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Abstract  

Seasonal influenza remains a major health burden in the United States. Despite 

recommendations of early antiviral treatment of high-risk patients, the effective treatment 

coverage remains very low. We developed an influenza transmission model that incorporates 

data on infectious viral load, social contact, and healthcare-seeking behavior, to evaluate the 

population-level impact of increasing antiviral treatment timeliness and 

coverage among high-risk patients in the US. We found that increasing the rate of early 

treatment among high-risk patients who received treatment more than 48 

hours after symptoms onset, would substantially avert infections and influenza-induced 

hospitalizations. We found that treatment of the elderly has the highest impact on reducing 

hospitalizations, whereas treating high-risk individuals aged 5-19 years old has the highest 

impact on transmission. The population-level impact of increased timeliness and coverage of 

treatment among high-risk patients was observed regardless of seasonal influenza vaccination 

coverage and the severity of the influenza season.  

 

 

Introduction 

Seasonal influenza continues to be a major cause of health and economic burden (Molinari et 

al., 2007). Although influenza infection is generally a self-limiting disease, it can result in 

severe illness and death. In particular, the disease carries substantial health burden among 

young children, the elderly, and people with certain health conditions (Fiore et al., 2010; 

Monto, 2008). In the United States, seasonal influenza results in an estimated incidence of 

9.3–49.0 million illnesses, 140,000–710,000 hospitalizations, and 12,000–56,000 deaths 

annually (Molinari et al., 2007; Tokars et al., 2018a).  
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Vaccination is the mainstay of efforts to reduce the burden of seasonal influenza. The US 

Advisory Committee on Immunization Practices (ACIP) recommends influenza vaccination 

for all individuals aged six months or older. However, the majority of the US population does 

not comply with these recommendations, and vaccination rates against seasonal influenza 

hover around approximately 40% annually (Chiu et al., 2017). Additionally, due to the rapid 

mutation of the virus and an imperfect match between the vaccine’s virus cocktail, vaccine 

efficacy is not complete and varies widely by season. For example, the average influenza 

vaccine effectiveness was estimated to be 45% in the US, with the annual value ranging 

between 19% and 60% over the past decade (“CDC Seasonal Flu Vaccine Effectiveness 

Studies | CDC,” n.d.; Doyle et al., 2019).  

 

Recently, increased severity of influenza, marked by high rates of outpatient and inpatients 

visits, has been observed among patients with high-risk influenza-associated complications 

(Garten et al., 2018; Xu et al., 2019). This group includes children under five years old, adults 

over 65 years old, American Indian/Alaska natives, pregnant women, people with 

immunosuppression, people who are morbidly obese, people with chronic pulmonary or 

cardiovascular conditions, and people with diabetes (Fiore et al., 2011). This high-risk 

population accounts for the bulk of influenza-associated hospitalizations in the US. For 

example, more than 50% of all influenza-associated hospitalizations in the US occur among 

adults over 65 years old, and more than 70% of adult inpatients have at least one underlying 

medical condition that placed them at high risk for influenza-associated complications 

(Appiah et al., 2015; Blanton et al., 2017; Davlin et al., 2016; Garten et al., 2018).  

 

The increase in influenza-associated hospitalization and mortality (“Influenza-associated 

Pediatric Mortality,” n.d.; Xu et al., 2019) has raised concerns about vaccine uptake and early 
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treatment of patients at risk of severe complications (Ison, 2018; O’Halloran et al., 2016). 

Neuraminidase inhibitors (NAIs) are a class of antiviral medications recommended for the 

pharmacologic treatment of influenza (Fiore et al., 2011). Early therapy of influenza patients 

with NAIs reduces the duration and intensity of viral shedding, the duration of symptoms, 

and disease-associated complications, hospitalizations, and mortality (Hayden and Pavia, 

2006). Despite the high burden of influenza-induced complications among high-risk 

individuals, their rate of treatment for influenza infection has remained low (Stewart et al., 

2018). Approximately 40% of high-risk patients with laboratory-confirmed influenza seek 

care within two days of symptoms onset (Stewart et al., 2018). Among these patients, on 

average, 37% are prescribed an antiviral medication (Biggerstaff et al., 2014; Stewart et al., 

2018). The ACIP guidelines recommend that antiviral treatment be given to high-risk patients 

with clinically suspected influenza infection, even with deferred laboratory confirmation, 

when influenza is known to be circulating in the population (Fiore et al., 2011). However, 

current clinical practice is far from keeping with these guidelines.  

 

Antiviral treatment not only provides direct benefits to treated patients by reducing their risk 

of influenza-induced hospitalization and/or mortality but may also provide indirect protection 

to noninfected individuals by reducing their risk of infection. This indirect benefit is achieved 

by decreasing the contribution of treated patients to disease transmission by reducing their 

viral shedding and duration of infectiousness. Household-based trials have shown that early 

treatment of infected individuals with NAIs may reduce their contribution to disease 

transmission by 50 – 80% (E. et al., 2009; Halloran et al., 2007). 

 

To evaluate the population-level impact of increased antiviral treatment coverage and 

timeliness of influenza-infected high-risk individuals during influenza seasons, we developed 
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a data-driven influenza transmission model that incorporates data on infectious viral load, 

social contact, healthcare-seeking behavior, time to seek healthcare, and antiviral treatment.  

Methods 

Model Overview. We developed a dynamic model for influenza infection progression and 

transmission in Texas, California, Connecticut, and Virginia. Our model is a modified 

susceptible-infected-recovered compartmental framework (Vynnycky and White, 2010), in 

which transitions between the health-related compartments occur over time (Figure 1). To 

model age-dependent transmission, we stratified the population into five age groups: 0–4 y, 

5–19 y, 20–49 y, 50–64 y, and ≥65 y. We also distinguished between high-risk and low-risk 

individuals for each age group based on the ACIP case definition (Fiore et al., 2011).  

 

Susceptible individuals in the model may interact with infectious individuals and become 

either asymptomatically or symptomatically infected (Furuya-Kanamori et al., 2016; Leung et 

al., n.d.), where they can transmit the disease to others until recovery. Consistent with 

previous models (Medlock and Galvani, 2009; Ndeffo Mbah et al., 2013; Yamin et al., 2014), 

we assumed that upon recovery, individuals are fully protected for the entire season. This 

assumption is supported by prospective studies demonstrating that reinfection in the same 

season is rare (Möst et al., 2019; Möst and Weiss, 2016).  

 

Force of Infection. The rate at which infectious individuals transmit depends on 1) age-

specific contact rates (Table supplementary S1) between an infected individual and his or her 

contacts, 2) age-specific susceptibility to infection, and 3) infectiousness of the infected 

individual based on her/his daily viral loads and time in the season (Figure supplementary S1, 

and SI Appendix for details).  
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In the US, influenza incidence is seasonal, with a peak typically striking in the winter, yet the 

driver for this seasonality remains uncertain (Lipsitch and Viboud, 2009). Thus, we included 

general seasonal variation in the susceptibility rate of the model as 𝑇(𝑡)  = (1 +

 𝑐𝑜𝑠 [
2𝜋(𝑡−𝜙)

365
]), where 𝜙 is a seasonal offset. This formulation was previously shown to 

accurately capture the seasonal variation in the incidence of respiratory diseases by US state 

(Pitzer et al., 2015; Yamin et al., 2016). 

 

Hospitalizations. Hospitalization was not model explicitly. However, we computer the 

number of hospitalizations for each age and risk -group by multiplying the number of 

symptomatic infected individuals by the rate of hospitalization given influenza infection. 

These age- and risk-specific rates were obtained from epidemiological studies (Pitzer et al., 

2015; Yamin et al., 2016). 

 

Baseline Vaccination and Treatment. For each year, we parameterized vaccination uptake 

from state-specific influenza vaccine coverage data for different age groups, as observed 

from 2013 to 2018 (Table supplementary S2) (“2010-11 through 2018-19 Influenza Seasons 

Vaccination Coverage Trend Report | FluVaxView | Seasonal Influenza (Flu) | CDC,” n.d.). 

We estimated vaccine efficacy using the CDC estimates for influenza vaccine efficacy 

between 2013 and 2018 (“CDC Seasonal Flu Vaccine Effectiveness Studies | CDC,” n.d.). 

 

Antiviral treatment is provided to high-risk individuals who seek care in health clinics and 

hospitals. We parameterized our model using data from recent large-scale studies on the time 

to seek care and antiviral prescription among laboratory-confirmed high-risk influenza 

patients in the US (Biggerstaff et al., 2014).  These data were used to inform our baseline 

treated scenario for each state.  
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High-risk individuals receiving antiviral treatment have a reduced rate of hospitalization 

compared to nontreated high-risk patients. The age-specific reduction in hospitalization rate 

among treated high-risk individuals was obtained from previous retrospective and prospective 

studies (Kaiser et al., 2003; Piedra et al., 2009). 

 

Model Calibration. We calibrated our model to weekly cases of influenza (confirmed by 

viral isolation, antigen detection, or PCR) and influenza-like illnesses (ILI) cases reported 

(“FluView Interactive | CDC,” n.d.) to estimate empirically unknown epidemiological 

parameters (SI Appendix, Tables supplementary S3 and S4). These data were collected by the 

CDC’s National Respiratory and Enteric Virus Surveillance System and state health 

departments from 2014 to 2019. We used data from a recent meta-analysis (Tokars et al., 

2018a) of seasonal influenza in the US between 2011 and 2016 to obtain the median annual 

attack rate per age group.  

 

Interventions. We evaluated two interventions for increasing the number of high-risk 

patients seeking care and being treated within the first two days. In the first intervention, we 

increased the number of individuals who are treated within the first two days of symptoms 

onset by assuming that a proportion of those who received treatment after the first two days 

of symptoms onset would receive treatment within the first two days of symptoms onset. In 

the second intervention, we increased the total number of infected high-risk individuals who 

received treatment while assuming that they all received treated within the first two days of 

symptoms onset. We evaluated the population- and individual-level benefits of these 

interventions in terms of infections and hospitalizations averted in during a single influenza 

season. 
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Sensitivity Analysis. We conducted sensitivity analyses to examine the robustness of our 

results. In the first analysis, we investigated the impact of effective vaccination coverage on 

the effectiveness of antiviral treatment. Effective vaccination coverage is defined as the 

product of vaccine efficacy times vaccine coverage, and represents the level of vaccine 

induced immunity in the population. In the second analysis, we conducted a two-way 

sensitivity analysis to investigate the joint impact of changing both the attack rate and the 

effective vaccination coverage.  

 

Results 

The transmission model was calibrated to age-stratified weekly incidence data for the 2014-

2015 to 2018-2019 influenza seasons in four states across the US (Figure 1 and figure 

supplementary S2). The model explicitly accounted for changes in transmissibility with 

disease progression and timing of antiviral treatment. The model captures the influenza 

weekly trends and the age distribution of infected individuals (Figure 1 B-E and SI 

Appendix). For example, in influenza season 2014-2015, the calibrated model accurately 

showed that influenza infections peaked in week 14 in Texas and week 17 in California, week 

19 in Connecticut and week 20 in Virginia (Figure 1 and figure supplementary S2), and the 

age distributions of influenza cases were consistent with the empirical data in both states 

(Figure 1 and figure supplementary S2). 
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A

 

  

 
 

Figure 1. Structure and fit of the model. (A) Compartmental diagram of the transmission model. Following 

exposure, susceptible individuals S move to the symptomatic or asymptomatic compartment, iτ=0, aτ=0, 

representing the first day of infection. Then, on each following day, they transition to a matching compartment, 

where they may transmit the disease to others based on 1) their contact mixing patterns, 2) the per-day viral 

load, 3) the seasonal forcing, and 4) their antiviral treatment regimen. Recovered individuals move to 

compartment R, where they are fully protected for the entire season. For clarity, age and risk stratification are 

not displayed (SI Appendix). (B, D) Time series of recorded weekly influenza cases and model fit to California 

and Texas (the model fit to Connecticut and Virginia is provided in SI Appendix, figure supplementary S2). (C, 

E) Data and model fit to the age distribution among influenza infections. 

 

We simulated five influenza seasons and projected the number of cases and influenza-

induced hospitalization that would have been averted by early treatment. Specifically, we 

evaluated the population-level benefit of increasing the proportion of high-risk individuals 

who initiate treatment within 48 hours of symptoms onset without increasing the baseline 
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number of treated individuals (Figure 2 and figure supplementary S3). We found that keeping 

the same number of treatments while providing earlier treatment can substantially decrease 

transmission, thereby reducing both influenza illnesses and hospitalizations. For example, if 

60% of high-risk patients who actually received treatment more than 48 hours after 

symptoms onset were treated earlier, it would avert an additional 58,482 (45,066-74,997) 

cases and 502 (353-752) hospitalizations annually (Figure 2 A and B) in Texas, 

81,472 (66,527-100,836) cases and 743 (579-998) hospitalizations in California (Figure 2 C 

and D), 6,303 (5,662-9,144) case and 57 (50-90) hospitalizations in Connecticut (Figure 

supplementary S3 E and F), and 16,380 (13,995-18,386) cases and 140 (117-161) 

hospitalizations in Virginia (Figure supplementary S3 G and H) . If all patients were treated 

within 48 hours of symptoms onset, it would avert an additional 65,210 (50,206-83,713) 

cases and 543 (382-811) hospitalizations annually in Texas, 90,842 (74,126-112,531) cases 

and 805 (627-1,080) hospitalizations in California, 7,012 (6,297-10,187) cases and 62 (54-98) 

hospitalizations in Connecticut, and 18,230 (15,567-20,471) cases and 152 (127 - 175) 

hospitalizations in Virginia (Figure 2 and figure supplementary S3).  

 

 

 

 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.28.20163741doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.28.20163741


11 
 

  

  

Figure 2. Model projection of additional influenza cases and hospitalizations averted annually in California 

and Texas by increasing the number of high-risk patients who initiate treatment within 48 hours of symptoms 

onset. Here, a proportion of high-risk patients who initiated antiviral treatment more than 48 hours after 

symptoms onset was assumed to receive treatment earlier. (A, C) Total number of infection cases averted. (B, 

D) Total number of hospitalizations averted. 

 

We also evaluated the benefit of increasing antiviral treatment coverage among high-risk 

individuals. Increasing early treatment coverage among individuals at high risk has a 

substantial benefit in terms of averting both cases and hospitalizations (Figure 3 and figure 

supplementary S4). For example, if 20% of high-risk individuals infected with influenza were 

treated within 48 hours of symptoms onset, it would avert, on average, 115,641 influenza 

cases annually in Texas, 160,645 cases in California, 12,571 cases in Connecticut, and 32,494 

cases in Virginia. In addition to cases averted, this increase in treatment coverage would 

avert, on average, 1,068 hospitalizations annually in Texas, 1,587 hospitalizations in 

California, 121 hospitalizations in Connecticut, and 295 hospitalizations in Virginia. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted July 30, 2020. ; https://doi.org/10.1101/2020.07.28.20163741doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.28.20163741


12 
 

Given that the benefit of treatment depends on the underlying vaccination coverage within 

the population, we also examined how variation in vaccination coverage affects the benefit of 

treating high-risk individuals. We found that increasing effective vaccination coverage would 

decrease both influenza burden and the benefit of treatment (Figure 3). Nevertheless, for a 

20% increase in influenza effective vaccination coverage among all age groups, our results 

suggest that the benefit of treatment remains substantial (Figure 3). For example, treating 

20% of infected high-risk individuals within 48 hours of symptoms onset would avert 65,018 

cases and 519 hospitalizations in Texas (Figure 3 A and C). In California, it would avert 

87,243 cases and 766 hospitalizations (Figure 3 B and D). In Connecticut, it would avert 

4,621 cases and 40 hospitalizations, and in Virginia it would avert 12,347 cases and 100 

hospitalizations (Figure supplementary S4).  

  

  

Figure 3. Model projections of influenza cases and hospitalizations averted in California and Texas by 

increasing the portion of treated high-risk individuals who seek care and receive treatment within 48 hours of 

symptoms onset. For the sensitivity analysis, we increased and decreased the vaccination coverage by 10 and 

20 percent. (A, C) Total number of cases averted. (B, D) Total number of hospitalizations averted. 
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To estimate the benefits of a policy that targets specific age groups for early treatment, we 

evaluated the effectiveness of age-targeted treatment strategies for averting influenza cases 

and influenza-induced hospitalizations (Figure 4 and figure supplementary S5). We found 

that treatment of the elderly (>65 years old) has the highest impact on reducing 

hospitalizations (Figure 4 B and D). This result was driven mainly by the fact that this age 

group has the highest risk for influenza complications, which leads to a higher rate of 

hospitalization. The highest impact on reducing transmission was achieved by targeting high-

risk individuals aged 5-19 years old. For example, in Texas, early treatment of the 5-19 years 

old age group will avert 2.31 cases per treatment, and early treatment of the >65 years old age 

group will avert 0.04 hospitalizations per treatment.  

 
 

  

Figure 4. Model projections of influenza cases and hospitalizations averted per treatment by treating each age group 

within 48 hours of symptoms onset in California and Texas. (A, C) Number of cases averted per treatment for each 

age group stratified by age group. (B, D) Number of hospitalizations averted per treatment for each age group 

stratified by age group. 
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The yearly attack rate of influenza varies considerably between seasons. Thus, we explored 

the benefit of treating high-risk patients under different attack rates and effective vaccination 

coverage. We found that the benefit conferred by treatment decreases with increasing attack 

rate and increases with increasing effective vaccination coverage (Figure 5 and figure 

supplementary S6). With a medium attack rate of 12.03% and 11.86% effective vaccination 

coverage, which is 60% from the yearly mean effective vaccination coverage, 0.69-0.78 cases 

are averted per treatment in California. With an attack rate of 5.70% and the same effective 

vaccination coverage, 0.96-1.11 cases are averted per treatment. For the same transmission 

settings in Texas, for a yearly attack rate of 15% and 12.11% effective vaccination coverage, 

0.49-0.55 cases are averted per treatment. With an attack rate of 2.81% and the same 

effective vaccination coverage, 1.65-1.81 cases are averted per treatment. In Texas, the 

benefit conferred by treatment was found to decrease when the effective vaccination coverage 

exceeds 22.50% (Figure 5C). In all settings considered, the marginal benefit of treatment per 

dose was found to decrease with increasing treatment coverage and vaccination coverage 

(Figure 5). This saturation in the benefit of treatment is driven by the increased herd 

immunity resulting in a decrease in the indirect benefit of treatment. 
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Figure. 5. The mutual effect of attack rate and vaccination coverage in California and Texas on the number of 

cases averted per treatment for each treatment coverage among high-risk individuals infected with influenza. 

Infected high-risk individuals seek care and receive treatment within 48 hours of symptoms onset. (A, B) 

Median attack rate settings. (C, D) Low attack rate settings. (E, F) High attack rate settings. 

 

Discussion  

Our key finding shows that increasing the timeliness of treatment of high-risk patients, even 

without increasing the current treatment coverage, is highly effective in reducing morbidity 

and mortality associated with influenza at the population level. The reason behind this finding 

is that the viral load of influenza is the highest during the first three days from symptoms 

onset. Earlier treatment reduces the viral loads and thus has a pivotal nonlinear effect of 

reducing transmission. 
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Interventions that could improve the timeliness of high-risk patients seeking care and their 

access to timely antiviral prescriptions and potentially reduce influenza-associated morbidity 

and mortality are urgently needed. These interventions could include education of high-risk 

patients, education of physicians about the benefits of early antiviral treatment among high-

risk patients, and innovative tools to enhance early detection of influenza infection and 

treatment. These tools include providing phone consultations or remote electronic visits 

(virtual visits).  

 

Vaccination remains the main tool for controlling seasonal influenza. However, vaccine 

efficacy varies widely between influenza seasons, and vaccination coverage remains 

suboptimal (“CDC Seasonal Flu Vaccine Effectiveness Studies | CDC,” n.d.; Doyle et al., 

2019). Our study shows that the benefit of treating early and increasing the treatment 

coverage is substantial, regardless of vaccine efficacy and coverage. Counterintuitively, we 

found that the higher the effective vaccine coverage is, the higher the marginal outcome of 

treatment. This phenomenon is driven by the fact that high effective vaccination coverage 

results in low disease transmission, which in turn increases the indirect benefit of treatment. 

This finding emphasizes the importance of antiviral treatment as a complementary effort to 

vaccination.  

 

Despite the effectiveness of antivirals in reducing influenza-related morbidity and mortality, 

the emergence of drug resistance poses a critical limitation on their application. Therefore, 

parsimonious use of antivirals is needed to mitigate the emergence of influenza antiviral-

resistant strains. Studies have suggested that to reduce the risk of antiviral overuse while 

maximizing their use to mitigate the burden of influenza, low-risk patients should be tested 

before treatment with antivirals and high-risk patients with clinically diagnosed influenza 
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infection should receive prompt treatment pending results of a laboratory-confirmed test 

(Sintchenko et al., 2002). Our study shows that increasing the timeliness of treatment without 

increasing the number of treated individuals would substantially increase the population-level 

benefit of antiviral treatment. For example, if the proportion of high-risk patients who receive 

treatment within the first 48 hours of symptoms onset were to increase from its baseline value 

of 8.1% to 14.85% (the total number of high-risk patients who receive treatment: both within 

and after 48 hours), it could avert an additional 65,210 (50,206-83,713) cases annually in 

Texas, 90,842 (74,126-112,531) cases in California, 7,012 (6,297-10,187) cases in 

Connecticut, and 18,230 (15,567-20,471) cases in Virginia. 

 

The ongoing coronavirus (COVID-19) pandemic has already put unprecedented strain on the 

health system of many countries. As the disease continues to unfold across the world, its 

impact on national health systems is yet to be fully understood. In the US, the possibility of 

COVID-19 transmission during the next influenza season is raising a substantial concern 

about the health system being overwhelmed by visits from both COVID-19 and influenza-

related complications among high-risk patients. The specter of this challenging scenario 

emphasizes the importance of the results of this study and the urgent need for increase 

influenza vaccine uptake and timeliness of antiviral treatment among high-risk patients in the 

US  

 

Our study includes several limitations that should be addressed by future studies. Although 

several studies have attempted to estimate the annual attack rate of influenza in the US 

(Jayasundara et al., 2014; Molinari et al., 2007; Tokars et al., 2018b), the state-level rates 

remain unknown. Therefore, we used the nationwide attack rate to normalize the state-

specific influenza cases. Moreover, we used nationwide data to estimate the treatment 
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coverage and timeliness for each state, as state-specific data are not available. Under these 

assumptions, our results were qualitatively similar across all states, with quantitative 

differences being driven by state-specific information on population size and demography, 

vaccination coverage, and influenza seasonality.  

In conclusion, increasing the timeliness and coverage of antiviral treatment among high-risk 

individuals has the potential to substantially reduce the burden of seasonal influenza in the 

US. Timely treatment not only reduces the risk of influenza-induced hospitalization for the 

treated individual but may also reduce disease transmission. Public health decision makers 

should invest continuous efforts to follow the CDC guidelines by treating influenza patients 

at high risk as soon as possible. 
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1. Model   

1.1. The model  

  

We developed a dynamic model for age-stratified Influenza infection progression and 

transmission in four states in the United States. Our model is a modified Susceptible-Exposed-

Infected-Recovered (SEIR) compartmental framework (Vynnycky and White, 2010), whereby 

the population is stratified into health-related compartments, and transitions between the 

compartments occurs over time (Main text, Figure 1). To model age-dependent transmission, 

we stratified the population into n = 5 age groups: 0–4 years, 5-19 years, 20-49 years, 50-64 

years, and ≥65 years. Consistent with immunological observations (“Antibodies Cross-

Reactive to Influenza A (H3N2) Variant Virus and Impact of 2010–11 Seasonal Influenza 

Vaccine on Cross-Reactive Antibodies — United States,” n.d.; Branch et al., 2012; Hancock 

et al., 2009; Mandelboim et al., 2014; Ranjeva et al., 2019; Sharabi et al., 2016), we assumed 

age-dependent susceptible reduction due to preexisting serum influenza neutralizing 

antibodies from previous exposure which reduce susceptibility to infection. Consistent with 

previous models (Medlock and Galvani, 2009; Ndeffo Mbah et al., 2013; Yamin et al., 2014), 

we assumed that upon recovery individuals are fully protected for the entire season. This 

assumption is also supported by prospective studies demonstrating that reinfection in the same 

season is rare, yet possible (Möst et al., 2019; Möst and Weiss, 2016).  

Accordingly, we stratified the population into four health-related compartments: 

susceptible 𝑆𝑗,𝑘(𝑡), symptomatic infectious 𝐼𝑗,𝑘(𝑡), asymptomatic infectious  𝐴𝑗,𝑘(𝑡), and 

recovered  𝑅𝑗,𝑘(𝑡), such that at any given time t (in days):  

 ∑ ∑[𝑆𝑗,𝑘(𝑡) +  𝐼𝑗,𝑘(𝑡) +   𝐴𝑗,𝑘(𝑡) +  𝑅𝑗,𝑘(𝑡)]

𝑘

𝑛

𝑗=1

=  ∑ ∑ 𝑁𝑗,𝑘

𝑘

𝑛

𝑗=1

 = 1. (1) 

 

where the index 𝑗 ∈  {1,2, . . . , 𝑛} represents the age-group of each individual, and the index 

𝑘 ∈  {𝐿, 𝐻} specifies the risk-group of each individual (i.e. High-risk, or low-risk).  
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1.2. Model transitioning  

Before the beginning of each influenza season, individuals start from susceptible compartment 

𝑆𝑗,𝑘(0). Individuals who are immune, due to preexisting serum influenza neutralizing 

antibodies from previous exposure (proportion of 𝜉𝑗 of each age-group), are not included in 

the susceptible compartment. Thus, they are transitioned to the recovered compartment 𝑅𝑗,𝑘(0) 

according to their age-group and risk-group. Susceptible individuals can get vaccinated with 

vaccination coverage 𝑣𝑗,𝑘 with the efficacy of the vaccine 𝜂.  Individuals who are effectively 

vaccinated transitioned to the 𝑅𝑗,𝑘(0) compartment, where they are fully protected for the 

entire season. Susceptible individuals can become infected with a force of infection 𝜆𝑗(𝑡), 

depending on their age group j. Infectious individuals can be asymptomatic with the 

probability of 𝑓 and symptomatic with probability of (1 − 𝑓). Infected individuals remain in 

the infectious compartments 𝐼𝑗,𝑘(𝑡), 𝐴𝑗,𝑘(𝑡)  for 𝜑 days and can infect their contacts based on 

their daily viral load and daily contact behavior (SI Appendix 2.1 Data set and parameters). 

After infectious period, individuals’ transition into the recovered compartment 𝑅𝑗,𝑘(𝑡), and 

remain recovered until the end of the season. In the case of asymptomatic infection or treated 

high-risk, contact mixing is unaffected, but transmission is lower than during symptomatic 

infection due to a lower viral load (SI Appendix, 2.1 Data set and parameters).   

 

To incorporate the evolution of infectiousness during infection, we explicitly track the number 

of symptomatic and asymptomatic infected individuals (𝑖𝑗,𝑘
𝜏 , 𝑎𝑗,𝑘

𝜏 ), respectively, with regard to 

their day of infection, 𝜏. Hence, 𝐼𝑗,𝑘 =  ∑ 𝑖𝑗,𝑘
𝜏𝜑

𝜏=0  and 𝐴𝑗,𝑘 =  ∑ 𝑎𝑗,𝑘
𝜏𝜑

𝜏=0  . Thus, the transmission 

model is composed of the following system of difference equations:   

 

 

𝑆𝑗,𝑘(𝑡) = 𝑆𝑗,𝑘(𝑡 − 1) − 𝜆𝑗(𝑡) ∙ 𝑆𝑗,𝑘(𝑡 − 1), 

𝑅𝑗,𝑘(𝑡) =  𝑅𝑗,𝑘(𝑡 − 1) +  𝑖𝑗,𝑘
𝜏=𝜑(𝑡 − 1) + 𝑎𝑗,𝑘

𝜏=𝜑(𝑡 − 1). 

(2) 

with daily numbers of infected individuals: 

 

𝑖𝑗,𝑘
𝜏=0(𝑡) = (1 − 𝑓) ∙ 𝜆𝑗(𝑡) ∙ 𝑆𝑗,𝑘(𝑡 − 1), 

𝑖𝑗,𝑘
𝜏≠0(𝑡) = 𝑖𝑗,𝑘

𝜏−1(𝑡 − 1). 
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𝑎𝑗,𝑘
𝜏=0(𝑡) = 𝑓 ∙ 𝜆𝑗(𝑡) ∙ 𝑆𝑗,𝑘(𝑡 − 1), 

𝑎𝑗,𝑘
𝜏≠0(𝑡) = 𝑎𝑗,𝑘

𝜏−1(𝑡 − 1). 

With initial conditions: 

𝑆(𝑗,𝑘)(0) =  (1 − 𝜉𝑗) ∙ (1 − 𝜂𝑣𝑗,𝑘 )𝑁𝑗,𝑘 , 

𝑅𝑗,𝑘(0) =  𝜉𝑗 ∙ 𝑁𝑗,𝑘 + (1 − 𝜉𝑗) ∙ 𝜂𝑣𝑗,𝑘 ∙ 𝑁𝑗,𝑘, 

𝑖𝑗,𝑘
𝜏 (0) =  𝑎𝑗,𝑘

𝜏 (0) = 0. 

 

1.3. Force of infection 

The rate at which individuals transmit Influenza at time t is 𝜆𝑗(𝑡). This rate depends on the 

combination of 1) age-specific contact rates between an infected individual and his or her 

contacts, 2) infectiousness of the infected individual based on his or her daily viral loads, and 

3) age-specific susceptibility to infection. In the US, influenza incidence is seasonal, with a 

peak typically striking in the winter, yet the driver for this seasonality remains 

uncertain(Lipsitch and Viboud, 2009). Thus, we included general seasonal variation in the 

susceptibility rate of the model as 

 𝑇(𝑡) = 1 + cos (
2𝜋(𝑡 − 𝜙)

365
). (3) 

The seasonal offset 𝜙 will be calibrated, for each season separately, in order to fit the influenza 

case data. We set the boundaries of the search between the fourth week and the twenty-seventh 

week of the season (according to the data). This formulation was previously shown to 

accurately capture the seasonal variation in the incidence of respiratory diseases by US state 

(Pitzer et al., 2015; Yamin et al., 2016).  

 

We incorporate age-specific contact patterns between individuals, represented by contact rate 

between an infected individual in age-group 𝑒 and each of their contacts with susceptible in 

age-group 𝑗, denote by 𝐶𝑒,𝑗. i.e. the contact matrix 𝐶 will be detailed in the next section.  

 

For high-risk individuals from age-group 𝑗, we parameterize the timing of the antiviral 

treatment uptake (see SI Appendix 2.1 Data set and parameters). For each day during the 
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exposed and infection periods  (𝜏), we incorporate the proportion of untreated high-risk 

individuals 𝑃𝑗,𝒯=0
𝜏 , the proportion of high-risk individuals who got treated on the second day 

since symptoms onset 𝑃𝑗,𝒯=2
𝜏 , and the proportion of high-risk individuals who got treated on 

the third day since symptoms onset 𝑃𝑗,𝒯=3
𝜏 . high-risk individuals who got treated after the third 

day since symptoms onset are considered as treated ineffectively, with treatment having no 

impact on disease progression and severity (Aoki et al., 2003; Heinonen et al., 2010; “Use of 

Antivirals | CDC,” n.d.). Therefore, we include them in 𝑃𝑗,𝒯=0
𝜏 .  

 

Given a contact with an infected host, the logarithm of the infectious viral load has been shown 

to be correlated with the transmissibility of several respiratory viruses(Couch et al., 1969; 

Tellier, 2009). The logarithm of the viral load depends on the risk-group of the infected 

individual 𝑘 ∈ {𝐻, 𝐿}, the timing of the antiviral treatment for the high-risk individuals 𝒯, the 

day of infection 𝜏 which includes the exposed and infection periods, and on the type of 

infection. (see SI Appendix 2.1 Data set and parameters). In addition, we consider the age-

specific susceptibility rate of and individual 𝛽𝑗, was parametrized by calibrating our model 

with weekly influenza records (See Section 2.2. calibrated parameters). Taken together, the 

force of infection 𝜆𝑗(𝑡) is given by: 

 

𝜆𝑗(𝑡) =  𝛽𝑗 ∙ 𝑇(𝑡)

∙ (∑ 𝐶𝑒,𝑗

5

𝑒=1

(∑ ∑ log(𝑉𝐿(𝐻, 𝜏, 𝒯, 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐)) ∙ 𝑃𝑒,𝒯
𝜏

𝒯∈{0,2,3}

𝜑

𝜏=0

∙ 𝑖𝑒,𝐻
𝜏 (𝑡 − 1)

+ ∑ log(𝑉𝐿(𝐿, 𝜏, 𝒯 = 0, 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐)) ∙ 𝑖𝑒,𝐿
𝜏 (𝑡 − 1)

𝜑

𝜏=0

+ ∑ ∑ log(𝑉𝐿(𝑘, 𝜏, 𝒯 = 0, 𝑎𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑎𝑡𝑖𝑐))

𝜑

𝜏=0𝑘∈{𝐻,𝐿}

∙ 𝑎𝑒,𝑘
𝜏 (𝑡 − 1). 

(4) 

 

2. Data set and parameters  

2.1. Fixed parameters    

Contact mixing 
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We parameterized the age-specific contact rates between an infected individual 𝑒 and their 

contact 𝑗, 𝐶𝑒,𝑗 based on the contact matrix parameterized by a previous study(Yamin et al., 

2016). We adjusted the contact mixing matrix to our model age-groups. For age-groups, 5 −

19𝑦, 20 − 49𝑦 we analyzed the data used to build the contact matrix using the same methods 

described in that study. This contact data exhibits frequent mixing between similar age-groups, 

moderate mixing between children and adults in their thirties (likely their parents), and 

infrequent mixing between other groups. 

 

Table S1. Age-specific rates 𝐶𝑒,𝑗 between an infected individual 𝑒 and their contact 𝑗. 

 

 

 

 

Viral load 

Using recent prospective studies of the course of Influenza infections in young children and 

adults, we estimated the viral load for asymptomatic, symptomatic high- and low-risk and 

treated high-risk who got treated on the first three days since symptoms onset (Ip et al., 2017; 

Lee et al., 2013). 

Viral load for asymptomatic estimated using the results of a prospective study that tracked 

after households in Hong Kong with an influenza confirmed patient (Ip et al., 2017). To 

estimate the viral load for the asymptomatic infected individuals, we smoothed the data of 

paucisymptomatic. 
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For symptomatic high- and low-risk and treated high-risk who got treated on the first three 

days from symptoms onset, we estimated the viral load using the data of a prospective study 

monitored patients with laboratory-confirmed influenza who admitted to the medical 

department of the Prince of Whales Hospital(Lee et al., 2013). Day zero and days eight to 

fourteen since symptoms was estimated by fitting an exponential curve to the data. To estimate 

the viral load during the exposure period we scaled the data using the data of asymptomatic. 

For treated high-risk, the viral load prior to initiating treatment was set to be the same as for 

not treated high-risk individuals (Figure S1). 

 

Figure S1. Daily log viral load following influenza infection for asymptomatic, symptomatic high 

and low-risk and treated high risk who got treated on the first three days since symptoms onset. 

 

Hospitalizations  

The number of hospitalizations for each age- and risk-group was calculated by multiplying the 

number of symptomatic infected individuals by the probability of hospitalization given 

influenza infection (See Table S3). Using data from epidemiological study, we calculated the 

fraction of symptomatically infected individuals that will be hospitalized based on the ratio 

between hospitalizations and infection cases stratified by age (Rolfes et al., 2018). For age-

groups 5 − 19𝑦, 20 − 49y, 50 − 64y, ≥ 65𝑦, the proportion of hospitalizations related to each 

risk-group estimated based on the ratio between hospitalizations of high-risk and low-risk as 

suggested by previous epidemiological study(Mullooly et al., 2007). For age-group 0 − 4𝑦 a  

previous retrospective study suggests that 37% of hospitalizations related to high-risk children 
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(Ampofo et al., 2006). These data are consistent with the US Influenza hospitalization 

surveillance network data (Chaves et al., 2015). 

Infected high-risk individuals who treated within three days from symptoms onset have a lower 

probability to be hospitalized (Kaiser et al., 2003; Piedra et al., 2009). For individuals who 

younger than 19 years old, we reduced the probability of hospitalization given an infection by 

75%(Piedra et al., 2009). For adults (older than 19 years old) we reduced the probability by 

59%(Kaiser et al., 2003). 

 

 

 

Vaccinations coverage 

We estimated the vaccination coverage based on data obtained from Center for  Disease 

Control and Prevention (CDC) (“2010-11 through 2018-19 Influenza Seasons Vaccination 

Coverage Trend Report | FluVaxView | Seasonal Influenza (Flu) | CDC,” n.d.). The data is 

stratified by state, age, season, and risk-group. To adjust the age stratification in the data to the 

age-groups used in our model, we assumed uniform distribution for each age-group in the data. 

For age-groups without risk-group stratification we assumed equal vaccination coverage for 

both low- and high-risk individuals. 

We parametrize the vaccination coverage for each year at both national and state-level as 

observed from 2013-2018 (See Table S2). For the national coverage we used the median 

vaccination coverage for each year. As some of the states do not have data for season 2013-

14, we used the average coverage of seasons 2012-13,2014-15 as the coverage for season 

2013-14. In both levels, we used the mean coverage over the five seasons as our baseline. 

As mentioned in the equation (2), the vaccination coverage 𝑣𝑗,𝑘 is multiplied by the vaccination 

efficacy 𝜂 to calculate the effective vaccination coverage. 
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Table S2. Average Vaccination coverage (“2010-11 through 2018-19 Influenza Seasons Vaccination 

Coverage Trend Report | FluVaxView | Seasonal Influenza (Flu) | CDC,” n.d.). 

 

Treatment coverage 

Antiviral treatment is only provided to high-risk individuals that seek care in health clinics and 

hospitals. We assumed that following clinic or hospital visit and treatment prescription, it takes 

at least one day to a patient to initiate course of treatment. Therefore, the earliest treatment 

initiation time is two days from symptoms onset. Moreover, people who sought care on the 

third and fourth day since symptoms onset are considered as treated ineffectively, with 

treatment having no impact on disease progression and severity (Aoki et al., 2003; Heinonen 

et al., 2010; “Use of Antivirals | CDC,” n.d.) . Thus, we included them with the untreated 

individuals. 

Hence, the probability of infected high-risk to seek care and get treated effectively (getting 

treated within 3 days from symptoms onset) is given by equation (5): 

 

Pr(𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒𝑙𝑦) = Pr(𝑆𝑒𝑒𝑘𝑖𝑛𝑔 𝑐𝑎𝑟𝑒|𝑖𝑛𝑓𝑒𝑐𝑡𝑒𝑑 ℎ𝑖𝑔ℎ −

𝑟𝑖𝑠𝑘) ∙ Pr(𝑆𝑒𝑒𝑘𝑖𝑛𝑔 𝑐𝑎𝑟𝑒 ≤  2 𝑑𝑎𝑦𝑠 𝑓𝑟𝑜𝑚 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠 𝑜𝑛𝑠𝑒𝑡|𝑆𝑒𝑒𝑘𝑖𝑛𝑔 𝑐𝑎𝑟𝑒) ∙

Pr(𝑔𝑒𝑡𝑡𝑖𝑛𝑔 𝑡𝑟𝑒𝑎𝑡𝑒𝑑|𝑆𝑒𝑒𝑘𝑖𝑛𝑔 𝑐𝑎𝑟𝑒 ≤  2 𝑑𝑎𝑦𝑠 𝑓𝑟𝑜𝑚 𝑠𝑦𝑚𝑝𝑡𝑜𝑚𝑠 𝑜𝑛𝑠𝑒𝑡 𝑐𝑎𝑟𝑒).  

(5) 

 

The probability of seeking care given a high-risk infection stratified by age was calculated 

using data from an epidemiological study (Molinari et al., 2007) (See Table S3). 

Age-group 0-4 years 5-19 years 20-49 years 50-64 years ≥ 𝟔𝟓 years 

Risk-group high low high low high low high low high low 

US 70.08% 70.08% 55.92% 55.92% 45.90% 33.99% 45.90% 33.99% 64.56% 64.56% 

California 71.26% 71.26% 57.44% 57.44% 44.45% 32.20% 44.45% 32.20% 63.14% 63.14% 

Connecticut 85.60% 85.60% 64.97% 64.97% 52.02% 37.62% 52.02% 37.62% 66.80% 66.80% 

Virginia 75.58% 75.58% 59.10% 59.10% 48.54% 39.92% 48.54% 39.92% 67.72% 67.72% 

Texas 71.60% 71.60% 57.87% 57.87% 45.38% 31.60% 45.38% 31.60% 63.10% 63.10 
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Using data from recent large scale studies on the time to seek for care and antiviral prescription 

among laboratory-confirmed high-risk influenza patients in the US (Biggerstaff et al., 2014; 

Stewart et al., 2018), we estimated the probability of seeking care withing two days from 

symptoms onset given an infected high-risk who sought for care and the probability of getting 

treated given an infected high-risk who sought for care withing two days since symptoms 

onset. Those studies provided age-stratified data on the proportion of treated individuals who 

sought care during the first two days, 3 to 7 days, and   7 days since symptoms onset. 

Further to our assumptions, we assumed high-risk individuals who sought care during the first 

two days since symptoms onset, have equal probability of treatment initiation time on the 

second and third day since symptoms onset. High-risk patients treated effectively are 

accounted for 54.5% of the treated high-risk patients (Biggerstaff et al., 2014).  

 

Table S3: Fixed parameters used in the transmission model.  

Parameter Description Value Justification 

𝜉𝑗 Proportion of individuals in age-group 𝑗 who are 

immune due to preexisting serum influenza 

neutralizing antibodies from previous exposure. 

0-4: 0 

5-19: 0.2 

20-49: 0.3 

50-64: 0.25 

65+: 0.25 

(Mandelboim et al., 2014) 

(Branch et al., 2012) 

(“Antibodies Cross-

Reactive to Influenza A 

(H3N2) Variant Virus and 

Impact of 2010–11 

Seasonal Influenza 

Vaccine on Cross-Reactive 

Antibodies — United 

States,” n.d.) 

(Hancock et al., 2009) 

(Sharabi et al., 2016) 

𝑁𝑗,𝑘 Population size of risk-group k age-group 𝑗. Varies 

between 

states 

(Molinari et al., 2007) 

(“Population Distribution 

by Age | The Henry J. 
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Kaiser Family 

Foundation,” n.d.) 

𝜂 Influenza vaccination efficacy. 0.45 (“CDC Seasonal Flu 

Vaccine Effectiveness 

Studies | CDC,” n.d.) 

(Doyle et al., 2019) 

ℎ𝑗,𝑘 Probability of hospitalization given an infected 

individual in age-group 𝑗 and risk-group 𝑘. 

k=L 

0-4: 0.0043 

5-19: 

0.0003 

20-49: 

0.00062 

50-64: 

0.0014 

65+: 

0.0235 

k=H 

0-4: 0.0025 

5-19: 

0.0024 

20-49: 

0.005 

50-64: 

0.0095 

65+: 0.07 

(Rolfes et al., 2018) 

(Mullooly et al., 2007) 

(Ampofo et al., 2006) 

(Chaves et al., 2015) 

𝑓 Probability of becoming asymptomatic given an 

infection. 

0.191 (Leung et al., n.d.) 
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(Furuya-Kanamori et al., 

2016) 

𝜑 Length of Infection since exposure. 14 days (Bell et al., 2006) 

𝑃𝑗,𝒯
𝜏  Proportion of treated high-risk in age-group 𝑗 on 

day 𝜏 , initiate treatment on day 𝒯 ∈ {0,2,3} from 

symptoms onset. 𝒯 = 0 means either no 

treatment provided or treatment ineffectively.  

𝜏 ≥ 2 

𝒯 = 2 𝑜𝑟 3 

0-4: 0.086 

5-19: 0.054 

20-49: 

0.095 

50-64: 

0.074 

65+: 0.063 

(Molinari et al., 2007) 

(Biggerstaff et al., 2014) 

(Stewart et al., 2018) 

𝐶𝑒,𝑗 contact rate between an infected individual in 

age-group 𝑒 and each of their contacts with 

susceptible in age-group 𝑗. 

 (Yamin et al., 2016) 

VL (k,𝜏,𝒯, 

asymptomatic

/symptomatic) 

Viral load of infected individuals in risk-group 

𝑘, on day of infection 𝜏 given treatment initiation 

day and symptomatic or asymptomatic illness. 

 (Ip et al., 2017) 

(Lee et al., 2013) 

 

    

2.2. Calibrated parameters  

  

Influenza cases data and case definition 

To estimate empirically unknown epidemiological parameters, we calibrated our model to the 

weekly number of influenza incidence according to the CDC data. We obtained the weekly ILI 

cases for each state and season. We also obtained the weekly proportion of positive specimen 

to influenza (confirmed by viral isolation, antigen detection, or PCR). These data were 

collected by the CDC’s National Respiratory and Enteric Virus Surveillance System and state 

health departments during 2014 to 2019 (“FluView Interactive | CDC,” n.d.). To account for 
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the influenza cases, we multiply the weekly ILI cases by the proportion of positive specimens 

to influenza. Moreover, to derive the weekly cases for each age-group, we assumed that the 

proportion of weekly cases for each age-group is the same as the state’s population age 

structure. The age-group distribution for each state was obtained from the Henry J. Kaiser 

Foundation’s database (“Population Distribution by Age | The Henry J. Kaiser Family 

Foundation,” n.d.). 

To account for unreported cases, the influenza weekly cases data described above was adjusted 

to fit the median attack rate of the age-group according to Yamin et. al (Yamin et al., 2016). 

We used data from a recent meta-analysis study, of seasonal influenza in the US between 2011-

2016, to obtain the median annual attack rate per age-group (Tokars et al., 2018). To derive the 

influenza weekly incidence, we divided the weekly influenza cases by the mean of the seasonal 

cases such that the yearly average attack rate is equal to the median attack rate.  

 

Calibration 

To calibrate the model to the incidence data we minimized the squared error between model 

predictions and incidence data. This is equivalent to maximum likelihood estimation assuming 

a normal distribution of the error. We conducted this calibration for each of the five seasons 

(2014-2019) separately. For the calibration, we assumed the median US vaccination coverage 

by age to account for the variation in attack rates due to vaccination uptake. Also, we assumed 

the same susceptibility rate for both low- and high-risk in each age-group.  

 

The final transmission model (Main text Figure 1A) included five parameters to be estimated 

through model calibration: seasonal offset 𝜙; seasonal susceptibility rate 𝛽𝑗 for age-group 𝑗: 0-

4y, 5-49y, 50-64y, 65y. 

 

 

 

 

 

 

Table S4. Calibrated parameters.  
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State Season 

Seasonal 

offset 

𝝓 

Susceptibility 

among age-

group 0-4y 

𝜷𝟎−𝟒 

Susceptibility 

among age-

group 5-49y 

𝜷𝟓−𝟒𝟗 

Susceptibility 

among age-

group 50-64y 

𝜷𝟓𝟎−𝟔𝟒 

Susceptibility 

among age-

group 65+y 

𝜷𝟔𝟓+ 

California 

2014-15 68.724 0.0032 0.0015 0.0031 0.0021 

2015-16 90.950 0.0031 0.0015 0.0030 0.0021 

2016-17 67.791 0.0028 0.0014 0.0028 0.0020 

2017-18 47.705 0.0031 0.0015 0.0030 0.0021 

2018-19 92.125 0.0028 0.0015 0.0029 0.0021 

Texas 

2014-15 44.683 0.0026 0.0015 0.0029 0.0021 

2015-16 97.567 0.0026 0.0015 0.0028 0.0022 

2016-17 87.091 0.0028 0.0015 0.0029 0.0021 

2017-18 73.079 0.0029 0.0016 0.0032 0.0022 

2018-19 88.573 0.0028 0.0015 0.0031 0.0022 

Connecticut 

2014-15 82.268 0.0031 0.0015 0.0029 0.0020 

2015-16 100.729 0.0032 0.0016 0.0029 0.0021 

2016-17 85.539 0.0032 0.0015 0.0029 0.0020 

2017-18 85.853 0.0036 0.0016 0.0031 0.0020 

2018-19 80.849 0.0032 0.0016 0.0030 0.0020 

Virginia 

2014-15 44.862 0.0032 0.0015 0.0029 0.0020 

2015-16 107.501 0.0031 0.0016 0.0030 0.0022 

2016-17 95.983 0.0032 0.0016 0.0031 0.0021 

2017-18 84.540 0.0035 0.0016 0.0032 0.0020 

2018-19 96.904 0.0032 0.0016 0.0031 0.0021 
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Figure S2. Model fit. Time series of recorded weekly influenza cases and model fit to Texas, California, 

Connecticut and Virginia (A, C, E & G). Data and model fit to the age distribution among influenza infections 

(B, D, F & H). 
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3. Model simulations 

Main text Figure 2 

 To evaluate the number of cases and hospitalizations averted by early treatment (within 48 

hours since symptoms onset. For conservative purposes, we assumed treating on the second 

day) of infected high-risk individuals who are currently receiving treatment on the third and 

more than three days after symptoms onset (Main Text, Figure 2), we ran the model for each 

of the five seasons with an increased proportion of the infected high-risk treated on the second 

day since symptoms onset. For each season, we ran the model using the average state’s 

vaccination coverage. The addition to the proportion of the infected high-risk treated on the 

second day was done by shifting first the individuals who treated ineffectively (more than 72 

hours since symptoms onset), followed by the individuals who treated on the third day.  

The number of additional cases and hospitalizations averted was computed as the average over 

the model projections of 5 seasons compared to the baseline case. For the range, we did the 

same analysis described above but we used the vaccination coverage of the season with the 

highest (lower bond) and the lowest (higher bond) vaccination coverage in the seasons between 

(2013 - 2018) for each state. 

 

Main text Figure 3 

We estimated the number of additional cases and hospitalizations averted due to increasing the 

treatment coverage of high-risk patients assuming that all receive treatment within 48 hours 

from symptoms onset. To assess the benefit in terms of cases and hospitalizations averted we 

ran the model with treatment coverage varying from 10%-30% for each season and state using 

the state’s average vaccination coverage. We also assumed that there are no infected high-risk 

individuals who getting treatment three days since symptoms onset.  For each fixed portion we 

compared the mean model projections to the baseline scenario.  

We also conducted a sensitivity analysis to examine the robustness of our results. In this 

analysis, we examined the effect of the vaccination coverage on the number of additional cases 

and hospitalizations averted by changing vaccination coverage for both model’s projections of 

the new treatment policy and the baseline treatment scenario. We increased and decrease the 

state’s mean vaccination coverage by 10%, 20%. 
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Main text Figure 4 

To estimate cases and hospitalizations averted per treatment for each age group we analyzed 

the scenario in which all the infected high-risk individuals in the examined age-group are 

seeking care and getting treatment within 48 hours since symptoms onset. For the rest of the 

age-groups we change the timeliness of initiating treatment to 48 hours since symptoms onset 

without changing the baseline treatment coverage. The number of additional cases and 

hospitalizations averted per treatment was computed by comparing the model’s projections of 

the new scenario with the baseline scenario, while considering the increase in the number of 

treated high-risk patients. 

Main text Figure 5 

We conducted a two-way sensitivity analysis to investigate the joint impact of seasonal attack 

rate and vaccination coverage in each state on the number of cases averted per treatment. We 

ran the model with varying proportion of infected high-risk who seeks care and gets treated 

within 48 hours from symptoms onset from 10%-30% while increasing and decreasing the 

state’s average vaccination coverage by 10%-40%. We conducted the analysis for median, 

high, and low seasonal attack rate for each state. The high and low attack rate were informed 

by the year with the lowest and the year with the highest attack rate for each state between 

2013-2018. 
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4. Additional results   

  

  

 

 

 

 

  

Figure S3.  Model projection of in influenza cases and hospitalizations averted in Texas, California, 

Connecticut, and Virginia if treating within 48 hours from symptoms onset, 0-100% of the high-risk individuals 

who were treated after 48 hours. (A, C, E & G) Total number of cases averted. (B, D, F & H) Total number of 

hospitalizations averted. 
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Figure S4. Model projections of influenza cases and hospitalizations averted in Texas, California, Connecticut, 

and Virginia by increasing the portion of treated high-risk individuals who seek care and get treated within 48 

hours from symptoms onset. (A, C, E & G) Total number of cases averted. (B, D, F & H) Total number of 

hospitalizations averted. 
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Figure S5. Model projections of influenza cases and hospitalizations averted per treatment, by treating each 

age-group 48 hours since symptoms onset in Texas, California, Connecticut and Virginia. (A, C, E & G) 

Number of cases averted per treatment for each age-group stratified by age-group. (B, D, F & H) Number of 

hospitalizations averted per treatment for each age-group stratified by age-group. 
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Figure S6. The mutual effect of attack rate and vaccination coverage, in Connecticut and Virginia, on the 

number of cases averted per treatment for each treatment coverage among high-risk individuals infected with 

influenza. Infected high-risk individuals seek care and get treatment within 48 hours from symptoms onset. (A, 

B) Median attack rate settings. (C, D) Low attack rate settings. (E, F) High attack rate settings. 
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