Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Modeling latent infection transmissions through biosocial stochastic dynamics

View ORCID ProfileBosiljka Tadić, View ORCID ProfileRoderick Melnik
doi: https://doi.org/10.1101/2020.07.30.20164491
Bosiljka Tadić
aDepartment of Theoretical Physics, Jožef Stefan Institute, Jamova 39, Ljubljana, Slovenia
cComplexity Science Hub, Josefstaedter Strasse 39, Vienna, Austria
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Bosiljka Tadić
  • For correspondence: bosiljka.tadic@ijs.si
Roderick Melnik
bMS2Discovery Interdisciplinary Research Institute, M2NeT Laboratory and Department of Mathematics, Wilfrid Laurier University, Waterloo, ON, Canada
dBCAM - Basque Center for Applied Mathematics, Alameda de Mazarredo 14, E-48009 Bilbao, Spain
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Roderick Melnik
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

The events of the recent SARS-CoV-02 epidemics have shown the importance of social factors, especially given the large number of asymptomatic cases that effectively spread the virus, which can cause a medical emergency to very susceptible individuals. Besides, the SARS-CoV-02 virus survives for several hours on different surfaces, where a new host can contract it with a delay. These passive modes of infection transmission remain an unexplored area for traditional mean-field epidemic models. Here, we design an agent-based model for simulations of infection transmission in an open system driven by the dynamics of social activity; the model takes into account the personal characteristics of individuals, as well as the survival time of the virus and its potential mutations. A growing bipartite graph embodies this biosocial process, consisting of active carriers (host) nodes that produce viral nodes during their infectious period. With its directed edges passing through viral nodes between two successive hosts, this graph contains complete information about the routes leading to each infected individual. We determine temporal fluctuations of the number of exposed and the number of infected individuals, the number of active carriers and active viruses at hourly resolution. The simulated processes underpin the latent infection transmissions, contributing significantly to the spread of the virus within a large time window. More precisely, being brought by social dynamics and exposed to the currently existing infection, an individual passes through the infectious state until eventually spontaneously recovers or otherwise is moves to a controlled hospital environment. Our results reveal complex feedback mechanisms that shape the dependence of the infection curve on the intensity of social dynamics and other sociobiological factors. In particular, the results show how the lockdown effectively reduces the spread of infection and how it increases again after the lockdown is removed. Furthermore, a reduced level of social activity but prolonged exposure of susceptible individuals have adverse effects. On the other hand, virus mutations that can gradually reduce the transmission rate by hopping to each new host along the infection path can significantly reduce the extent of the infection, but can not stop the spreading without additional social strategies. Our stochastic processes, based on graphs at the interface of biology and social dynamics, provide a new mathematical framework for simulations of various epidemic control strategies with high temporal resolution and virus traceability.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

B.T. work supported by the Slovenian Research Agency (research code funding number P1-0044).

R.M. is grateful to the NSERC and the CRC Program (Canada) for their support and he is also acknowledging the support of the BERC 2018-2021 program and Spanish Ministry of Science, Innovation, and Universities through the Agencia Estatal de Investigacion (AEI) BCAM Severo Ochoa excellence accreditation SEV-2017-0718, and the Basque Government fund “AI in BCAM EXP. 2019/00432”

No external funding was received.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

This study is purely theoretical and does not include any experimental or clinical trials. Used information on SARS-CoV-2 epidemics is publicly available.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All data used in this work are publicly available

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission.
Back to top
PreviousNext
Posted August 01, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Modeling latent infection transmissions through biosocial stochastic dynamics
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Modeling latent infection transmissions through biosocial stochastic dynamics
Bosiljka Tadić, Roderick Melnik
medRxiv 2020.07.30.20164491; doi: https://doi.org/10.1101/2020.07.30.20164491
Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Citation Tools
Modeling latent infection transmissions through biosocial stochastic dynamics
Bosiljka Tadić, Roderick Melnik
medRxiv 2020.07.30.20164491; doi: https://doi.org/10.1101/2020.07.30.20164491

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (70)
  • Allergy and Immunology (168)
  • Anesthesia (50)
  • Cardiovascular Medicine (451)
  • Dentistry and Oral Medicine (83)
  • Dermatology (55)
  • Emergency Medicine (157)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (191)
  • Epidemiology (5258)
  • Forensic Medicine (3)
  • Gastroenterology (195)
  • Genetic and Genomic Medicine (757)
  • Geriatric Medicine (80)
  • Health Economics (213)
  • Health Informatics (698)
  • Health Policy (358)
  • Health Systems and Quality Improvement (223)
  • Hematology (99)
  • HIV/AIDS (163)
  • Infectious Diseases (except HIV/AIDS) (5867)
  • Intensive Care and Critical Care Medicine (361)
  • Medical Education (104)
  • Medical Ethics (25)
  • Nephrology (83)
  • Neurology (764)
  • Nursing (43)
  • Nutrition (130)
  • Obstetrics and Gynecology (142)
  • Occupational and Environmental Health (231)
  • Oncology (479)
  • Ophthalmology (152)
  • Orthopedics (38)
  • Otolaryngology (95)
  • Pain Medicine (39)
  • Palliative Medicine (20)
  • Pathology (141)
  • Pediatrics (223)
  • Pharmacology and Therapeutics (136)
  • Primary Care Research (96)
  • Psychiatry and Clinical Psychology (862)
  • Public and Global Health (2011)
  • Radiology and Imaging (348)
  • Rehabilitation Medicine and Physical Therapy (158)
  • Respiratory Medicine (285)
  • Rheumatology (94)
  • Sexual and Reproductive Health (74)
  • Sports Medicine (76)
  • Surgery (109)
  • Toxicology (25)
  • Transplantation (29)
  • Urology (39)