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Beware That COVID-19 Would Be Worse in Winter: A Study of a Global Panel of 

1236 Regions 
Abstract: Many literatures believe that weather conditions such as temperature and humidity have effects on 
COVID-19 transmission. However, these effects are not clear due to the limited observations and difficulties in 
separating impacts of social distancing. COVID-19 data and social-economic features of 1236 regions in the world 
(1112 regions at the provincial level and 124 countries with small land area) were collected. A Large-scale satellite 
data was combined with these data with a regression analysis model to explore effects of temperature and relative 
humidity on COVID-19 spreading, as well as the possible transmission risk by seasonal cycles. The result show that 
temperature and relative humidity are shown to be negatively correlated with COVID-19 transmission throughout 
the world. Further, the effect of temperature and humidity is almost linear based on our samples, with uncertainty 
surrounding any nonlinear effects. Government intervention (e.g. lockdown policies) and lower population movement 
contributed to the decrease the new daily case ratio. The conclusions withstand several robustness checks, such as 
observation scales and maximum/minimum temperature. Weather conditions are not the decisive factor in COVID-
19 transmission, in that government intervention as well as public awareness, could contribute to the mitigation of 
the spreading of the virus. As temperature drops in winter, the transmission possibly speeds up again. It deserves a 
dynamic government policy to mitigate COVID-19 transmission in winter. 
 
Keywords: Weather Condition; COVID-19; Transmission; Government intervention; Subnational data 
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1. Introduction 

Cases of Severe Acute Respiratory Syndrome Coronavirus Disease-2019 (COVID-19) have been extensively re-

ported since December, 2019. This disease is spreading worldwide rapidly, posing great challenges not only to human 

health but also to social-economic development (Hsiang et al., 2020). As of 30, June 2020, COVID-19 has caused 

more than 10 million confirmed cases and a death toll of 0.5 million globally. Currently, the lack of effective vaccine 

for COVID-19 results that its spreading speed varies across regions, and it is an urgent task to explore the determinant 

factors for virus transmission (Bontempi et al., 2020). It is found that COVID-19 is epidemiologically similar to the 

influenza virus, since both are highly transmissible by respiratory route and cause acute infection (Cobey, 2020). 

Governments are taking a wide range of measures in response to the COVID-19 outbreak, including but not limited 

to school closings, travel restrictions, bans on public gatherings, and contact tracing(Hale et al., 2020). Epidemiolog-

ical studies (Barreca and Shimshack, 2012; Casanova et al., 2010; Chan et al., 2011; Shaman and Kohn, 2009; van 

Doremalen et al., 2013) revealed that seasonal and geographic climatic variation (i.e., low air temperature and low 

humidity) modulate respiratory pathogens transmission and most respiratory pathogens exhibit prevalence peaks in 

temperate regions in winter.  

Some studies explored the weather effect on COVID-19 transmission based on country level and small scale city 

level datasets. However, country-level studies cannot capture regional diversity in weather among countries with 

large areas and uneven population distribution, such as the USA, China, and Brazil. As far as we know, the effect of 

weather condition on transmission is even sensitive to some possible confounding factors in quantitative studies. 

Social and economic conditions including government intervention are the dominated ones among them. Quantitative 

conclusions about weather-transmission relationship ignored the effect of incubation period and omitted some key 

variables (i.e. active cases and susceptive population). Further, the evidences (Dalziel et al., 2018; Jia et al., 2020) 

indicated that population concentration and economic condition (including social distancing) may also shape the 

transmission intensity. Up to now, the role which social-economic conditions play in the spread of COVID-19 is still 

not clear. Moreover, dynamic transmission model for COVID-19 (i.e., SIER model), which adopts non-empirical 

parameters (Baker et al., 2020; Kissler et al., 2020) from other coronavirus, cannot precisely separate the weather 

contribution in shaping the potential dynamic route. Therefore, current studies offer biased estimations of about the 

role of weather in COVID-19 transmission. 

To overcome the disadvantages discussed above, we collected global provincial data to investigate the effects of 

temperature and relative humidity on COVID-19 transmission. Due to unavailable control experiments on weather 

effect, we applied a multi-variables regression model and adopt a set of socio-economic control variables and gov-

ernment intervention to separate these confounding factors when estimating weather effect on COVID-19 transmis-

sion. An additional novelty in our study is that the weather factor is merged into an available dynamic transmission 

model by providing more reliable parameters to model the dynamic transmission route. To the best of our knowledge, 

this is the first study conducted at the provincial level on a global scale. This work may provide reference for a 

flexible government response to COVID-19 transmission during seasonal cycles. 
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2. Method 
2.1 Statistical Analysis 

We built a multivariate regression model (see Eq. (1)) to explore the weather condition effect on transmission: 
 

𝑌𝑌𝑖𝑖,𝑡𝑡  = 𝑓𝑓�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑖𝑖,𝑡𝑡−Δ𝑡𝑡�+ 𝑅𝑅𝐻𝐻𝑖𝑖,𝑡𝑡−Δ𝑡𝑡 + 𝑙𝑙𝑙𝑙𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖,𝑡𝑡−Δ𝑡𝑡 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑟𝑟𝑖𝑖 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖  
+ 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖,𝑡𝑡−Δ𝑡𝑡 + 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝑖𝑖 + 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 + 𝑆𝑆𝑆𝑆ℎ𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 + 𝛼𝛼𝑡𝑡 + 𝜖𝜖 (1) 

 
𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑚𝑚𝑒𝑒𝑒𝑒𝑖𝑖,𝑡𝑡 = (𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑡𝑡, − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑡𝑡−1)/𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖  (2) 

 

𝑅𝑅0,𝑖𝑖,𝑡𝑡 = 1 + 𝑉𝑉𝜆𝜆𝑖𝑖,𝑡𝑡 + ℎ(1 − ℎ)�𝑉𝑉𝜆𝜆𝑖𝑖,𝑡𝑡�
2 (3) 

𝜆𝜆𝑖𝑖,𝑡𝑡 = 𝑙𝑙𝑙𝑙�𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖,𝑡𝑡�/𝑡𝑡 (4) 

 
where i indexes a region, t a day, and Δ𝑡𝑡 a lag day. We considered the new daily cases fraction (𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷) 

and the basic reproductive number (R0) as dependent variables (Y) in Eq. (1). R0 is calculated as in Eq. (3) and (4), 

where the mean serial interval V, exponential growth rate λ of the cumulative number of cases (confirmed), and ratio 

of the infectious period to the serial interval h are set following Lipsitch et al. (2003). 

Accordingly, daily average temperature (Tmean, in Celsius degree) and relative humidity (%, RH) are our variables 

of interest. Here, 𝑓𝑓�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑖𝑖,𝑡𝑡−Δ𝑡𝑡� refers to flexible functional forms of temperature including higher degree poly-

nomial and splines, thereby allowing for a possible non-linear relationship. RH is a control for evaporation and affects 

a droplet’s size and its chemical microenvironment (Marr et al., 2019). Therefore, it is RH (but not absolute humidity) 

that acts as a determinant factor for virus survival in aerosols. 

To the best of the authors’ knowledge, individuals who get infected are likely to experience an incubation period 

before onset. Current evidences (Li et al., 2020; Wu et al., 2020) suggest that the incubation period may vary between 

6 and 8 days. Accordingly, we focused on the effects of temperature and relative humidity with a 6-day lag and further 

examined the same effects with 5-day to 14-day lags for control groups. 

One should note that the specification of the starting date (day=1) in the study period is vital for estimating the 

temperature effect. In this study, the day when the first case is confirmed is not chosen as the starting day due to the 

following reasons. Firstly, at the early stage of outbreak, the population flow intensity, which is the dominant factor 

for transmission (Fauver et al., 2020), varies across regions globally. Evidences from the USA suggest that the risk 

of domestic importation at present far outweighs that of international introductions. However, due to data limitation, 

we have no information about the population inflow/outflow to exclude its impact. Secondly, due to the insufficient 

focus on the epidemic at the early stage, there were no effective measures in medical supplies or public management 

policies. Accordingly, these data are not timely released and might probably lead to deviations. Finally, after the early 

stage, inter-regional population movements turned to be the most determinant factor for transmission. One must 

therefore take into account both the epidemic scale and the observation size. On this basis, we set the starting date as 

the time when the total regional confirmed cases reach 100.  

Additionally, we added time fixed effects 𝛼𝛼𝑡𝑡 as a control for factors that are common to all countries, such as the 

global virus prevention materials supply (e.g. ethanol, mask, and protective suit) and public awareness of COVID-
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19 at different stages. 

To further explore the effect of weather conditions on transmission by income group, we divided the samples by 

GRP per groups in accordance with the World Bank criterion, and construct a dummy variable high with high=1 

indicating high-income regions and high=0 low-income regions. This dummy variable and its interactions with 

Tmean and RH are both added to the models. Afterwards, we merged the weather variables into the SIER model. 

Details about the model specification can be found in the supplementary information, where Stata 14/MP was used 

to perform the multi-variate regression analysis 

 
2.1.1 Control variables 

There are a number of obvious confounding factors (e.g., active case fraction, economic development, population 

concentration (Dalziel et al., 2018), age structure (Geard et al., 2015; Ioannidis et al., 2020), geographic conditions 

(Tian et al., 2017), and government intervention (Giordano et al., 2020) that affect the transmission of an epidemic, 

so they should be controlled in the regression analysis. On this basis, the control variables should include gross 

regional product per capital (GRPper), regional population concentration (PopCon), government response (Lock-

down), elevation, and suspected population. The last one is composed of the working population (aged 15-64) ratio 

(𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿) and school age group (aged 6-15) ratio (𝑆𝑆𝑆𝑆ℎ𝐴𝐴𝐴𝐴𝐴𝐴).The role of GRP is of uncertainty in COVID-19 

transmission. A higher GRP per capita means closer social distance and more frequent population movement while 

it also denotes higher education attainment and better cognition on COVID-19. Hospital condition is conventionally 

to measure medical quality on disease cure but little on prevention. Hospital condition may have significant impacts 

on death cases but little on new cases. Therefore, we do not add the hospital condition in the control variables. Some 

of listed control variables (work age and school age population) are related to social distancing. 

As for population concentration, a higher population concentration means that individuals in short social distancing 

will face a higher risk of getting infected by droplet transmission(Moriyama et al., 2020), leading to a high infected 

rate. The geographic factor such as elevation, is highly associated with the weather type and indirectly affects air 

pressure (which controls the virus transmission rate in aerosol) (Tian et al., 2017). The air pressure in high-elevation 

regions will limit virus transmission in aerosol.  

Age structure is also an important factor, as evidences (Glynn, 2020) show a very strong age-dependence. Note 

that the COVID-19 transmission is also connected to close contact of susceptive population. Therefore, we control 

the school age and labor group to exclude the effect of susceptive population on COVID-19.  

It is widely accepted that government response is a vital factor for COVID-19 transmission (Giordano et al., 2020; 

Prem et al., 2020), of which local and trans-regional transmission are two possible outbreak channels. Note that the 

measures taken by governments across the globe have affected public movement greatly, such as border controls, 

teleworking from home, social distancing and limiting the sizes of gatherings. Correspondingly, we added a variable 

Lockdown, which was a control of government intervention in local and trans-regional COVID-19 transmission 

through social distancing and trans-border flow. However, due to data limitations, it is difficult to accurately evaluate 

the contribution of government response to COVID-19 transmission. Here, we assumed that its contribution would 

increase as the policy continues to take effect. Nevertheless, it is not likely to increase infinitely, i.e., the contribution 

rate will slow down when approaching its peak. Under this hypothesis, we considered a logistic transforming function 
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(Eq. (5)) to evaluate government response in transmission. 

S(T) =
F0eT

1 + F0(eT − 1)
(5) 

where F0 is the initial value of S(T) at T =0. T denotes the lasting weeks of government response. for example, if 

the government policy regarding to COVID-19 have continued 19 day in day t, T should be equal to 2.7 (ratio of 

lasting days divided by 7). In our setting, before government response, this value should be as close to zero as possible 

because it denotes the initial value of government response. Thus, the value of F0 determines the initial intensity of 

government response. Here, we set F0=0.001 to assume that a slight contribution in COVID-19 at an early stage. 

The shape of the logistical function under different values of F0 can be found in Figure S1. Alternatively, we exam-

ined the temperature and relative humidity effects on COVID-19 transmission by setting F0 to values of 0.01, 0.03, 

0.07, and 0.1, respectively. 

Therefore, they should be controlled for the regression analysis, namely active case intensity, economic develop-

ment, population concentration (Jia et al., 2020) and age structure (Geard et al., 2015), geographic conditions, and 

government intervention (Giordano et al., 2020). As a result, the control variables include Gross Regional Product 

per capita (GRPper), Regional Population Concentration (PopCon), Government Response (Lockdown), Elevation, 

and Susceptive Population. The last one is composed of working age (15–64) ratio (LaborAge) and school age (6–

15) ratio (StdAge). 

. 
2.1.2 Robustness Checks 

To reduce the possibility of selective bias on some key variables, we conducted three robustness checks for the 

weather-transmission relationship: (1) The selection of threshold of total regional confirmed cases for observations 

is of vital to the estimation. Here, we examined the relationships by increasing the threshold of total case numbers to 

200 and 300, respectively. (2) Considering that daily temperature differences between the maximum and minimum 

temperature vary across regions globally, we substituted average temperature by its maximum and minimum coun-

terparts, separately. (3) Multi-initial values of lockdown in logistic functions were applied to prove that its initial 

value can affect weather-transmission relationship. 

 
2.1.3 Non-linear Effect of Temperature on COVID-19 Transmission 

We tried to explore the possible non-linear effect of temperature on COVID-19 transmission by setting temperature 

function 𝑓𝑓�Tmeani,t−Δt� as higher-degree polynomials. Based on the incubation period, we focus a 6-day lag vari-

able of average temperature and relative humidity. Besides, a partial relationship between temperature and transmis-

sion that filtered for other explanation variables was estimated with reference of Barro (1991). The results can be 

found in Table S4 and Figure S2. 
 
2.1.4 Estimation of Temperature and Relative Humidity Effects Based on SIER Model 

We simulated the SEIR epidemic model (Wu et al., 2020) to estimate the effects of temperature and relative hu-

midity on the infection rate. The initial SEIR model is expressed as follows (Eq. (6) to (11)): 
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dS
dt

= −
βiIS

N
(6)  

dE
dt

=
βiIS

N
− σE (7) 

  

dI
dt

= σE − γI (8) 

dR
dt

= γI (9) 

β = 1 − exp�−
1
TL
� (10)  

γ = 1 − exp�−
1
TI
� (11)  

where TL = 6 (incubation period) and TI = 7 (duration period) are defined according to Prem et al. (2020).σ =
1
TI

 . 

The temperature and relative humidity effects were incorporated into the SIER model as follows (Eq. (12) and 

(13)): 
  

βi = β(1 + βTmeanΔT) (12) 

 

βi = β(1 + βRHΔRH) (13) 

 
where Tmeanβ  and RHβ  are the estimation coefficients of Tmean and RH, respectively, as listed in supplementary Table S2. 

 
2.1.5 Project Transmission Risk Due to Temperature and Relative Humidity Effects 

To assess the maximum possible risk of transmission due to seasonal temperature variations, we calculated the 

transmission risk attributable to temperature in winter and summer. To facilitate the comparison, we set 6-day lagged 
variables of average temperature ( baselineT ) and relative humidity ( baselineRH ), which take the day with the maximum 

growth rate of confirmed cases as the benchmark value. The average temperature and relative humidity in July and 

January of 2020 were assumed to be the same as those in 2019. The risk of temperature in summer or winter, which 
is calculated by Eq. (14), denotes changes in new daily cases fraction compared with baselineT  and baselineRH . 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = 𝛽𝛽𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑛𝑛𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) + 𝛽𝛽𝑅𝑅𝑅𝑅(𝑅𝑅𝑅𝑅 − 𝑅𝑅𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏) (14) 

 

 

2.2 Source of Data 

We manually collected the new daily cases, cured, and deaths in 1,236 regions in the world as of 31 May, 2020, 

which were extracted from the COVID-19 epidemic information released by public available daily COVID-19 reports 

from the official health department of countries. To deal with small countries that lack sub-national case data, whose 

average land areas are about 185,000 km2 and among which the largest one is Algeria (2,382,000 km2), we selected 
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alternative country-level data from the COVID-19 Data Repository established by the Center for Systems Science 

and Engineering (CSSE) at Johns Hopkins University. Finally, our sample covered 5,926,622 confirmed cases and 

7.4 billon of the global population, which are equal to 98.7% of global confirmed cases and 98.2% of the global 

population, respectively. Our study area is comprised of 1,112 sub-national regions (in 57 countries) and 124 coun-

tries (Figure 1). The sources of remote sensing satellite data, as well as weather and social-economic features, are 

listed in Supplement table S1. 
 
2.2.1 Weather Variables 

Weather data: The meteorological data of selected regions and countries are from the fifth-generation ECMWF 

atmospheric Reanalysis of the global climate Assimilation system (ERA5), from which we extracted the hourly var-

iable of ‘2m temperature’ and ‘2m dew-point temperature’ from ERA5. The data file is assembled in the resolution 

of 0.25 degree x 0.25 degree. Daily average (maximum and minimum) temperature was calculated by averaging all 

pixels in a region with spatial analyst tool of ArcGIS. Relative Humidity is obtained from Eq. (15) - (17) of World 

Meteorological Organization (WMO, 2010) , where Tc denotes air temperature (in Celsius) and Td denotes dew point 

temperature (in Celsius).  

RH = ES/E0 (15) 

E0 = 6.11 ∗ 10
7.5Tc

Tc+237.7 (16) 

Es = 6.11 ∗ 10
7.5Td

Td+237.7 (17) 

 
 
2.2.2 Social-economic Variables 

Gross regional product (GRP) per capita (price of 2017 international dollar, Purchasing Power Parity (PPP)) is 

collected from four types of sources: Annual statistic report of department of statistics by countries, Eurostat database, 

OECD regional economics database and World Development Index Database. For some countries who were not 

covered by these data, country level GDP per capita from the World Bank Development Indicators was used. GRP 

per capita data covers 40 countries (1126 sub-nation regions) and country level GDP covers 142 countries. We con-

verted GRP into real value in price of 2017 international dollar, PPP by using the economic indicators from the 

International Comparison Program (ICP), World Bank, released in May, 2020.    

Elevation data were obtained from Altimeter Corrected Elevations dataset (ACE2), v2 (1994 – 2005) Digital Ele-

vation Model captured by Shuttle Radar Topography Mission (DEM-SRTM), National Aeronautics and Space Ad-

ministration (NASA), which is providing information at 30 arc-seconds in a range of 60°N to 60°S).  

Labor age (15-64) and School-age (6–15) population data were from Gridded Population of the World (GPW), v4 

from Socioeconomic Data and Applications Center (SEDAC) Columbia (available at a 1 km×1 km resolution). The 

dataset was constructed from the latest digital population census data of countries. The labor and elderly ratio is 

measured by the ratio of the corresponding groups to regional population. All raster and grid data were processed by 

ArcMap 10.6 and Python 3.6.  

Population concentration is measured by the Herfindahl-Hirschman Index (HHI) (see Eq. (18)), where G denotes 
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the 1 km×1 km-grid number located in region i and is equal to the area of region in square kilometers. In fact, a 

simple index of population per square kilometer cannot account for the population distribution in space. HHI 

(Chakravarty et al., 2020) is a commonly accepted measure of market concentration, whose value is much more 

sensitive to the number of agents. To make HHI comparable among different regions, we modified it to generate the 

index of population concentration. In this way, the population concentration will reach a maximum when the popu-

lation are located in certain small regions (e.g., more people live in the metropolitan areas).  

Government intervention in COVID-19. We collected the earliest execution dates of national-wide government 

measures in public gathering, border control, etc, from the dataset Oxford COVID-19 Government Response Tracker. 
The variable of Lockdown is generated by Eq. (19) and (20), where lockdownday  and relaxday are the dates when the 

measures take effect and begin to deregulation, respectively. The data sources in this model are listed in supplemen-

tary Table S1. 

Finally, NOx density in the troposphere is defined as a proxy variable, as shown in Eq. (21), to dynamically meas-

ure the population movement intensity. The troposphere NOx column density data are calculated from the OMINO2D 

level-3 products from remote sensing satellite Aura OMI, where the daily data file is assembled into HDF5 formation 

with a resolution of 0.25 degree×0.25 degree. Cars, trucks, power plants, and other industrial facilities emit nitrogen 

dioxide (NOx) as a product of burning fossil fuels (Ogen, 2020; Wang et al., 2011). Therefore, NOx levels will 

decrease when businesses and factories are closed, or when there are few vehicles on the road. Similarly, a decrease 

in NOx level suggests a lower movement intensity. 
 
 

PopConi =
∑ �

popj
popi

�
2

j∈i

logGi
(18) 

T =

⎩
⎪
⎨

⎪
⎧

0                     , t < daylockdown
t − daylockdown

7
             , t ∈ [daylockdown, dayrelax]

dayrelax − daylockdown − (t− dayrelax)
7

,      t > dayrelax

(19) 

  
lockdown = F0eT/(1 + F0(eT − 1)) (20) 

DNOX =
1
7
� NOXk,2019 − NOXt

t+3

k=t−3

(21) 

3. Results 
3.1 Baseline Results 

The effects of temperature and relative humidity on COVID-19 transmission are captured using Eq. (1), as shown 

in Figure 2. The average daily temperature is significantly negatively correlated with the new daily cases fraction and 

R0 (Figure 2(1) and (2)). Given an average incubation period of 6 days, every degree Celsius increase in daily average 

temperature with 6-day lag results in a 2·88% (95% C.I.: [-3·12%, -2·64%], p-value < 0·0001) decrease in new daily 
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case fraction (supplementary Table S2) and 0·62 percent point decrease (95% C.I.: [-0·68, 0·56], p-value < 0·0001) 

in R0 (supplementary Table S3). In comparison, every one percent point increase in relative humidity with 6-day lag 

causes a 0·19% decrease (95% C.I.: [-0·29, -0·10], p-value = 0·0093) in new daily case fraction and 0·022 percent 

point decrease (95% C.I.: [-0·045, 0·00123], p-value = 0·063) in R0. 

We estimated the model by specifying a quadratic polynomial of temperature to verify whether there is a non-

linear relationship between temperature and the transmission rate. The partial relationships between temperature and 

transmission that filtered the effect of other explanation variables could be found in Figure 3(1) and (2). In Figure 

3(1), the quadratic polynomial curve is compared with a linear one (see black line). In Figure 3(2), the response curve 

estimated by the quadratic polynomial is similar to the linear curve for R0. Both curves indicate a decreasing marginal 

temperature effect on transmission, and the effect of high temperature is weaker than that of low temperature. For the 

current samples, the results show that there is no evidence of a strong non-linear relationship between temperature 

and transmission rate. 

The effects of weather conditions with 6-day lag on transmission are simulated using a SIER dynamic transmission 

model (Figure 4). Compared with the baseline scenario, a 2- and a 5-degree Celsius increase in ambient temperature 

would delay the peak day of new daily cases by 10 and 30 days, respectively, while a 2- and 5-degree Celsius decrease 

in ambient temperature would bring the peak forward by 8 and 18 days, respectively (Figure 4(1)). However, when 

relative humidity changes from a -30% decrease to a +30% increase, the deviation of peak day is much smaller (at 

most 10 days) than that of temperature change (Figure 4(2)). The shapes of the infected growth curve are not visually 

different. As for the total infection fraction, a lower temperature results in a much higher fraction of infection com-

pared with the baseline scenario (Figure 4(3)), while a 30% increase in relative humidity does not result in visually 

different curves (Figure 4(4)). 
 

 

3.2 Contribution of Economic Condition and Government Intervention in Weather Effects 

Estimates of the temperature and humidity effects on transmission by economic level are shown in Figure 5. It can 

be seen that after other variables are controlled, the new daily cases in the low-income group would increase by 3·90% 

(95% C.I. [3·50, 4·20]), compared with a 2·60% (95% C.I.: [2·35, 2·85], p-value < 0·0001) increase in the high-

income group when temperature falls by one degree Celsius (Figure 5(1)). However, the humidity effect in high 

income countries is greater than that in their low-income counterparts. The point estimates suggest that when relative 

humidity decreases by 1 percentage point, the new daily cases in high-income group would increase by 0·36% (95% 

C.I. [0·25, 0·46], p-value < 0·0001) more than that in low-income countries. Nevertheless, since the 95% confidential 

interval of the difference in humidity effect by low-income contains a zero value (Figure 5(2)), we cannot decisively 

conclude that there is significant humidity effect in the low-income group. 

Governments play a crucial role in the COVID-19 outbreak (Table 1). A one percent point increase in government 

intervention intensity leads to a 0·54% decrease (95% C.I.: [-0·61, -0·48], p-value < 0·0001) in new daily cases and 

a 0·34 percent point decrease (95% C.I.: [-0·36, -0·33], p-value < 0·0001) in R0. Additionally, it is found that popu-

lation movement is positively associated with the COVID-19 outbreak (Table 1) Population movement is positively 
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associated with the COVID-19 outbreak (Table 1). NOx density in the troposphere, which is highly correlated with 

transportation activities, is defined as a proxy variable to measure the population movement intensity. Here, we find 

that 1 unit (1015 molec/cm2) increase in troposphere NOx density would increase 1·7% of new daily confirmed cases 

and 0·52 percent point of R0. 
  

3.3 Robustness Checks 

Our robustness checks for the weather-transmission relationship can be found in Figure 6. We used extreme tem-

perature indexes rather than average value to examine the relationship. The temperature effects are significantly neg-

ative associated with both new daily case and R0. When one increases the threshold to 200 and 300, respectively, the 

corresponding results are consistent with what we obtained above, suggesting that our result is robust with respect to 

the selection of maximum and minimum temperature and the starting date. Alternatively, we examined the tempera-

ture and humidity effect on COVID-19 transmission by setting 𝐹𝐹0 as 0·01, 0·03, 0·07, and 0·1. The results showed 

a significant negative relationship between weather and new daily cases (Table 2), and the results for R0 are similarly 

(Table 3), indicating that our specification on the initial values of lockdown does not affect the robustness of the 

relationship. 
 

3.4 Prediction of temperature effect on COVID-19 transmission. 

The risks attributable to temperature on transmission in winter and summer were forecasted to assess the maxi-

mum possible transmission risk resulting from weather conditions in terms of seasonal cycles (Figure 7). It can be 

seen that the spread of coronavirus slows down in summer, while a lower temperature accelerates its spread in other 

seasons. In July, the value of average risk will increase by 45% (mean value, [10%, 79%]) among Australia, Southern 

America and Southern Africa, indicating that the confirmed fraction would increase by 45% compared with the 

benchmark condition. In January, the North American region and the northern region of Euro-Asia continent will 

face a greater risk, with an average risk value of 87% (Mean value, [34%, 140%]). Considering the higher population 

concentration, we predict that the northern hemisphere will be at a greater risk of transmission in winter. Furthermore, 

poor regions will be likely exposed to a higher risk driven by weather conditions. 

4. Discussion 

Based on the data from 1,236 regions in the world as of 31 May, 2020 we examined the role of temperature and 

relative humidity in COVID-19 transmission at the global sub-national level. By explicitly controlling for social-

economics variables and government interventions, we found that every degree Celsius increase in daily average 

temperature of 6-day lag results in a 2·88% decrease in new daily cases fraction (supplementary Table S2) and a 0·1 

percent point decrease in R0 (supplementary Table S3). In comparison, every one percent point increase in relative 

humidity causes a 0·13% decrease in new daily case fraction and 0·06 percent point decrease in R0. We examined 

the non-linear effect of temperature on COVID-19 transmission and the results show that there is no evidence of a 

strong non-linear relationship between temperature and transmission rate in our current sample. A reasonable expla-

nation is that most observations of average temperature are below 25 degree Celsius due to the period as of 31, May, 
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2020. So, limited high-temperature observations are found in samples, thereby leading to uncertainty around the 

effect of high temperature. 

Our results showed that higher temperature and higher humidity could significantly reduce new daily cases. In 

comparison, the existing studies conducted at limited regions (Wang et al., 2020) or country level (Azuma et al., 

2020) ignored the weather heterogeneity within countries and relied on variations across large continents as well as 

multiple climate zones (Figure 8). Moreover, both the lagged effect of weather and incubated period of COVID-19 

are not considered in the weather-transmission relationship. Thus, current studies misestimated the weather effect. 

Considering that the channels of COVID-19 transmission are direct contact, and droplet and possible aerosol trans-

missions, a higher temperature and a higher relative humidity could decrease virus stability and viability on the sur-

face of containments in public (Chia et al., 2020), thereby indirectly decreasing its transmission efficiency on its host. 

Weather conditions, which are probably not the determinant factor, can indeed modulate the transmission to some 

extent. Compared with similar studies on other respiratory pathogens, our results are partially consistent with evi-

dences concerning SARS (Chan et al., 2011) and Influenza (Lowen et al., 2007; Shaman and Kohn, 2009).  

The evaluation on the effectiveness of government response is also a vital point. Currently, the numbers of total 

COVID-19 cases still keep growing among some developed countries in the warming northern hemisphere, which is 

likely due to ineffective government responses and overwhelming health systems. The variance in COVID-19 spread-

ing across regions is thus not only attributable to weather conditions, but also to social-economic situations and 

government intervention to a significant extent. It is no doubt that government responses to COVID-19, including 

contact tracing, quarantine, and social distancing contributed substantially to this (Giordano et al., 2020; Kraemer et 

al., 2020; Wu and McGoogan, 2020). Current studies (Jüni et al., 2020; Wang et al., 2020) concerning with the 

government response (lockdown) ignored the dynamic effect in government intervention, thereby probably overesti-

mate the weather effect. To address this issue, we constructed two proxies of government intervention by combining 

multi-source data currently available from large-scale remote sensing satellite and grid data, thus providing an effec-

tive and robust estimation of weather-transmission relationship. 

Our result also revealed that different income levels can make a significant difference in the weather effects on 

virus spreading, and that lower-income regions will face a higher risk when temperature falls. A possible explanation 

for this might be that the households with a higher income may adjust their indoor temperature with air conditioner 

or heating devices, and they may also pay more attention to precautionary measures based on better media commu-

nication and higher educational attainment. 

We also modified the dynamic transmission model by adopting more reliable parameters of weather conditions. 

The current dynamic transmission models assume that weather effect is invariant, which leads to a significant devia-

tion in forecasting. In fact, weather conditions frequently vary on a daily basis. With the proposed model in this study, 

we are able to estimate the temperature effect more accurately by explicitly controlling for the underlying factors 

listed above, and conclude that weather conditions can significantly shape the transmission curve and alter the peak 

prevalence. The lower the ambient temperature, the earlier the transmission rate peak will appear. This poses a great 

challenge to all regions globally, with the specific extent of risk depending on the regional social-economic conditions. 
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According to our study, COVID-19 is more likely to occur again in regions with high latitudes in the northern hemi-

sphere in winter 

In addition, our results can provide several valuable pieces of information to help epidemic prevention and 

public health intervention. Firstly, the less developed and developing countries are likely to suffer more from COVID-

19 when the temperature drops. Given the diversity in both weather and social-economic conditions, the transmission 

risk will vary globally and possibly amplify the existing global health inequality. Therefore, more attention should 

be paid to low income regions, especially for the case of Africa (Gilbert et al., 2020; Nkengasong and Mankoula, 

2020). Secondly, COVID-19 transmission will accelerate in the winter. In the northern hemisphere, especially in the 

temperate and sub-cold zones, the possibility of COVID-19 recurrence in the winter deserves special attention. As 

for other regions, these is still a long-term need to deal with the importation of risk via travelers from high-risk areas. 

In the summer, a higher temperature may help to control the disease spreading in the northern hemisphere. Therefore, 

a second-wave pandemic is likely to occur in the winter again. Effective government intervention and public aware-

ness about COVID-19 are necessary to mitigate transmission (Jayaweera et al., 2020). As the seasonal cycles vary 

between the northern and southern hemispheres, government intervention in the spread of COVID-19 ought to be 

dynamically adapted 

 

5. Conclusions 

We quantitatively analyzed the role of weather conditions in the spread of COVID-19 in a global context by 

controlling a set of social-economic variables. We found that higher temperature and higher humidity could reduce 

the transmission. Besides, there is no evidence of a strong non-linear relationship between temperature and transmis-

sion rate in our current sample. Our research provided more reliable conclusions with regard to the temperature and 

relative humidity effects. From this aspect, the application of merging multi-source data from remote sensing, statistic 

indexes, and gridded-visualized data can provide a powerful tool and new information in environmental evaluation, 

allowing for more flexible statistical methodologies with higher dimensional observations and giving more reliable 

conclusions at a low cost. 

 Our estimates provided more practical parameters to identify the possible risk over the post pandemic period 

and forecasted the tendencies in the future. Temperature and relative humidity are shown to be negatively correlated 

with COVID-19 transmission throughout the world. Weather conditions are not the decisive factor in COVID-19 

transmission, in that government intervention as well as public awareness, could contribute to the mitigation of the 

spreading of the virus. As temperature drops in winter, the transmission possibly speeds up again. It deserves a dy-

namic government policy to mitigate COVID-19 transmission in winter. 

Some limitations of the present study should also be pointed out. First, our conclusions were drawn based on 

observations over certain periods, thus there were still uncertainties in both effective COVID-19 vaccine for the 

susceptive population and role of government response. Our conclusions are drawn with the omitted role of COVID-

19 vaccine and consistent and positive government response to the virus. How to entirely separate the contribution 

of social-distancing from endogenous immune drivers is still a challenge. Secondly, our data were obtained from 
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daily reports, in which the individual clinical information (e.g., channels of infection, age, and burden of chronic 

diseases) was missing. Therefore, the heterogeneity in individuals was not considered. Thirdly, our conclusions are 

drawn on statistical models, but it still requires epidemiological analysis or random control experiment to explore the 

effect of weather. Finally, we would explorer the underlying non-linear effect of temperature on COVID-19 trans-

mission in future with more available datasets. 
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Table 1. Effects of Population Movement and Government Intervention Effect in Temperature/Humidity-
Transmission. 

Variables (1) (2) (3) (4) (5) (6) 

Tmean Lag 6 day 
-0.0294 

(p<0.0001) 
-0.0288 

(p<0.0001) 
-0.0296 

(p<0.0001) 
-0.0074 

(p<0.0001) 
-0.0062 

(p<0.0001) 
-0.0072 

(p<0.0001) 

RH Lag 6 day 
-0.0032 

(p<0.0001) 
-0.0019 

(p<0.0001) 
-0.0032 

(p<0.0001) 
-0.0003 
(0.017) 

-0.0002 
(0.063) 

-0.0004 
(0.0019) 

Lockdown  
-0.5445 

(p<0.0001) 
  

-0.3414 
(p<0.0001) 

 

NOX   
-0.0169 
(0.0045) 

  
-0.0052 

(0.00015) 
Control Yes Yes Yes Yes Yes Yes 
Time Fixed Effect Yes Yes Yes Yes Yes Yes 
N 21180 21180 21154 41419 41209 41148 

 
Note: The dependent variable is ln new daily case fraction from Column (1) to (3) and basic reproductive number (R0) in 
7 day from Column (4) to (6). In Column (1) to (6), 6-day lagged variables of temperature and relative humidity are added 
to the model. Besides, it controls GRP per capita, population concentration, elder population ratio, elevation, government 
intervention and active case fraction in column (1) to (3) while it excludes positive case fraction in column (4) to (6). The 
observation selection criterion is when total cases exceeding 100. Time fixed effect is included in the model. p-values (two-
tailed) in parentheses.  
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Table 2. Temperature/Humidity-New Daily Case Fraction under Different Initial Values of F0. 
Variable (1) (2) (3) (4) 

Tmean Lag 6 day 
-0.0288 

(p<0.0001) 
-0.0294 

(p <0.0001) 
-0.0297 

(p <0.0001) 
-0.0300 

(p <0.0001) 

RH Lag 6 day 
-0.0019 

(p <0.0001) 
-0.0022 

(p <0.0001) 
-0.0023 

(p <0.0001) 
-0.0025 

(p <0.0001) 

Lockdown (F0=0.01) 
-0.5445 

(p <0.0001) 
   

Lockdown (F0=0.03)  
-0.4648 

(p <0.0001) 
  

Lockdown (F0=0.05)   
-0.4186 

(p <0.0001) 
 

Lockdown (F0=0.1)    
-0.3508 

(p <0.0001) 
Control Yes Yes Yes Yes 
Time Fixed Effect Yes Yes Yes Yes 
N 21180 21180 21180 21180 

 
Note: The dependent variable is ln new daily cases fraction from Column (1) to (4). 6-day lagged variables of temperature 
and relative humidity are added to the model. Other specifications are consistent with Table 1. p-values (two-tailed) in 
parentheses.  
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Table 3. Temperature/Humidity-R0 under Different Initial Values of F0. 
Variable (1) (2) (3) (4) 

Tmean 
-0.0062 

(P<0.0001) 
-0.0063 

(P<0.0001) 
-0.0065 

(P<0.0001) 
-0.0067 

(P<0.0001) 

RH 
-0.0002 
(0.063) 

-0.0002 
(0.054) 

-0.0002 
(0.055) 

-0.0002 
(0.065) 

Lockdown (F0=0.01) 
-0.3414 

(P<0.0001) 
   

Lockdown (F0=0.03) 
 -0.3751 

(P<0.0001) 
  

Lockdown (F0=0.05) 
  -0.3916 

(P<0.0001) 
 

Lockdown (F0=0.1) 
   -0.4152 

(P<0.0001) 
Control Yes Yes Yes Yes 
Time Fixed Effect Yes Yes Yes Yes 
N 41209 41209 41209 41209 

 
Note: The dependent variable is basic reproductive number (R0) from Column (1) to (4). 6-day lagged variables of tem-
perature and relative humidity are added to the model. Other specifications are consistent with Table 1. p-values (two-
tailed) in parentheses.
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Figure 1. Confirmed Cases Per Million Inhabitants by Subnational Region 

Note: The data were collected and calculated by authors own calculation as of 31, May 2020. The observations are 
classified into 10 groups by every 10th quantiles of confirmed cases per millions population. The map division is only a 
schematic diagram and does not indicate accurate administrative area. Map data is from https://gadm.org/.
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Figure 2. Effects of Temperature and Relative Humidity on COVID-19 Transmission. 

Note: Average temperature effect on natural logarithm of (ln) new cases fraction (1) and R0 (2). Relative humidity effect 
on ln new cases fraction (3) and R0 (4). The points and error bar are the estimated value with 95% C.I. 5-10 day lagged 
variables of average temperature and relative humidity are added in linear form separately. Besides, Figure 2(1) and (2) 
control GRP per capita, population concentration, elder population ratio, elevation, government intervention and active 
case fraction while positive case fraction is excluded in Figure 2 (2) and (4). The observation selection criterion is that 
when total cases exceeding 100. Time fixed effect is included in the model. The regression table of the model with 6-day 
lag can be found in supplementary Table S2 and S3.
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Figure 3. Temperature Effects (Partial Relation) on COVID-19 Transmission in Linear and Quadratic 

Polynomials. 
Note: Average temperature effect on natural logarithm of (ln) new cases fraction (1) and R0 (2). Marginal temperature 
effect on ln new cases fraction (3) and R0 (4). 6-day lagged variable of average temperature and relative humidity are 
added to the model by fitting Eq. (1). Other specifications are consistent with Figure 2. In Figure 3 (1) and (2), dependent 
variables were filtered for the estimated effect of the explanatory variables other than temperature. The filtered values were 
then normalized to have zero mean. The regression table of the model with 6-day lag can be found in supplementary Table 
S4 and S5. 
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Figure 4. Simulation of Temperature and Relative Humidity Effect on SIER Model 

Note: Dynamic daily infected fraction under different ambient temperatures (1) and relative humidity (2). Total infected 
fraction under different ambient temperatures (3) and relative humidity (4). The figures are simulated based on the result 
of Figure 4 (1) and (2). The number in parentheses denotes the difference in peak day of daily infected fraction compared 
with the baseline scenario. Detailed parameters settings can be found in supplementary material.
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Figure 5. Temperature and Relative Humidity Effect on COVID-19 Transmission in High and Low-Income 

Regions. 
Note:(1) Effect of 6-day lagged average temperature on ln new daily case fraction by income groups. (4) Effect of 6-day 
lagged relative humidity effect on ln new daily case fraction by income groups. The points and error bar are the estimated 
value with 95% C.I. Other specifications are consistent with Figure 2. The regression tables for Figure 4 can be found in 
supplementary Table S6. 
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 Figure 6. Robustness Checks for Temperature-Transmission Relationship 
Note: Effect of maximum/minimum temperature on the natural logarithm (ln) new daily case fraction (1) and R0 (3). Effect 
of average temperature on ln new daily case fraction (2) and R0 (4) ln new daily case fraction with threshold is equal to 
200 or 300. The points and error bars are the estimated value with 95% C.I. Other specifications are consistent with Figure 
2. 
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Figure 7. Regional Projection of Temperature and Relative Humidity Effect in Summer and Winter 

Note: The colors denote the effect of temperature and humidity on peak new daily case compared with benchmark weather 
condition. The risk in winter and summer are calculated based on the historical average temperature and relative humidity 
in July and January in 2019. Additional information could be found in supplement. The map division is only a schematic 
diagram and does not indicate accurate administrative area. Map data is from https://gadm.org/ 
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Figure 8. Temperatures Vary in Six Represented Countries with Large Area Coverage and Wide Range 

of Latitude. 
Data Source: ERA5. Temperatures at northernmost and southernmost end in these six countries are shown. The reference 
time was 13:00 at local time on April 1, 2020. The map division is only a schematic diagram and does not indicate real 
administrative areas. 
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 Tables and Figures 

 
Table S1. Data Source of the Variables. 
 

 

Variables Data Source 
COVID-19 cases  
(as of 31 May, 2020) 

Subnational: COVID-19 website and situation report from Department of Health by countries.  
National: John Hopkins GitHub repositories. https://github.com/CSSEGISandData/COVID-19 

Air & Dew point tempera-
ture  
(as of 31 May, 2020) 

Fifth generation ECMWF atmospheric reanalysis of the global climate assimilation system (ERA5). https://cds.climate.coperni-
cus.eu/#!/search?text=ERA5&type=dataset 

Relative humidity  Calculated by Air & Dew point temperature 

GRP per capita 

1.Subnation region: EuroStat (Europe Union members): https://ec.europa.eu/eurostat/web/regions/data/database  
OECD stat database (OECD countries):  http://stats.oecd.org/  
Department of Statistics: (Asia, Africa and south America countries) 

2. Country level: World Development Indicators Database, World Bank:  
https://databank.worldbank.org/source/world-development-indicators 

Population concentration 
Gridded Population of the World (GPW), v4 from Socioeconomic Data and Applications Center, Columbia. 
https://sedac.ciesin.columbia.edu/data/collection/gpw-v4 

Elevation 
Altimeter Corrected Elevations (ACE2), v2 (1994 – 2005) Digital Elevation Model, Socioeconomic Data and Applications Center, Co-
lumbia. https://sedac.ciesin.columbia.edu/mapping/ace2/ 

School population ratio Gridded Population of the World (GPW), v4 from Socioeconomic Data and Applications Center, Columbia. 
Labor population ratio Gridded Population of the World (GPW), v4 from Socioeconomic Data and Applications Center, Columbia. 
NOx density Aura OMI satellite, OMINO2D level3 daily data file. https://disc.gsfc.nasa.gov/datasets/OMNO2d_003/summary 

Lockdown  Oxford COVID-19 Government Response Tracker. Blavatnik School of Government. https://www.bsg.ox.ac.uk/research/research-
projects/coronavirus-government-response-tracker2020. 
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Table S2. Estimation of weather condition effect on new daily cases fraction with a 6-day lag 

Variables Coefficients 
Standard  

error 
p-value 95% C.I. 

GRP per cap -0.11 0.011 <0.0001 -0.14 -0.091 
pop concentration 0.0035 0.00068 <0.0001 0.0021 0.0048 
Labor pop ratio 0.072 0.0023 <0.0001 0.068 0.077 
School pop ratio 0.084 0.0029 <0.0001 -0.078 -0.089 
Elevation -0.028 0.0017 <0.0001 -0.032 -0.025 
Active case ratio 0.76 0.0052 <0.0001 0.75 0.77 
Lockdown -0.54 0.032 <0.0001 -0.61 -0.48 
Tmean  -0.028 0.0012 <0.0001 -0.031 -0.026 
RH -0.0019 0.00049 0.0093 -0.0029 -0.0010 

Note: The dependent variable is natural logarithm of new daily cases fraction. The criterion for observation selection is that 
when the total confirmed case reaches 100. Active case ratio and Lockdown are in the same lagged order as Tmean and 
RH. Time fixed effect is included in the model.  
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Table S3. Estimation of weather condition effects on R0 with a 6-day lag 

Variables 
Coeffi-
cients 

Standard  
error 

p-value 95% C.I. 

GRP per cap 0.037 0.0028 <0.0001 0.031 0.042 
pop concentration 0.00026 0.00012 0.038 1.45E-05 0.000501 
Labor pop ratio -0.016 0.00057 <0.0001 -0.017 -0.014 
School pop ratio -0.00010 0.00074 0.18 -0.0024 0.00047 
Elevation -0.0009 0.00038 0.017 -0.0016 -0.00016 
Lockdown -0.34 0.0070 <0.0001 -0.36 -0.33 
Tmean  -0.0062 0.00031 <0.0001 -0.0068 -0.0056 
RH -0.00022 0.00012 0.063 -0.00045 1.23E-05 

Note: R0 is the dependent variable. The criterion for observation selection is that when the number of total confirmed cases 
reaches 100. Lockdown is in the same lagged period as Tmean and RH. Time fixed effect is included in the model. 
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Table S4. Estimation of weather condition effect on new daily cases fraction with a 6-day lag 

Variable Coefficients 
Standard 

Error 
p-value 95% C.I. 

GRP per cap -0.15 0.012 <0.0001 -0.18 -0.13 
pop concentration 0.0020 0.00068 0.0037 0.00064 0.0033 
Labor pop ratio 0.066 0.0023 <0.0001 0.061 0.070 
School pop ratio 0.062 0.0031 0.00043 0.056 0.068 
Elevation -0.028 0.0017 <0.0001 -0.031 -0.024 
Active case ratio 0.76 0.0051 <0.0001 0.75 0.77 
Lockdown -0.48 0.032 <0.0001 -0.54 -0.42 
Tmean -0.066 0.0024 <0.0001 -0.070 -0.061 
Tmean square 0.0014 7.8E-05 <0.0001 0.0013 0.0016 
RH -0.0011 0.00048 0.021 -0.0021 -0.00017 

Note: The dependent variable is natural logarithm of new daily cases fraction. The other specification is same as Table S2.
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Table S5. Estimation of weather condition effects on new daily cases fraction with a 6-day lag 

Variable Coefficients 
Standard 

error 
p-value 95% C.I. 

GRP per cap 0.036 0.0028 <0.0001 0.031 0.042 
pop concentration 0.00023 0.00012 0.066 -1.5E-05 0.00047 
Labor pop ratio -0.016 0.00058 <0.0001 -0.017 -0.015 
School pop ratio -0.0028 0.00079 0.00043 -0.0043 -0.0012 
Elevation -0.00064 0.00038 0.090 -0.0014 1E-04 
Lockdown -0.34 0.0070 <0.0001 -0.35 -0.32 
Tmean -0.0099 0.00066 <0.0001 -0.011 -0.0086 
Tmean square 0.00013 2.12E-05 <0.0001 9.26E-05 0.00018 
RH -0.00018 0.00012 <0.0001 -0.00041 5.11E-05 

Note: The natural logarithm of new daily cases fraction is the dependent variable. The other specifications are the same as 
those listed in Table S2. 
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Table S6. Estimation of weather condition effects on new daily cases fraction with 6-day lag between high- and low-
income groups. 

Variables Coefficients 
Standard  

error 
p-value 95% C.I. 

GRP per cap -0.11 0.015 <0.0001 -0.14 -0.084 
pop concentration 0.0038 0.00068 <0.0001 0.0025 0.0051 
Labor pop ratio 0.068 0.0023 <0.0001 0.063 0.072 
School pop ratio 0.083 0.0029 <0.0001 0.077 0.088 
Elevation -0.032 0.0018 <0.0001 -0.036 -0.028 
Lockdown -0.54 0.032 <0.0001 -0.60 -0.48 
Active case ratio 0.76 0.0052 <0.0001 0.75 0.77 
High x Tmean 0.013 0.0018 <0.0001 0.0091 0.016 
Tmean -0.039 0.0019 0.000271 -0.042 -0.035 
High x RH -0.0036 0.00053 <0.0001 -0.0046 -0.0025 
RH 0.00044 0.00061 0.46 -0.00074 0.0016 

Note: The natural logarithm of new daily cases fraction is the dependent variable. Other specifications are the same as those 
listed in Table S2.
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Figure S1. Shape of Lockdown (S(T)) under Different Values of F0 
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