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Abstract 

 
Purpose 

Various social intervention strategies to mitigate COVID-19 are examined using a comprehensive agent-based 

simulation model. A case study is conducted using a large urban region, Miami-Dade County, Florida, USA. Results 

are intended to serve as a planning guide for public health decision makers. 

 

Methods 

The simulation model mimics daily social mixing behavior of the susceptible and infected generating the spread. Data 

representing demographics of the region, virus epidemiology, and social interventions shapes model behavior. Results 

include daily values of infected, reported, hospitalized, and dead. 

 

Results  

Study results show that stay-at-home order is quite effective in flattening and then reversing the case growth curve 

subsiding the pandemic with only 5.8% of the population infected. Whereas, following Florida’s current Phase II 

reopening plan could end the pandemic via herd immunity with 75% people infected. Use of surgical variety face 

masks reduced infected by 20%. A further reduction of 66% was achieved through contact tracing.  

 

Conclusions 

For Miami-Dade County, a strategy comprising mandatory use of face masks and aggressive contact tracing to identify 

50% of the asymptomatic and pre-symptomatic, if adopted now, can potentially steer the COVID-19 pandemic to 

subside within next 3 months with approximately one fifth of the population infected.   
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INTRODUCTION 

 

Emergence of the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) was first reported on 

December 31, 2019 in Wuhan, China and subsequently declared a global pandemic on March 11 by the World Health 

Organization (WHO) [1, 2]. As of July 22, 2020, the number of reported cases worldwide has reached over 14.9 

million causing 617,730 deaths. The number of infected cases continues to rise quite significantly [3]. The U.S. has 

been among the hardest hit by the coronavirus pandemic with nearly 4 million reported infections and 142,500 reported 

deaths (~23% of the total reported deaths worldwide) by July 22, 2020. However, as the new cases, hospital 

admissions, and deaths began to decline in mid-May, most States in the U.S. began phased lifting of their social 

intervention measures. For example, Florida adopted a three phased approach: Phase I (which began in May 18, 2020) 

allowed most business and workplaces to reopen with up to 50% of their building capacities and with large events 

constrained to 25%; Phase II began in June 5, 2020 and allowed all businesses to reopen for up to 50-75% of their 

capacities and also permitting events in large venues with no more than 50% of their capacities; Phase III will be akin 

to a complete reopening for which neither a date nor the criteria have been declared. As the reopening entered Phase 

II, Florida, along with many other states, began to see sharp increases in daily new infections (e.g., Florida reported 

over 15,000 new cases on July 11, 2020 along with a test positivity rate reaching over 15%).  

 

In this paper, we investigate a few ‘what-if’ scenarios including if the stay-at-home order were not lifted, if the Phase 

II order continues unaltered, what impact will the mandatory face mask usage have on the infections and deaths, and 

finally, how do the benefits of contact tracing vary with tracing target levels.  

 

METHODOLOGY 

 

Our research methodology involves development and use of a comprehensive agent-based (AB) simulation model for 

COVID-19. The model mimics hour by hour social mixing behavior at home, school, work, and community places 

for millions of people in a region of outbreak. The model uses detailed census reported demographics of age, 

household, workplaces, etc., virus epidemiology parameters, and the social interventions that are in place. The initial 

infected cases introduced to the simulation are those with travel histories to high risk regions/countries, and the mixing 

with these cases generates the community spread. The infected cases follow the SARS-CoV-2 disease natural history. 

The model output comprises the daily values of infected, reported, hospitalized, and dead. We calibrate the model 

using parameters that control the extent of virus sharing (transmission coefficient) and social mixing behavior in 

various phases of intervention orders. The model is validated by closely reproducing the numbers of reported cases 

and deaths in an urban region that is used as a case study; Miami-Dade County, Florida, USA with 2.8 million people. 

For a detailed description of the simulation model refer to the supplementary document. The supplementary document 

also includes our model calibration approach, validation results, and the Tables listing the data used in the simulation 

model.   

 

RESULTS 

We used our model to predict the rate of growth of infected cases, reported cases, hospitalizations, and deaths for the 

case study region under various social intervention scenarios. First, we allowed the model to mimic retrospectively 

the progress of the pandemic under three separate intervention scenarios for a large number of days. The scenarios 

are: stay-at-home order continued without reopening until pandemic subsides, Phase I of reopening continued without 

moving into Phase II, and Phase II of reopening continued without the use of face mask or any other changes. 

Thereafter, we conducted a prospective examination of the impact we are likely to see in coming days from the use of 

face masks and contact tracing.  A summary of some of our model results from the case study is presented in Table 1.  
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Interventions  

 

Outcomes 

 

If Stay-At-Home 

order were not lifted 

(started March 17, 

2020) 

If Phase I reopening 

continued (started 

May 18, 2020) 

If Phase II 

reopening continues 

without alterations 

(started June 5, 

2020) 

If Phase II 

reopening continues 

with mandatory use 

of face masks 

(started June 25, 

2020) 

If Phase II 

reopening continues 

with use of face 

masks and contact 

tracing with 50% 

target (starting June 

30, 2020) 

 

Time when 

pandemic 

subsides below a 

threshold 

Early Aug. 2020 July 2021 End-Oct. 2020 End-Nov. 2020 End-Sept.  2020 

Total number of 

infections  

(95% C.I.) 

162K 

(136K – 188K) 

600K 

(530K – 670K) 

2.17 million 

(2.16 million – 2.18 

million) 

1.74 million 

(1.73 million – 1.75 

million) 

581K 

(447K – 716K) 

Total number of 

reported cases 

(95% C.I.) 

 

23K 

(19K – 27K) 

220K 

(186K – 254K) 

866K 

(854K – 877K) 

714K 

(702K – 726K) 

247K 

(178K – 316K) 

Total number of 

hospitalizations 

(95% C.I.) 

 

4.1K 

(3.5K – 4.8K) 

37.5K 

(31.7K – 43.4K) 

149K 

(147K – 151K) 

120K 

(119K – 122K) 

35.2K 

(25.6K – 44.8K) 

Total number of 

deaths (95% C.I.) 

 

1K 

(0.9K – 1.2K) 

9.4K 

(7.9K – 10.8K) 

36.4K 

(35.8K – 36.9K) 

29.7K 

(29.3K – 30.2K) 

8.8K 

(6.5K – 11.1K) 

 

Table 1. Summary of the key results from the AB simulation model for a sample urban outbreak region (Miami-

Dade County of Florida, USA) with population of 2.8 million  

 

 

In what follows, we discuss results from our case study. Figures 1 and 2 show the simulation results for the 

retrospective examination scenarios with average values (with 95% CIs in shade) of daily cumulative cases of actual 

infected, reported, hospitalized, and dead. The blue dotted lines represent the actual numbers of infected and dead as 

reported in the Florida COVID-19 dashboard till June 24 (our calibration period was till June 17). Figure 1 shows a 

strong influence of continuing with the stay-at-home order in curbing the COVID-19 growth within approximately 6 

months from its inception with on average less than 5.8% of the population infected, 0.15% hospitalized, and 0.037% 

dead; 50 or below daily new infections was used as the criterion to consider that pandemic has subsided in Miami-

Dade County.   
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Figure 1. Growth of actual and reported infected cases (fig. a) and hospitalizations and deaths (fig. b) if stay-at-home 

order were not lifted  

 

Figure 2 shows the expected outcomes of continuing with the Phase I order and the Phase II order. Figure 2(a) 

demonstrates a clear upward swing of the number of infected by the end of May as a result of Phase I reopening, in 

contrast to stay-at-home scenario where the numbers actually begin to drop at the end of May. The upward trajectory 

continues for nearly 12 months after reopening before curving down and subsiding the pandemic in July 2021. This 

scenario would have resulted in on average about 21% of the population infected (see fig. a), 1.3% hospitalized, and 

0.34% dead (see fig. b). Figures 2(c) and 2(d) depict the rather grim outcome of continuing with Phase II order without 

face mask where over 75% of the population gets infected, 5.5% of the population hospitalized, and 1.3% dead. The 

steep multi-fold increase in the number of infected in late June after the Phase II opening in June 5 results in an end 

of the pandemic via herd immunity by late October 2020.  

 

Hereafter, we used our model in a prospective examination of the pandemic progression under Phase II with the use 

of face mask and contact tracing.  Mandatory use of face mask in work and community places where maintaining 

social distancing is not feasible was added to the Phase II guidelines starting June 25, 2020 in Miami-Dade County. 

In a recent article that analyzed data from the literature for SARS, MERS, and COVID-19 outbreaks, it is shown that 

adjusted odds ratio (aOR) of getting an infection after wearing surgical variety masks versus without wearing mask is 

0.33 on average [4]. This can be interpreted as the likelihood of getting infected if wearing a surgical mask is one third 

of what it would be if not wearing a mask. Hence, we considered a 67% reduction in the transmission coefficient (𝛽𝑝
𝑗
) 

used in calculating the force of infection (see equation (1) in supplementary document), assuming a 100% compliance 

in the use of surgical variety masks at work and community places. We also tested the impact of 30% and 45% 

reductions in the transmission coefficient value, which translate to approximately 50% and 70% compliance for face 

mask usage, respectively. The anticipated impact of face mask usage together with Phase II order on the average 

cumulative numbers of infected are shown in Figure 3(a). It also depicts the risk difference between the average values 

of cumulative infected without and with the use of face mask considering a 100% compliance. It may be noted that 

since the infections grow slower with the use of face mask, the cumulative risk difference rises to almost 875K in the 

middle of August and then settles down close to 430K when pandemic subsides by the end of November, 2020. Figure 

3(b) depicts the daily values of the average infected for Phase II without and with face mask for a 67% reduction in 

transmission coefficient (100% compliance). As expected, the peak of daily infection with face mask usage is shifted 

to a slightly later date and the downward trend begins after a smaller percentage (31%) of the total population being 

infected compared to 36% without the use of face mask. 
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Figure 2. Case study outcomes (average values with 95% C.I.) of continuing with Phase I reopening (fig. a and fig. b) 

and Phase II reopening without face mask and contact tracing (fig. c and fig. d)  

 

Though the use of mask with a 100% compliance together with the Phase II order is likely to reduce a large number 

of infections (an estimated 430K), this strategy still leaves a high percentage (63%) of total population infected before 

the pandemic subsides likely via reaching herd immunity. While a vaccine is still unavailable, it is likely that the only 

other way to reduce the size of this impacted population is to implement contact tracing. We used our model to examine 

a number of different contact tracing strategies by adding them to the scenario of Phase II with 100% face mask usage. 

We implemented contact tracing starting June 30 with a number of different targets (20%, 30%, 40%, and 50%) of 

identifying asymptomatic and pre-symptomatic cases. The impact on the average cumulative values of actual infected 

and the reported cases are shown in Figure 4(a). It can be observed that contact tracing can  
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Figure 3. (fig. a) Impact of face mask usage starting June 25 (together with Phase II order) on the average cumulative 

infected for all compliance levels; (fig. b) Impact of 100% compliance of mask usage on the average daily infected  

 

significantly reduce the number of people infected. With the 50% target for contact tracing (which is an aggressive 

goal), the average cumulative number of infected by the time the new infections fall below a threshold  (possibly by 

the end of September, 2020) would reduce to 581K from over 1.73 million with Phase II and face mask alone (a 66% 

reduction). The corresponding reductions in cumulative infections and the associated times for pandemic to subside 

that can be expected from contact tracing targets of 40%, 30%, and 20% are 58% (mid-October), 41% (mid-

November), and 14% (mid-December). It may also be noted that the impact of contact tracing target on the reduction 

of cumulative infected is nonlinear. Figure 4(b) shows the average cumulative numbers of hospitalizations and deaths. 

Expected reductions in hospitalization achieved from contact tracing targets of 50%, 40%, 30%, and 20% compared 

to the use of face mask alone (during Phase II) are 71%, 62%, 43%, and 14%, respectively. The corresponding 

expected reductions in the number of deaths are 70%, 62%, 43%, and 14%, respectively. 

   
Figure 4(c) shows the impact of contact tracing starting on June 30, 2020 on the average daily infected values. It is 

interesting to note from the figure that an aggressive contact tracing (with associated testing and isolation of those 

found infected) appears to be capable of quickly turning the tide on new infections. Various COVID-19 dashboards 

maintained by government and private agencies have been reporting data including numbers of infected (tested 

positive), hospitalized, and dead. But the actual numbers of infected people in the outbreak regions remain a subject 

of expert opinion. Speculations abound place the ratio of actual to reported numbers of infected to as high as 10. As 

our simulation model yields estimates of the actual number of infected, we calculated the daily values of the ratio of 

average actual infected to average reported for a few scenarios: Phase II continued, Phase II with 100% face mask 

usage, and Phase II with face mask and contact tracing with 30% target. Values of these ratios are shown in Figure 

4(d). It can be seen that in the initial days of the pandemic the ratios are very high (close to 30), which we believe is 

due to under testing together with long reporting delay. However, as the testing of the symptomatic increases and 

reporting delay decreases over time, the ratios come down sharply to 10 and continue to fall to near 7. The ratios 

further decreases gradually to about 2.5 as the daily new infections begin to fall in late July (see fig. 3b) and early 

August (see fig. 4c). As of mid-July, with surging numbers of daily new cases (see fig. 4c, Phase II with face mask), 

test reporting delay appears to have gone up to a week or more. We did not consider that in our simulation experiments. 

We note however that increased test reporting delay will reduce the beneficial impact of contact tracing.  
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Figure 4. Impact of contact tracing, starting on June 30, during Phase II with face mask usage with 100% 

compliance 

 

 

IV. DISCUSSION 

 

We have developed an agent-based simulation model for COVID-19 pandemic to serve as a policy evaluation tool for 

public health decision makers. Similar AB models have been presented to the literature for simulating anticipated 

avian influenza pandemic outbreaks [5-10], to cite a few. Our simulation model is written in C/C++ and implemented 

using GNU General Public License [11].  

 

Our model offers the flexibility to implement a variety of societal conditions including test availability, test reporting 

delay, stay-at-home order, partial reopening, selective closures of schools and workplaces when infections reappear, 

use of face mask with various levels of compliance, contact tracing, vaccinations, and use of antivirals. Only a subset 

of these conditions have been examined and reported in this paper. As we were completing this manuscript, the Miami-

Dade County has been reporting high numbers of new cases in the first half of July, 2020, as high as 3.5K per day. As 

shown in Figure 5, the results from our model (calibrated until June 17) appear to be tracking the case surge quite 

well.  

 

The models used to predict COVID-19 outcomes so far have mostly been based either on observed data (e.g., [12-15]) 

or compartmental models like SEIR (susceptible, exposed, infected, and recovered) or their variants (e.g. [16-20]). 

Agent-based simulation models for COVID-19 can be found in [21, 22]. Observation data driven models are very well 

suited for understanding the past progression of a pandemic and also for estimating parameters characterizing virus 

epidemiology. However, data driven models offer limited prediction ability for the future especially in situations where 
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the conditions on the ground (e.g., testing and treatment ability, social interventions, people’s behavior and response) 

change. SEIR type compartmental models guided by differential equations have been most widely used for 

communicable diseases, some early examples are [23-25]. Compartmental models are aggregate in nature and assume 

uniform behavior of the population over time. Hence, these models also do not adapt well to changing pace of disease 

transmission. An agent-based modeling approach is more suitable for a detailed consideration of individual attributes, 

specific disease natural history, and complex societal interventions [9].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5: Simulation results track the surge in reported cases in July, 2020 

 

 

Our agent-based model has several limitations. First and foremost, the simulation model is an abstraction of how a 

pandemic impacts a large and complex society. Though our model deliberately introduces some variabilities, 

somewhat pre-defined daily schedules are used to approximate a highly dynamic contact process of a urban region.  

Also, the contact process does not account for significant variabilities in the types and lengths of interactions even 

within each mixing groups. We did not assign geographic locations (latitude and longitude) for households, businesses, 

schools, and community places, and assumed them to be uniformly distributed over the region. It is common for urban 

population centers and associated facilities to grow in clusters, for which the contact patterns are different from those 

in dispersed regions. We did not consider special events like parties, games, and street protests, some of which is 

known to have caused superspreading of the virus and case increases. Finally, and perhaps most importantly, the 

model uses a large number of parameters (listed in Tables 1 through 11 in supplementary document) and hence the 

model predictions are influenced by the choice of those values. We have used published data from the government 

archives and research literature for most parameters. In absence of established data source, we have used expert 

opinion and media reports. The model results, as presented in this paper, are only expected outcomes based on 

currently available information.  

 

Each scenario of our case study with 10 replicates (with different seeds) takes approximately 8-12 hours to run in a 

standard desktop computer with Intel Core i7 with 16GB memory. In the interest of presenting out observations 

quickly to the public health decision makers, while COVID-19 is still rampant in the region, we chose to use a limited 

number (10) of replicates. As the main purpose of this paper is to conduct a broad what-if analysis, we do not believe 

that use of a small number of replicates has negatively influenced our observations.  The trends and observations 

derived from our results are intended to be used for planning and guidance of public health decision makers.    
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