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The events of the recent SARS-CoV-02 epidemics have shown the importance of social factors,
especially given the large number of asymptomatic cases that effectively spread the virus, which
can cause a medical emergency to very susceptible individuals. Besides, the SARS-CoV-02 virus
survives for several hours on different surfaces, where a new host can contract it with a delay.
These passive modes of infection transmission remain an unexplored area for traditional mean-field
epidemic models. Here, we design an agent-based model for simulations of infection transmission
in an open system driven by the dynamics of social activity; the model takes into account the
personal characteristics of individuals, as well as the survival time of the virus and its potential
mutations. A growing bipartite graph embodies this biosocial process, consisting of active carriers
(host) nodes that produce viral nodes during their infectious period. With its directed edges
passing through viral nodes between two successive hosts, this graph contains complete information
about the routes leading to each infected individual. We determine temporal fluctuations of the
number of exposed and the number of infected individuals, the number of active carriers and active
viruses at hourly resolution. The simulated processes underpin the latent infection transmissions,
contributing significantly to the spread of the virus within a large time window. More precisely,
being brought by social dynamics and exposed to the currently existing infection, an individual
passes through the infectious state until eventually spontaneously recovers or otherwise is moves
to a controlled hospital environment. Our results reveal complex feedback mechanisms that shape
the dependence of the infection curve on the intensity of social dynamics and other sociobiological
factors. In particular, the results show how the lockdown effectively reduces the spread of infection
and how it increases again after the lockdown is removed. Furthermore, a reduced level of social
activity but prolonged exposure of susceptible individuals have adverse effects. On the other hand,
virus mutations that can gradually reduce the transmission rate by hopping to each new host
along the infection path can significantly reduce the extent of the infection, but can not stop the
spreading without additional social strategies. Our stochastic processes, based on graphs at the
interface of biology and social dynamics, provide a new mathematical framework for simulations of
various epidemic control strategies with high temporal resolution and virus traceability.

I. INTRODUCTION

Stochastic processes of epidemic spreading in human
society comprise a specific type of critical phenomena
where the microscopic-scale interactions give raise to col-
lective dynamics. Thus, mathematical modelling ap-
proaches are necessary to understand the nature of the
process and control parameters that govern the transition
from the micro- to global scale behaviours1–3. Recently,
the critical phenomena in social systems have been re-
searched using the concepts developed in physics of com-
plex systems and networks4. Some prominent examples
are the emotion spreading in online social networks5–8,
opinion dynamics9, and constructive engagement for the
collective knowledge creation10. A detailed analysis of
empirical data of human activity online and related
theoretical modelling6,11,12 provided evidence that the
prominent dynamical mechanisms enabling these collec-

tive phenomena lie in the self-organised criticality13–15.
The appropriate agent-based modeling of these social
phenomena16 includes the individual emotional5,6 and
cognitive properties10 of the interacting agents.

In addition to social dynamics, the epidemic spreading
processes involve some essential biological factors, such
as the biology of pathogens, and certain health factors
of individuals and groups. Recent COVID-19 data17 on
the outbreak with the new SARS-CoV-2 virus are an ex-
cellent example. In the absence of pharmaceutical inter-
ventions against the virus, social and sanitary measures
remain of primary importance for controlling the epi-
demics. In this context, there are new traits to deal with,
high latency times, rapid transmission, and the potential
of the virus to trigger SARS (severe acute respiratory
syndrome), which is a medical emergency. For a sum-
mary of COVID-19’s unique properties on pathogenic,
epidemiological and clinical issues, see18,19 and references
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therein. Statistically, about 20% of the infected individ-
uals need hospitalisation, some of whom (making about
13% of all infected) have mild and moderate symtoms.
However, 7% exhibit severe symptoms and need inten-
sive care; they can further differentiate such that 4.7%
have clinical stage of illnesses, ending up with a high
fatality rate. Data from around the world confirm this
overall picture with some regional variations20–23. On
the other hand, about 80 % of those infected show very
mild clinical manifestations or remain completely asymp-
tomatic, so that they recover spontaneously after about
two weeks; this group of infected individuals often re-
mains undetected and outside formal health management
procedures. Therefore, mortality statistics can serve as
an indicator of the actual number of infected individuals.
The mortality rate ranges from 1.7 % to 9 % of registered
cases, depending on the country or region. In addition to
organisational health issues, it is hypothesized that such
variations in clinical manifestations may be associated
with the existence of different strains and potential ge-
netic mutations of the virus20,24. Theoretically, a virus
that jumps on a new host can trigger its evolutionary
development in the direction of better adaptation to hu-
man cells, which can make the pathogen progressively
less aggressive towards the host25–27. Such mutations of
the virus would be highly desirable to mitigate current
epidemics. Currently, various possible mutations in the
SARS-CoV-2 virus are being observed, giving rise to an
open hot topic of discussion among researchers28–30.

In the traditional modelling approaches based on
mean-field equations, the standard SIR model1 has been
extended to take into account the above-mentioned fea-
tures of the epidemic manifestation by distinguishing be-
tween four SIRU31 or six SEIHR32 infection stages and
groups involved. Acronymes indicate the initial letter
of “Suspected”, “Infected”, “Recovered”, extended by
the groups of “Exposed”, ”Undetected”, “Hospitalised”,
that have own co-evolutionary dynamics. Recently, due
to the characteristics of COVID-19 disease, a model has
been extended to take into account eight different groups
SIDARTHE33. These models with a large number of phe-
nomenological parameters that are adapted to the actual
data, were able to describe the infection curve (increase
in the cumulative number of infected individuals) as well
assess the effects of social isolation on the flattening of
the curve34. A new and promising line of research is
opening up through the microscopic agent-based model-
ing of the epidemic processes35. These type of models
are increasingly used for describing several specific issues
of COVID-19 like epidemics36–40.

Respiratory droplets and contacts are considered to
be the primary routes of transmission of SARS-CoV-
2 virus41. However, transmission via passive objects
(fomits) as well as several other mechanisms (aerosol
and fecal-oral transmission) are also reported as highly
possible18,42–44. In addition to hospital equipments, var-
ious passive objects can get contaminated, e.g., by con-
tacts or respiratory droplets of an infected individual and

the infection can be transmitted to a new host. This indi-
rect transmission mechanism is becoming increasingly in-
triging given the reported long survival time of the SARS
CoV-2 virus on different surfaces43,44. Indirect exposure
to the virus and the large number of undiagnosed cases in
current COVID-19 epidemics underscore the importance
of latent infection transmission as a new face of epidemic
spreading. So far, this problem has remained outside the
radar for standard modeling approaches.

In this paper, we develop an agent-based model that
adequately describes these latent transmissions of the in-
fection at microscopic scale and the emergence of global
patterns. The model takes into account survival time
of the virus and key personal characteristics of individ-
uals, such as susceptibility to the virus and exposure
time, which are crucial for the process. We simulate
an open system, where the agents are generated over
time through social activity fluctuations. As a proxy
for social dynamics we use an empirical time series of
fluctuations in activity collected from online social net-
works, precisely a segment of MySpace45. These time
series have some essential features of social dynamics—
correlation of fluctuations with a typical daily period-
icity (circadian cycle)8,45. Hence, the underlying social
structure is implicitly represented through temporal cor-
relations and a variable intensity of time series. Using
long time series of the social activity with an hourly
resolution, which determines the time unit of the sim-
ulation step, our simulations span several weeks of real-
time processes. In the time window, which lasts up to
fourteen days after its first appearance in the process,
an agent changes its state from “Susceptible” to “Ex-
posed” and possibly “Infected”, followed by either “Hos-
pitalised” or “spontaneously-Recovered”, after which it
is removed from the process. During this period, an in-
fected agent generates a number of viruses (contagious
spots), which remain infective for other agents within
the virus survival time. The most susceptible agents are
likely to have severe symptoms; they are hospitalised and
thus moved to a controlled environment. Among the re-
maining agents, most are asymptomatically infected car-
riers of viruses; thus, they contribute to the latent spread
of infection within ongoing social dynamics for a long pe-
riod before their spontaneous recovery occurs.

The process is presented as a growing directed bipar-
tite graph composed of infected agents and viruses that
they spread. This graph-based presentation allows us to
identify the pathways of infection that lead to each in-
fected individual and the number of hops the virus has
carried from its origin to the current host. This math-
ematical framework enables us to simulate possible sce-
narios with the virus mutation. The development of the
network framework based on the stochastic process is es-
sential also due to multifaceted possible side effects and
damages that the virus can have in a long run19. The
simulated high-resolution process revealed the features of
dynamic feedback in different scenarios that lead to al-
tered course of the infection propagation. We determine
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the impact of the level of social activity with/out lock-
down and exposure of each individual and the mutation
of the virus on the shape of the infection curves.

II. THE MODEL

An external input drives the system —a time series of
social activity st, which introduces new agents in the pro-
cess and sets the time t; the resolution is one hour and the
total length is tmax. Thus the total number of agents is
S =

∑tmax

t=1 st. The process is visualised as an evolving bi-
partite graph with a growing number of nodes and edges.
Two types of nodes are the agent nodes representing hu-
mans (Hnode), and virus nodes representing contagious
spots (Vnode). They are connected via directed edges
from Hnode → V node → Hnode oriented in the direc-
tion of infection transmission. Besides its ID and the cre-
ation time, each Hnode possesses several other properties
that can influence the process: the agent’s state (“Unin-
fected”, “Infected”, “Hospitalised” and “spontaneously-
Recovered”); the individual susceptibility to infections,
h-factor, which is fixed by the creation of the node as a
random number hi ∈ [0, 1], as well as its exposition time
T i
e ∈ [1, Te], where Te is the maximum exposition time

in hours. Besides, we define the virus-host gvh variable,
which keeps track of the number of hops of the virus from
its origin (the first infected node in the system) up to the
current Hnode. A new Vnode can be produced at every
time step by an active carrier (infected agent) propor-
tionally to the severity of its infection, which is measured
by its susceptibility; the virus node remains active for a
fixed number of hours Tv. Over time, an agent can expe-
rience the transition from the “Uninfected” to “Infected”
state, followed by one of the possible scenarios, depend-
ing on the agent’s susceptibility level, hi. Precisely, the
highly susceptible agent (whose hi > 0.8) is likely to
have a severe illness, and its state will change to “Hos-
pitalised” after a random period between two and seven
days. Meanwhile, the less susceptible agents (hi ≤ 0.8)
represent the asymptomatic cases that will stay mildly
infected and unreported until eventually reaching the
state “spontaneously-Recovered” after fourteen days. Af-
ter changing its status to “spontaneously-Recovered”, an
agent is removed from the dynamics. Similarly, we re-
move the agent when its status has changed from “In-
fected” to “Hospitalised”; even though the hospitalised
individuals can transfer infection, e.g., when the so-called
nosocomial transmission (via health-care objects) occurs,
it takes part in a controlled hospital environment. Mean-
while, the free active virus carriers who take part in the
social dynamics primarily contribute to the latent infec-
tion transmission. See schematic flow in Fig. 1.

The simulations start with one infected agent, placed
on the active carriers list Hactive. At each step, an agent
in the Hactive list can produce a new Vnode with a prob-
ability proportional to its susceptibility factor hi. Thus,
more susceptible agents, who are likely to have severe

symptoms, can spread viruses more often than those who
are barely ill. The fluctuating time series introduces st
new uninfected agents at each time step t. By creating
an agent, we identify its creation time ti as current time
t and fix its individual susceptibility factor hi and the
exposition time T i

e . The agent is placed on Hexposed list
where it remains for T i

e hours exposed and can get in-
fected by currently active viruses with the infection rate
λt. Apart from the agent’s susceptibility factor, the infec-
tion transmission rate λt depends on several factors and
fluctuates in time, as explained below, see Eq. (1). Once
infected, the agent is removed from the list of exposed
agents and placed to the list of active carriers Hactive.
We keep the identity of the virus that infected the agent
and update the number of hops that the virus passed till
that infection event occurs (the virus generation gv). The
time step ends up with revising the contents of each list.
The difference between the current time and the node’s
time ti is computed for each node on a given list. Then
the node is removed according to the criteria described
above. The detailed program flow is described in the
Appendix 1.

The transmission rate λt, appart from a constant (em-
pirical value) λ0 is given by

λt = λ0(φt + 1)hig(gv) . (1)

It combines the impact of the current fluctuation of the
number Va(t) of active viruses, i.e., φ = dVa(t)/dt/Ha(t);
it is normalised by the active number of carriers Ha(t),
which represents the upper limit of the new viruses at
that instant of time. In addition, the infection rate is pro-
protional to the individual susceptibility hi of the agent
in question. As stated above, our network framework al-
lows us to follow the sequence of the virus transmission
along the chain of infection events, see Fig. 2, the virus
generation gv. Thus, we can consider the impact of hypo-
thetical virus mutation along the chain. For this scenario,
we note that by passing through a new agent node, the
virus gv increases by one starting from gv = 1 at the
first infected individual. We assume that its sufficient
weakening can be described as g(gv) = 2/(1 +gv). Alter-
natively, we simulate the case without the mutation, i.e.,
by fixing the factor g = 1. The developed methodology
readily allows the analysis of other scenarios as well.

III. RESULTS

In the simulations, we fix the parameters λ0 = 0.23,
Tv = 4 hours, the hospitalisation (2-7 days) and spon-
taneous recovery time (14 days) as well as the thresh-
old susceptibility h = 0.8 according to the reported em-
pirical data from SARS-CoV-2 epidemics, described in
Introduction. By differentiating between the mutation
(“gen”) and non-mutation (“g1”) scenarios, we change
the maximum exposition time Te and control the inten-
sity of the social dynamics (average number of new unin-
fected agents) by choosing the corresponding time series.
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We compute the time-evolving number of created agents
and virus nodes, the edges between the infected agents
and viruses, the effective transmission rate, the number
of active carriers and the number of active virus spots,
as well as the number of exposed and the number of in-
fected individuals per time step. We also determine the
cumulative number of infected, hospitalised and spon-
taneously recovered individuals for tmax = 1364 hours
(56 days). Furthermore, we simulate the lockdown sce-
nario with two types of social dynamics for the total pe-
riod of 1680 hours, and a lockdown–recovery scenarios
for tmax =3044 hours. These results are presented in the
following three sections.

FIG. 1: In the simulation time window between the addi-
tion of agents through social dynamics time series and their
removal by either spontaneous recovery or hospitalisation,
different groups of agents and transition between them are
schematically indicated: “Susceptible” (S)→ “Exposed” (E)
→”spontaneously-Recovered” (sR) or → “Hospitalised” (H).
For completeness, further differentiation of the “Hospitalised”
group to “Intensive-Care” (IC), “Recovered” (R) and “De-
ceased” (D) groups are shown in the darker square on the
lower right corner; since these latter subgroups do not con-
tribute to the dynamics studied in this work, they are not
considered explicitly.

A. Infection transmission network and sampled
quantities

In Fig. 2, we show a part of the bipartite network
that embodies the infection transmissions during the first
three days. Agents (blue nodes) are enumerated by order
of appearance (addition to the network), starting from
the first infected agent. Along with the outgoing links
from each agent node, we have Vnodes (pale colour) that
were emitted by the agent during its active infectious pe-
riod. Some of the Vnodes, shown in red colour, appear to
infect another agent along the red edge. Meanwhile, the
majority of other Vnodes are no longer infectious, exclud-
ing recently posted ones, which are still infectious and can
change the colour to red by connecting with a new unin-

fected agent. Given that an agent can become infected
only once during the period of interest here, the actual
network has a tree structure; thus, the uninfected Hnodes
remain disconnected from this graph (not shown).

FIG. 2: (Colour online) Zoom-in the directed bipartite net-
work for the first 72 hours (λ0 = 0.23, with mutations) with
Hnodes (blue) and created by them Vnodes (pale). Infection
transmission occurred through virus nodes, which are indi-
cated by red colour, in the direction of the edge. The amount
of Vnodes emitted by one Hnode is proportional to its sus-
ceptibility factor and the duration of its stay among active
carriers. Among white Vnodes are recent ones that still can
infect a new exposed agent; otherwise, each Vnode is non-
infective four hours after its appearance.

Following the creation of new agents from a given time
series st, we sample several time-dependent quantities,
as shown in Fig. 3 and in the following figures. We de-
termine the fluctuations in the number of exposed and
infected agents, the number of active carriers and active
viruses, as well as the cumulative infectious curve and
the number of spontaneously recovered and hospitalised
agents. Notably, in Fig. 3, we describe the differences be-
tween the cases with and without virus mutations, mean-
while, the input time series and the other parameters
(λ0 = 0.23,Te = 24 and Tv = 4 hours) are kept the same.
In Fig. 4, we show how the effective transmission rates
vary in these two cases. Even though the number of ex-
posed individuals is practically the same, the number of
infected ones per hour is smaller in the case with virus
mutations than without mutations, leading to the two
different cumulative infection curves in the panel B. A
similar difference then occurs in the fractions of hospi-
talised and spontaneously recovered cases, as shown in
the panel C. Computing the temporal variations in the
number of active carriers (infected agents) and the num-
ber of active viruses nodes completes the picture. As
shown in panel D, these quantities are significantly higher
in the case without mutations. It should be stressed that,
given eq. (1), the fluctuations in these quantities have dy-
namical feedback to the effective transmission rate. We
note that the obtained infection curves can be fitted by
logistic function with different parameters, see more in
the following section.

As the infection network in Fig. 2 shows, the infection
path can be followed forwards along with the directed
links via red virus nodes. It appears that the number of
agents that get infected from a given previously infected
one varies from agent to agent, as it is shown in the bot-
tom panel of Fig. 4. Averaging over the infected agents
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FIG. 3: Comparative simulations for the case of virus mu-
tations g(gv) (“gen”) and without the mutations (“g1”) re-
sulting from the same social dynamics–time series depicted in
the bottom panel. Time fluctuations of the number of exposed
agents and the number of infected agents per hour, panel A,
and the corresponding infectious curves (the cumulative num-
ber of infected agents), panel B. Fits according to the logistic
function (parameters shown in the legend). The cumulative
number of spontaneously recovered and hospitalised agents
are shown in panel C and the respective fluctuation of the
number of active carriers and active viruses, in panel D. In
panels C and D, the infection curves from panel A are shown
by dotted lines, for comparison.
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FIG. 4: (color online) Top: Effective transmission rate λt vs
time t for the case with the virus mutations (red curve) and
without mutations (black curve) for λ0 = 0.23 corresponding
to the course of the process in Fig. 3 . Bottom: Related
to these transmission rates, the number of infected followers
knni of a given Hnode i indicated along the horisontal axis.
For clarity, only the first 2000 nodes are shown.

in a given period, we can get a local measure of the in-
fection spreading, a quantity similar to what is in the
epidemiology literature known as “R-factor”46,47. Our
network presentation of the process clearly shows that
the R-factor is given by the relative ratio between two
successive layers of the Hnods. Recently, studies have
shown that the reproduction rate is a local measure with

a limited predictive value, see the discussion and the em-
pirical data analysed in46–48.

B. Influence of social dynamics and exposure times
on the course of the infection curve

To assess the impact of the intensity of social dynam-
ics to the infection curve, here, we simulate the scenarios
with the social lockdown, which is modelled by another
time series; a representative example is shown in the top
panel in Fig. 5. Specifically, starting with a moderately
high social activity (we use the same time series as in
Fig. 3), the process lasts for six weeks, then the input
time series is changed. Here we chose another empirical
time series (corresponding to the negative-emotion ac-
tivity in MySpace data set45), which exhibits about four
times smaller intensity but also almost absent correla-
tions (the Hurst exponent is close to 0.5). Some simu-
lation results are shown in the main panel of Fig. 5 for
the case with the mutations. These results reveal how
the reduced social activity leads to an effective flatten-
ing of the infection curve, in qualitative agreement with
the overall empirical data. (For easier comparison, the
parameters are such that the initial part of the bottom
curve corresponds to the lower curve in panel B of Fig.
3). However, the plateau level results from the course of
the entire curve from the beginning of the infection. In
this way, the impact of social lockdown depends on other
factors that are built into the infection process before
the intervention. In this figure, we further demonstrate
how the increased exposure time of the agents leads to
the increased level of the plateau, with other parame-
ters fixed. In the following Fig. 6, we show comparative
results with/out mutations and two different lockdown
scenarios, while keeping the exposure fixed.
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FIG. 5: Moderate social dynamics with a lockdown: The
social activity fluctuations st (top panel) and corresponding
infection curves It vs time t for different range of exposition
times, indicated in the legend (bottom), for the case with
virus mutations.

To predict the extent of the infection33,46,49 , the course
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FIG. 6: Top: Infection curves for two scenarios with the lock-
down: high-intensity dynamics and lockdown after week 4,
and low-intensity dynamics with the lockdown after week 6;
two lines in each case are the scenarios with/without virus mu-
tations. Fits according to the logistic function (see text). Bot-
tom: Temporal fluctuations of the number of exposed agents,
which is the same for both scenarios, and the number of car-
riers and the number of active virus spots corresponding to
the infection curves in the top panel.

of the infection curve is standardly fitted by the sigmoid
(logistic) function

I(t) = K
1 +me−rt

1 + ne−rt
. (2)

The parameter K is the so-called “carrying capacity”,
and r is the rate by which the curve reaches it, while the
parameters m and n relate to the beginning and position
of the inflexion point. The rationale behind the occur-
rence of this functional form (and the related derivative,
the bell-like function of the infection rate curve) lies in
the very nature of the infectious spreading in a given
population size, a fraction of susceptible individuals that
will be infected. In the beginning, the infection spreads
to ever-larger number having practically unlimited re-
sources. When the accelerated growth reaches the maxi-
mum infection rate (the inflexion point of the infectious
curve), the process starts experiencing the limited space:
the number of potential susceptible individuals that are
not yet infected is reducing. Consequently, the infection
rate starts decreasing while the cumulative number of in-
fected cases asymptotically approaches the final capacity
K.

Moreover, all simulations demonstrate that lowering
the intensity of social dynamics, even if for a small fac-
tor such as natural day-night fluctuations, will affect the
process, but with a delay. A particularly considerable
lockdown comes in effect only with a ten days delay, cf.
Fig. 5. A closer investigation reveals, see Fig. 6 that,
after the lockdown, the number of exposed agents starts
decreasing, reaching the corresponding lower level after
the period comparable to Te. Then the number of active
carriers takes about a week to ten days longer to reduce
and adjust to the lockdown dynamics. The number of

active viruses follows this curve with a small delay (4
hours).

C. Predicting the course of events after lockdown
is lifted

In the literature, the impact of the imposed social lock-
down during COVID-19 pandemics has been investigated
from several different angles. For example, apart from
economic issues, diverse social and psychological factors
have been reported50, which manifest in altering the so-
cial dynamics after a particular lockdown is lifted. In
this context, our model allows us to simulate different
scenarios. Notably, Fig. 7 presents the results where we
simulate the impact of the social activity after the 4-
weeks lockdown, meanwhile keeping all other parameters
at the same level. In one case, a moderate social activ-
ity takes part, which also does not have prominent dy-
namical correlations (here, we amplified the time series
that characterises the lockdown). In the other scenario
(“back-to-normal”), we use the same time series as in the
period before the lockdown and continue the process for
another eight weeks. Note that this time series contains
a reasonable level of dynamic correlations, as explained
above. For comparison, we also simulate the situation
without lockdown keeping the original level of the so-
cial activity for the period corresponding to 16 weeks of
real-time. The results showing the course of the infection
curve are given in the central panel of Fig. 7. The driving
social dynamics time series and the corresponding num-
ber of exposed agents for the scenario without lockdown
are shown in the top panel and for two scenarios with
the lockdown, in the bottom panel of Fig. 7. These re-
sults reveal that the infection curve increases after the
lockdown in all cases, but the increase rate is low for the
case of moderate social activity. In the “back-to-normal”
case, the increase is much faster even if compared to the
corresponding segment of the curve “1”, but slower than
at the beginning of infection process before the lockdown.
Fitting the segment III of the curve gives the overall ca-
pacity which is still lower than the projection from the
fit of the curve “1”. It is also essential to notice that
the curve “1” has a different course from the possible
extension driven from fitting its first part (see black dot-
ted line). We can conclude that even small fluctuations
that lower the social dynamics st (see top panel) can,
through the above-described feedback mechanisms, af-
fect the course of the infection curve, thus reducing the
overall projection of the infection.

IV. DISCUSSION AND CONCLUSIONS

We have designed an agent-based model with the high-
resolution dynamics of infection process that explicitly
observes the survival time of viruses and personal prop-
erties of individuals who produce them. We simulate
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FIG. 7: Central panel: Infection curves It vs time for the extended period with the naturally fluctuating social dynamics, curve
(1), and for two exiting scenarios with the lockdown intervention followed by moderate-intensity dynamics (2) and “back-to-
normal” scenario (3). Periods before, during, and after lockdown are indicated as I, II, III. The fluctuating intensity of the
susceptible st and exposed et agents corresponding to the case (1) are shown in the top panel, and to the curves (2) and (3) in
the bottom panel. The last part of the signal st in the case “back-to-normal” corresponds to the second half of the signal in
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an open system which is driven by social dynamics of
the involved agents, and represented by a growing bipar-
tite graph with the agents and viruses nodes. Consid-
ering the actual SARS-CoV-2 epidemics, the model ade-
quately takes into account latent infection transmissions
by asymptomatic virus carriers as well as indirect trans-
missions that can occur, for example, through contam-
inated surfaces during the virus survival period. These
processes comprise a significant part of infection trans-
missions by each agent occurring in the time window
which can last up to two weeks since the agent enters the
system through social dynamics until it spontaneously
recovers or otherwise moves to a controlled hospital en-
vironment.

The developed mathematical formalism with the in-
fection network makes it possible to trace a path along
which the virus hops over different hosts before infecting
a particular individual. It thus allows us to model po-
tential mutations of the virus along its evolution path.
The results revealed the key components of this bioso-
cial stochastic process that significantly influence the
course of infection spread and the predictions of out-
comes. Specifically, we have found that:

• The intensity of social dynamics in conjunction
with the individual susceptibility of each agent is
crucial for the latent infection transmission. Hence,
a lockdown measure becomes effective, but with a
typical delay. The simulated process with a high
temporal resolution uncovers the underlying mech-

anisms at work. Lowering the social activity level
gradually reduces the number of exposed individu-
als until it reaches the level of new social activity;
with a delay, it causes a decrease in the number
of active viruses carries and the number of active
viruses that they produce. The opposite trends oc-
cur by lifting the lockdown measures. Depending
on the renewed social activity, the outcome can be
lower than in the case of the process without lock-
down. In particular, in the “back-to-normal” situ-
ation, the final projection of the number of infected
is still smaller or comparable with the original one.
However, it can be reached after a much more ex-
tended period. It is interesting to point out that
much smaller, natural fluctuations in social dynam-
ics (such as day-night or workdays vs weekends)
that appear periodically, as in our time series, can
have profound effects on lowering the slope of the
infection curves.

• The exposure time of each individual, is another
factor that can considerably increase the course of
the infection curve even with a low or moderate
social activity level. Thus, modifying the exposure
time of individuals or groups is an additional essen-
tial characteristic to be considered in conjunction
with social dynamics measures.

• Virus mutations scenarios towards gradually re-
ducing the transmission rate can slow down the
growth of the infection curve. Even though these
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virus mutations are favourable, they have no po-
tential to stop the spread of infection without ad-
ditional social strategies.

A new mathematical framework, developed in this
work, provides a robust tool for the analysis of bioso-
cial processes in SARS-CoV-2 like epidemics. Its es-
sential new ingredients are high-resolution dynamics,
open system, and the network-assisted process presen-
tation. Meanwhile, the traditional mean-field equations
and most agent-based models in the literature have lim-
iting factors due to the fixed size of the system. Given
the infection-network representation, however, we do not
consider explicit physical distance and the impact of the
agent’s mobility (see, for example, a different study in35).
Instead, the social dynamics that drive the system in our
model can be varied, representing different social struc-
tures and situations. Moreover, possible extensions of
the model are to include a specific set of connections of
each agent, a kind of ego-network, and modified trans-

mission rates inside it. Consequently, a more heteroge-
neous pattern of the exposure times can emerge. How-
ever, such non-random distribution of the exposure time
per agent could not significantly influence its impact to
the global features of the epidemics found in this work.
To reveal the nature of the underlying stochastic process,
here we have simulated the infection spreading from a sin-
gle source. In the meantime, the spreading from different
sources or different times, which may increase the slope
of the infection curve, can also be considered. Lastly,
as we already mentioned, the issue of SARS-CoV-2 virus
mutations is an open problem that has received increas-
ing attention of researchers in different fields28–30. The
infection network presentation allows us to model differ-
ent ways of how particular virus strains (virus-host in-
teraction) change over time. These aspects of stochastic
biosocial processes, among others highlighted here, could
represent a compelling direction for further research.
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Appendix

Here, we give a more detailed description of the pro-
gram flow for the model of infection transmissions driven
by the dynamics of social activity, see section II. As ex-
plained in the main text, the model appropriately takes
into account the latent infection transmissions.
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Algorithm 1 Latent Infection Transmissions

1: INPUT: st time series and parameters Tv,Te, λ0;
2: Define object arrays: Hnode(id, state, ti, gvh, h

i, T i
e),

V node(id, state, time, gv), Edge(id, src, dst, time);
3: Start empty lists Hexposed, Hactive, Vactive; add first

infected Hnode to Hactive list; set its parameters as gvh =
1, ti = 0,h1 = 1;

4: Start input time series st, which defines time t and tem-
poral resolution; reset counters;

5: while (cin >> t >> st) do
6: in each time step t:
7: for all nodes on Hactive list do
8: with prob. ∝ the node’s susceptibility hi: create a new

Vnode; its time is t, and its gv = gvh is transfered from the
creator Hnode, the state is “infectious”; put it to Vactive
list; create an Edge from Hnode→ Vnode, specify its time
as t;

9: end for
10: Update the transmission probability λt (see text);
11: for all 1 ≤ i ≤ st do
12: Create a new Hnode and set its properties:

state=”uninfected”; susceptibility hi as rand∈ [0, 1]; its
exposure T i

e as rand ∈ [1, Te], and set gvh = 0. Add the
node to Hexposed list;

13: end for
14: for all nodes on Hexposed list do
15: with prob. λt (modified by the node’s hi and g(gv)) con-

nect the Hnode to a random node on Vactive list; change
its state to “infected” and add to the Hactive list; up-
date gvh = gv + 1 from that Vnode; create the Edge from
Vnode→Hnode; mark its time as t;

16: end for
17: Revise the lists Vactive, Hexposed and Hactive regarding

the respective difference ∆t between the current time t
nd the node’s time;

18: for all nodes in Vactive list do
19: if ∆t > Tv then
20: (virus survival time exceeded): remove from the list;
21: end if
22: end for
23: for all nodes in Hexposed list do
24: if the status changed to “infected” then
25: (infected): remove from the list;
26: else
27: if ∆t > T i

e then
28: (the node’s exposure time exceeded): remove from the

list;
29: end if
30: end if
31: end for
32: for all nodes in Hactive list do
33: if ∆t > 14 days then
34: (recovered): remove from Hactive list;
35: else
36: if the node’s hi > 0.8 then
37: compute Th as rand ∈ [2, 7] days;
38: if ∆t > Th then
39: (hospitalized): remove from the list;
40: end if
41: else
42: keep on Hactive list;
43: end if
44: end if
45: end for
46: Sampling temporal quantities of interest;
47: end while
48: Sampling network and statistical quantities of interest;
49: END
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