runs per category. Finally, the features predictive of GGT or triglycerides in each category were 583 
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selected as the intersect of top 50 features in the 6 LOGOCV iterations by permutation importance. The 584 

intersect of features predictive of GGT or triglycerides in any of the categories and the features 585 

predictive of categorical FLI were identified as specific to liver function. 586 

 587 

Pathway inference for taxa associated with FLI 588 

Our taxonomic matching of the reads is based on the genomes of GTDB (release 89; Parks et al., 589 

2018), which are all complete or nearly complete and available in online databases. This enables us to 590 

estimate the likely genetic content, and thus, the metabolic potential of the microbes associated with 591 

FLI. We use this approach because the sequencing depth of our samples does not allow assembling 592 

contigs and (metagenome-assembled) genomes, required for pathway predictions. Because of the 593 

compositional phylogenetic transform, among other features of our data, previously developed 594 

approaches such as PICRUSt (Douglas et al., 2019) could not be used here. 595 

 596 

The genomes of all 336 bacteria under at least one of the predictive balances were downloaded from 597 

NCBI. 119 of these genomes were originally not annotated, which is a requirement for pathway 598 

prediction. Therefore, Prokka v1.14.6 (Seemann, 2014) was used to annotate the 119 unannotated 599 

genomes as a preliminary step. Pathway predictions were then performed for all 336 genomes with 600 

mpwt v0.5.3 (Belcour et al., 2019) multiprocessing tool for the PathoLogic pipeline of Pathway Tools 601 

23.0 (Karp et al., 2019). Pathways for ethanol and short chain fatty acid (acetate, butyrate, propionate) 602 

production, bile acid metabolism, and choline degradation to trimethylamine were identified from 603 

MetaCyc pathway classifications (Caspi et al., 2018; Table S4). The prevalence of these processes was 604 

then assessed in the analyzed genomes and summarized per process to consider the possible links of the 605 

taxa with fatty liver pathophysiology. Finally, the presence of individual pathways for acetate and 606 

ethanol production was also outlined for each genome. 607 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 1, 2020. ; https://doi.org/10.1101/2020.07.30.20164962doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.30.20164962
http://creativecommons.org/licenses/by/4.0/


Gut microbiome composition and fatty liver  26 

 608 

Declarations 609 

Ethics approval and consent to participate 610 

The Coordinating Ethics Committee of the Helsinki University Hospital District approved our study 611 

protocol (Ref. 558/E3/2001). All participants have given their written informed consent. 612 

Consent for publication 613 

Not applicable. 614 

Availability of data and material 615 

The analysis code written for this study is included with the Supplementary Information. The datasets 616 

generated during and analyzed during the current study are not public, but are available based on a 617 

written application to the THL Biobank as instructed in: https://thl.fi/en/web/thl-biobank/for-618 

researchers  619 

Competing interests 620 

V.S. has consulted for Novo Nordisk and Sanofi and received honoraria from these companies. He also 621 

has ongoing research collaboration with Bayer AG, all unrelated to this study. R.L. serves as a 622 

consultant or advisory board member for Anylam/Regeneron, Arrowhead Pharmaceuticals, 623 

AstraZeneca, Bird Rock Bio, Boehringer Ingelheim, Bristol-Myer Squibb, Celgene, Cirius, CohBar, 624 

Conatus, Eli Lilly, Galmed, Gemphire, Gilead, Glympse bio, GNI, GRI Bio, Inipharm, Intercept, Ionis, 625 

Janssen Inc., Merck, Metacrine, Inc., NGM Biopharmaceuticals, Novartis, Novo Nordisk, Pfizer, 626 

Prometheus, Promethera, Sanofi, Siemens, and Viking Therapeutics. In addition, his institution has 627 

received grant support from Allergan, Boehringer-Ingelheim, Bristol-Myers Squibb, Cirius, Eli Lilly 628 

and Company, Galectin Therapeutics, Galmed Pharmaceuticals, GE, Genfit, Gilead, Intercept, Grail, 629 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 1, 2020. ; https://doi.org/10.1101/2020.07.30.20164962doi: medRxiv preprint 

https://thl.fi/en/web/thl-biobank/for-researchers
https://thl.fi/en/web/thl-biobank/for-researchers
https://doi.org/10.1101/2020.07.30.20164962
http://creativecommons.org/licenses/by/4.0/


Gut microbiome composition and fatty liver  27 

Janssen, Madrigal Pharmaceuticals, Merck, NGM Biopharmaceuticals, NuSirt, Pfizer, pH Pharma, 630 

Prometheus, and Siemens. He is also co-founder of Liponexus, Inc. 631 

Funding 632 

This research was supported in part by grants from the Finnish Foundation for Cardiovascular 633 

Research, the Emil Aaltonen Foundation, the Paavo Nurmi Foundation, the Urmas Pekkala Foundation, 634 

the Finnish Medical Foundation, the Sigrid Juselius Foundation, the Academy of Finland (#321356 to 635 

A.H.; #295741, #307127 to L.L.; #321351 to T.N.) and the National Institutes of Health 636 

(R01ES027595 to M.J.). R.L. receives funding support from NIEHS (5P42ES010337), NCATS 637 

(5UL1TR001442), NIDDK (U01DK061734, R01DK106419, P30DK120515, R01DK121378, 638 

R01DK124318), and DOD PRCRP (W81XWH-18-2-0026). Additional support was provided by 639 

Illumina, Inc. and Janssen Pharmaceutica through their sponsorship of the Center for Microbiome 640 

Innovation at UCSD. 641 

Authors’ contributions 642 

M.R., F.Å., V.M., V.S., R.K, L.L and T.N designed the work. A.H., L.V., G.M., P.J., V.S., M.J and 643 

R.K. acquired the data. M.R., L.L. and T.N. analyzed the data. M.R. wrote the manuscript in 644 

consultation with all authors. M.I., P.J., V.S., R.K., L.L. and T.N. supervised the work. All authors 645 

gave final approval of the version to be published. 646 

Acknowledgements 647 

We thank all participants of the FINRISK 2002 survey for their contributions to this work, and Tara 648 

Schwartz for assistance with laboratory work.  649 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted August 1, 2020. ; https://doi.org/10.1101/2020.07.30.20164962doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.30.20164962
http://creativecommons.org/licenses/by/4.0/


Gut microbiome composition and fatty liver  28 

Figures 650 

Figure 1. Distribution of FLI (A), its components (B), and FLI in quantiles of the first three PC 651 

components of the fecal bacterial composition of the participants (C). The cutoff at FLI = 60 used to 652 

divide the participants is indicated with a dashed line in panels A and C.  653 
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Figure 2. Relative effects of predictive balances and covariates on the FLI < 60 and FLI ≥ 60 654 

classification model (AUC = 0.75) predictions. Nodes of the balances are indicated in the cladogram 655 

and the relative effect sizes of their clades (opposite sides of each balance) are shown in the associated 656 

heatmap. The relative effect sizes of the covariates (age and sex) are shown below the legend with a 657 

heatmap on the same scale as was used for the balances. The two liver-specific balances associated 658 

with triglyceride and GGT levels are indicated with bold font. Clades with redundant information have 659 

been collapsed but their major genera are indicated. The complete tree is included in Figure S3. 660 
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