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A machine learning explanation of the pathogen-immune relationship of SARS-CoV-2 (COVID-19) 

and models of prognostic biomarkers to predict asymptomatic infections 

Eric Luellen, MSc, MPH 

Abstract 

Asymptomatic people infected during the SARS-CoV-2 (COVID-19) pandemic have outnumbered symptomatic 

people by an approximate ratio of 4:1 with little understanding to date as to why; therefore, they have been 

impossible to identify in advance. Moreover, studies indicate that most asymptomatic virus-positive patients are 

infectious, thereby creating a new public health danger via a plethora of “silent spreaders.” This data science study 

identified four novel discoveries that may significantly impact our understanding of the pathogen-immune 

relationship: (1) Spearman rho correlation coefficients and associated P-values identified 34 of 53 common immune 

factors have statistically significant associations with SARS-CoV-2 morbidity, their direction (+/-) and strength to 

inform research and therapies; (2) five machine learning algorithms were applied to 74 observations of these 33 

immunological variables and identified three models of prognostic biomarkers that can classify and predict who will 

be asymptomatic or symptomatic if infected with 94.8% to 100% accuracy; (3) a random forest of 200 decision trees 

ordinally ranked the 33 statistically significant independent predictor variables by their relative importance in 

predicting SARS-CoV-2 symptoms; and, (4) three different decision-tree algorithms separately identified and 

validated three immunological biomarkers and  levels that nearly always differentiate asymptomatic patients – 

SCGF-β (> 127637), IL-16 (> 45), and M-CSF (> 57). The first potentially important implication of these findings is 

they suggest that SCGF-β could be a viable biomarker for prognoses, screenings, and triaging people exposed to 

SARS-CoV-2, which could be a valuable tool at the point-of-care for managing and preventing outbreaks. It may be 

able to predict who will get sick or not, and who has a probability of living or dying. A second potentially important 

implication is the results suggest SCGF-β may be a viable therapeutic for SARS-Cov-2. 
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Introduction 

This section discusses what was known and unknown 

on this topic, and the resulting hypothesis. This 

introduction also puts the importance of these 

findings and the use of machine learning modeling 

into context. 

Asymptomatic patients who are infected with the 

SARS-CoV-2 virus have neither clinical symptoms 

nor abnormal chest imaging. However, asymptomatic 

patients have the same infectivity as infected patients 

with symptoms (Gao, 2020). Moreover, adult 

asymptomatic patients have been found to have the 

same viral loads as symptomatic patients (Zou, 

2020). Studies have shown that age appears to 

influence whether an infected person is susceptible to 

illness. Those under the age of 20 years have 

approximately half the morbidity probability as those 

over the age of 20 (Davies, 2020). This improbability 

of becoming ill from the SARS-CoV-2 virus is 

especially interesting because young children have 

been found to have 10 to 100 times the viral load as 

older children and adults, and disproportionately 

remain asymptomatic (Heald-Sargent, 2020).  

SCGF-β has been associated with H7N9 (Asian 

lineage avian influenza A subtype) and disassociated 

with H5N1 (highly pathogenic avian influenza 

(HPAI) (Guo, 2015) (de Jong, 2006). 

Elevated SCGF-β has also been associated with the 

specific disease states of hepatocellular cancer, 

Chagas’ disease, cardiomyopathy, inflammation and 

insulin resistance, and unstable carotid plaques 

(Sukowati, 2018) (Wang, 2013) (Tarantino, 2020). 

Interleukin 16, the second most important variable in 

predicting SARS-CoV-2 immunity or resistance here, 

has been strongly associated with asthma (Mathy, 

2000). 

Prior studies on the biomarkers associated with 

SARS-CoV-2 immune response and morbidity 

include interferon-gamma (IFN-γ), interferon-beta 

(IFN-β), and interleukin-8 (IL-8) (Geifman, 2020). 

Other previous research on immune parameters 

associated with SARS-CoV-2 severity and prognosis 

have involved interleukin one beta (IL-1β) and 

interleukin six (IL-6). However, others found reduced 

immunoglobin G levels in asymptomatic patients 

(Jesenak, 2020) (Long, 2020). The general finding in 

prior research regarding the pathogen-immune 

relationship with SARS-CoV-2 is that symptomatic 

patients have considerably more inflammation and 

cytokine storm activity than asymptomatic patients 

(Long, 2020). 
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What has been unknown for SARS-CoV-2 are three 

questions to which the answers are suggested in this 

study. First, which immunological variables are 

statistically significant, and how important is each in 

predicting asymptomatic status? Second, which of 

those variables, if any, have a strong negative 

correlation, or relationship, with disease severity (i.e., 

asymptomatic patients’ levels are significantly higher 

than symptomatic patients)? And third, is there an 

algorithmic or formulaic model of prognostic 

biomarkers that can accurately predict morbidity – 

who will be asymptomatic if infected, and who is at 

risk of more severe symptoms and disease 

progression – and why? 

Methods 

This study was based on secondary data published as 

a supplement in Nature Medicine in June 2020. 

Therein immunological factors were measured in 74 

patients in the Wanzhou District of China. They were 

diagnosed as SARS-CoV-2 positive by reverse 

transcriptase-polymerase chain reaction (RT-PCR) in 

the 14 days before the recordation of the 

observations. The median age of the 37 

asymptomatic patients was 41 years (range 8-75 

years), 22 were female, 15 were male. For 

comparison, 37 RT-PCR test-positive patients were 

selected and matched to the asymptomatic group by 

age, comorbidities, and sex (Long, 2020). 

In this study, five algorithms, or types, of machine 

learning – a kind of artificial intelligence employing 

robust brute-force statistical calculations – were 

applied to a data set of 74 observations of 34 

immunological factors to attempt to do three things: 

(1) develop a model to accurately predict the 

classification of which patients will be asymptomatic 

or symptomatic to SARS-CoV-2; (2) determine the 

relative importance of each immunological factor; 

and, (3) determine if there is any level of a subset of 

immunological factors that can accurately predict 

which patients are likely to be immune or resistant to 

SARS-CoV-2. 

Minitab 19 (version 19.2020.1, Minitab LLC) was 

used to calculate means, 95% confidence intervals, P-

values, and two-sample T-tests of statistical 

significance. Correlation coefficients were also 

computed using Minitab via Spearman rho because 

the data was distributed nonparametrically. A second 

classification and regression tree (CART) algorithm 

were also applied in Minitab to cross-validate 

decision tree results from R in Rattle. Minitab’s 

CART methodology was initially described by 

Stanford University and the University of California 

Berkeley researchers in 1984 (Breiman, 1984). 

The Rattle library (version 5.3.0, Togaware) in the 

statistical programming language R (version 3.6.3, 

CRAN) was used to apply five machine learning 

algorithms – a decision tree, extreme gradient 

boosting (XGBoost), linear logistic model (LLM), 

random forest, and support vector machine (SVM) – 

to learn which model, if any, could predict 

asymptomatic status, how accurately, and how. Rattle 

randomly partitioned the data to select and train on 

80% (n=59), validate on 10% (7), and test on 10% (7) 

of observations. Two evaluation methods were used: 

(1) plots of linear fits of the predicted versus 

observed categorization; and, (2) a pseudo-R2 

measure calculated as the square root of the 

correlation between the predicted and observed 

values. Pseudo-R2 measure results were evaluated 

twice, each using for evaluation data that were held 

back by being randomly selected during partitioning 

and averaging the two accuracy findings for the final 

results. 

Rattle’s rpart decision tree was also used to identify if 

any levels of one or more immunological factors that 

could accurately diagnose someone was 

asymptomatic (i.e., via rules). The decision tree 

results reported here used 20 and 12 as the minimum 

number of observations necessary in nodes before the 

split (i.e., minimum split). The trees used 7 and 4 as 

the minimum number of observations in a leaf node 

(i.e., minimum bucket). 

The random forest analysis in Rattle began by 

running a series of differently sized random forest 

algorithms, ranging from 50 to 500 decision trees, to 

learn the optimum number of trees to minimize error. 

Each random forest consisted of a minimum of six 

variables, which was closest to the square root of the 

number of statistically significant variables, 34. The 

lowest error rate was approximately 200 decision 

trees, which was applied, using four variables at a 

time, which was the closest whole number to the 

square root of the number of predictors. 

The five machine learning models and CART 

classification trees were run, including and excluding 

SCGF-β to identify if there were alternative 

prognostic biomarkers and levels in the immune 
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profile that could accurately classify and predict 

SARS-CoV-2 immunity.  

Results 

Thirty-three (34) of the 53 immunological factors 

(64.2%) were indicated as statistically significant by 

P-values less than .05 from a Spearman rho 

correlation. Of those 34 factors, 31 were statistically 

significant with P-values less than .01. Conversely, 

35.9% of the 53 immune factors had no statistically 

significant association with whether a patient was 

asymptomatic or symptomatic to SARS-CoV-2.  

The 22 factors positively correlated with being 

symptomatic ranged from a minimum coefficient of 

.205 (MCP-3) to a maximum of .781 (TRAIL). The 

11 factors negatively associated with being 

symptomatic ranged from a minimum of -.866 

(SCGF-β) to a maximum of -.276 (IFNα2) (see Table 

1).  

When SCGF-β was included in the machine-learning 

analysis, two algorithms predicted and classified 

SARS-CoV-2 immunity or resistance by being 

asymptomatic with 100% accuracy: a decision tree, 

and XGBoost. When SCGF-β was excluded, a 

random-forest algorithm predicted and classified 

SARS-CoV-2 asymptomatic and symptomatic cases 

with 94.8% area under the ROC curve accuracy (95% 

CI 90.17% to 100%) (see Table 2).  

Notably, both the rpart decision trees and CART 

classification trees independently identified three 

prognostic biomarkers at specific levels that could 

classify asymptomatic and symptomatic cases with 

95-100% accuracy. When SCGF- β was included, all 

asymptomatic cases had levels > 127656.8, while all 

symptomatic cases had levels < 127656.8 (see Figure 

1). When SCGF-β was excluded, as a type of 

contingency analysis to understand prognostic 

biomarker levels in other factors better, IL-16 

accurately classified asymptomatic cases > 44.59 and 

symptomatic cases < 44.59 in 90.4% of the cases. In 

the remaining 9.6% of cases where IL-16 > 44.59, all 

of them had M-CSF > 57.13 (see Figure 2).  

Two-sample T-tests for the four factors with the 

highest positive and negative correlation coefficients, 

interquartile ranges, outliers, and levels between 

asymptomatic and symptomatic patients that were 

statistically significant were computed to ordinally 

rank factors by their correlation coefficients (see 

Figure 3).  

A random forest analysis of the most important 

variables to accurately classify and predict SARS-

CoV-2 patients by binary morbidity ordinally ranked 

the 33 statistically significant factors. Unsurprisingly, 

SCGF-β, and IL-16, followed by GRO-α and TRAIL, 

respectively, were the most critical factors in 

predicting morbidity (see Figure 4).  

Finally, the results suggest that IL-1β, 3, 4, 9, 12, 13, 

17, and RANTES are of low importance, or 

comparative irrelevance, in the pathogen-immune 

relationship and, that SCGF-β, IL-16, HGF, INFNα2, 

LIF, CTACK, IL-1α, Eotaxin, GM-CSF, IL-1Rα, and 

IL-5 are critical in models to predict and classify 

asymptomatic or symptomatic SARS-CoV-2 cases 

accurately. 

Discussion 

While it has been speculated that stem cells may play 

a role in SARS-CoV-2 and other zoonoses’ 

resistance, prior research has focused on different 

stem cell involvement than stem-cell growth factor-

beta (Yu, 2020) (Golchin, 2020) (Chrzanowski, 

2020). Previous research has also established that 

stem cells can inhibit viral growth by expressing 

interferon-gamma stimulated genes (ISGs) and have 

been particularly effective against influenza A H5N1 

virus and resulting lung injuries (Wu, 2018) (Chan, 

2016). Stem cell therapy (SCT) has been 

hypothesized as a treatment for SARS-CoV-2; 

however, there is no record in the literature specific 

as to which factors may influence SARS-CoV-2 

infections, favorably or unfavorably, or to what 

degree until now (Florindo, 2020). 

Researchers have recently found that symptomatic 

patients generally have a more robust immune 

response to SARS-CoV-2 infection, culminating in 

cytokine storms in the worst cases. Conversely, 

asymptomatic patients have been found to have a 

weaker immune response (Long, 2020). Because 

infections are causal to immune response, of 

particular interest in this study were the most 

impactful immune-related variables that negatively 

correlated with asymptomatic status (i.e., variables 

that were greater for asymptomatic patients than 

symptomatic patients), which are highlighted in gray 

in Table 1.  

This work’s overarching importance is the 

identification of immunological factors for diagnoses, 

treatments, and pre-clinical prophylactic immune-

based approaches to SARS-CoV-2 in the first seven 
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months of a pandemic that experts now opine will 

last decades (Farrar, 2020). Immunostimulant 

approaches are especially valuable because, unlike 

antivirals and vaccines, they may be given later in the 

course of the disease to optimize outcomes (Florindo, 

2020). 

The primary importance of this work is machine 

learning algorithmic models that can predict with 

high accuracy, whether someone, once infected, will 

be asymptomatic or symptomatic from SARS-CoV-2. 

This knowledge gives clinicians new tools to identify 

populations in advance who appear to be at higher 

risk of danger from the virus. Such devices, 

especially once reproduced in a more extensive 

study, may also inform policy decisions as to who 

needs to shelter-in-place. Finally, because of the scale 

of this pandemic and practical constraints as to how 

many vaccination doses can be manufactured how 

quickly, such tools may become valuable in 

prioritizing vaccine administration to those in 

greatest need because they are at the higher 

biological and immunological risk.  

This work’s secondary importance is a description of 

the cytokine and chemokine profile that is associated 

with asymptomatic or symptomatic SARS-CoV-2 

infections. It enables a better understanding of the 

pathogen-immune relationship. These profiles 

provide insights into the biological pathways critical 

for SARS-CoV-2 progression. 

As one example, stem cell factors secrete multiple 

factors that regulate immune cells and modulate them 

to restore tissue homeostasis. These results suggest 

that higher levels of SCF-β may better control 

immune responses to prevent the more robust 

reactions universally associated so far with highly 

symptomatic patients and, further, prevent high 

morbidity and mortality cytokine storms. A better 

understanding of the pathogen-immune relationship 

may enable researchers to prevent and treat SARS-

CoV-2 patients more effectively with therapeutics 

currently untested and unused. This knowledge may 

also extend to similar zoonotic coronaviruses in the 

future. 

The tertiary importance of this work is identifying 

three immune factors and precise levels that appear to 

be prognostic biomarkers as to whether someone, 

once infected with the SARS-CoV-2 virus, will be 

immune or resistant, as demonstrated by being 

asymptomatic, or not. These insights also suggest 

new candidates for therapeutic research focused on 

the relatively newly identified and ill-understood 

SCGF-β and its role in the immunological process.  

The quaternary importance of this work is further 

proof that machine-learning methods can accurately 

and quickly identify critical elements of disease 

dynamics that accelerate understanding and improve 

outcomes during pandemics. Moreover, it is an 

example of how a ‘dry’ data science laboratory can 

link to clinical or ‘wet’ laboratory science for real-

world applications.  

This study has several limitations. First, it is 

unknown from the dataset how many days passed 

between exposure to the virus and immunological 

testing, or whether it was universally the same 

number of days. Second, because immune profiles 

are temporally sensitive, ideally, several tests would 

have been taken over several days, which did not 

occur (Jankord, 2020). Third, immunological 

signaling and processing are multifactorial and 

complex. Therefore, it is unclear why SCGF-Beta 

levels are categorically high in asymptomatic patients 

and low in symptomatic patients, or whether they are 

causal to SARS-CoV-2 response. Fourth, 

combinatorial and sequential analysis of these 

immunological elements may be an important future 

research area to optimize therapeutic research 

outcomes. Fifth, at least one study in a leading 

journal, Lancet, found that Chinese SARS-CoV-2 

case data may have been misreported by as much as 

400% (Tsang, 2020). That study, and much higher 

case and fatalities numbers in over 200 countries, 

have created distrust and skepticism of SARS-CoV-

2-related data originating in China. 

Future research could ameliorate these limitations 

and focus on a more extensive study group to attempt 

to reproduce the results. Moreover, a prospective 

case-control study of patients with decreased SCFG-β 

levels and supplementation was protective against 

SARS-CoV-2 severity and symptoms. 

Conclusion 

One implication of these findings is that if we can 

predict the 80% of society who may be immune or 

resistant to SARS-CoV-2, or asymptomatic, it may 

profoundly impact public health intervention 

decisions as to who needs to be protected and how 

much. If, for example, 80% of the shelter-in-place 

orders and the resultant dramatic reduction in 

economic and social activity could have been 
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prevented by accurately predicting who is at low risk 

of infection, the economic benefits alone may have 

been valued in US$ trillions. The second implication 

of these findings is evidence that elevated levels of 

SCGF-β, IL-16, and M-CSF may have a causal 

relationship with SARS-CoV-2 immunity or 

resistance may have utility as diagnostic determinants 

to (a) inform public health policy decisions to 

prioritize and reduce shelter-in-place orders to 

minimize economic and social impacts; (b) advance 

therapeutic research; and, (c) prioritize vaccine 

distribution to benefit those with the greatest need 

and risks first.  
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Figures

Immunological Factor Abbreviation

Pairwise Spearman 

Correlation to 

Asymptomatic (0) or 

Symptomatic (1) Status 95% CI

P-Value 

(< .05 

target)

TNF-related apoptosis-inducing ligand TRAIL 0.781 (0.654, 0.865) < .000

Growth-regulated oncogene alpha GRO-α 0.75 (0.611, 0.845) < .000

Macrophage colony stimulating factor M-CSF 0.748 (0.608, 0.843) < .000

Interleukin-6 IL-6 0.705 (0.549, 0.813) < .000

Granulocyte colony-stimulating factor G-CSF 0.697  (0.539, 0.808) < .000

Interleukin-2 IL-2 0.667 (0.499, 0.787) < .000

Nerve growth factor beta NGF-β 0.651 (0.479, 0.775) < .000

Interleukin-10 IL-10 0.614 (0.431, 0.748) < .000

Monocyte chemoattractant protein-1 MCP-1 0.594 (0.407, 0.733) < .000

Stem cell factor SCF 0.586 (0.397, 0.728) < .000

Interleukin-15 IL-15 0.527 (0.325, 0.683) < .000

Interleukin-8 IL-8 0.514 (0.311, 0.673) < .000

Interferon gamma  IFN-γ 0.464 (0.252, .633) < .000

Interleukin-7 IL-7 0.454 (0.240, 0.625) < .000

Interferon gamma inducible protein-10 INF-γ-IP-10 0.451 (0.237, 0.623) < .000

Interleukin-18 IL-18 0.438 (0.223, 0.613) < .000

Platelet derived growth gactor-BB PDGF-BB 0.436 (0.220, 0.611) < .000

Interleukin-2 receptor alpha IL-2Rα 0.388 (0.166, 0.572) 0.001

Immunoglobulin G (convalescing) IgG Convalesce 0.366 (0.143, 0.544) 0.001

Monokine induced by gamma MIG 0.364 (0.140,0.552) 0.001

Immunoglobulin G (acute) IgG-Acute 0.33 (0.103, 0.524) 0.004

Macrophage migration inhibitory factor MIF 0.237 (0.006, 0.444) 0.042

Monocyte chemotactic protein-3 MCP-3 0.205 (-.027, 0.416) 0.079

Vascular endothelial growth factor VEGF 0.184 (-0.048, .397) 0.117

N gene N 0.18 (-0.053, 0.394) 0.126

Interleukin-3 IL-3 0.163 (-0.070, 0.379) 0.166

Interleukin-12-p40 IL-12(p40) 0.151 (-0.082, 0.368) 0.199

Interleukin-9 IL-9 0.149 (-0.084, 0.366) 0.206

Interleukin-1 beta IL-1β 0.125 (-0.107, 0.345) 0.287

Days shed virions Days shed 0.122 (-0.110, 0.342) 0.3

Stromal cell-derived factor-1 alpha SDF-1α 0.098 (-0.134, 0.320) 0.406

Interleukin-12-p70 IL-12(p70) 0.083 (-0.149, 0.306) 0.484

Interleukin-17  IL-17 0.067 (-0.164, 0.291) 0.57

Interleukin-4 IL-4 0.02 (-0.210, 0.247) 0.868

Interleukin-13 IL-13 -0.022 (-0.249, 0.208) 0.856

Fibroblast growth factor FGF -0.078 (-0.302, 0.153) 0.506

Regulated upon activation, normal T cell expressed and secreted RANTES -0.085 (-0.308, 0.146) 0.469

Macrophage inflammatory protein-1 beta MIP-1β -0.109 (-0.330, 0.123) 0.353

ORF1ab gene ORF1ab -0.113 (-0.334, 0.119) 0.337

Macrophage inflammatory protein-1 alpha MIP-1α -0.138 (-0.356, 0.095) 0.241

Tumor necrosis factor-alpha TNF-α -0.168 (-0.383, 0.065) 0.153

Tumor necrosis factor-beta TNF-β -0.197 (-0.409, 0.035) 0.093

Interferon alpha-2 IFNα2 -0.276 (-0.478, -0.046) 0.017

Leukemia inhibitory factor LIF -0.312 (-0.509, -0.84) 0.007

Interleukin-5 IL-5 -0.316 (-0.512, -0.089) 0.006

Interleukin-1 alpha IL-1α -0.332 (-0.526, -0.106) 0.004

Granulocyte-macrophage colony-stimulating factor GM-CSF -0.359 (-0.548, -0.134) 0.002

Interleukin-1 receptor alpha IL-1Rα -0.359 (-0.548, -0.135) 0.002

Eotaxin Eotaxin -0.39 (-0.576, -0.169) 0.001

Cutaneous T cell-attracting chemokine CTACK -0.456 (-0.627, -0.243) < .000

Hepatocyte growth factor HGF -0.594 (-0.733, -0.407) < .000

Interleukin-16 IL-16 -0.827 (-0.895, -0.721) < .000

Stem cell growth factor beta SCGF-β -0.866 (-0.92,-0.78) < .000

Table 1: Immunological factors associated with SARS-CoV-2 morbidity ranked by Spearman correlation coefficients with 
95% confidence intervals and P-values (statistically insignificant and corresponding P-values in gray text; negative 
correlations highlighted in gray at bottom of the table) 
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Table 2: Comparative accuracy of six machine learning algorithms in predicting SARS-CoV-2 asymptomatic status from 
immunological factors 

  

  

Machine Learning 

Model

Pseudo R2 (10% evaluation 

holdback  sample 1)

Pseudo R2 (10% evaluation 

holdback sample 2)

Average 

Pseudo R2

Decision tree 100.00% 100.00% 100.00%

XGBoost 100.00% 100.00% 100.00%

GLM (logistic) 100.00% 98.89% 99.45%

Random forest 99.46% 94.83% 97.15%

SVM 78.81% 96.99% 87.90%

Random forest 97.68% 91.91% 94.80%

GLM (logistic) 100.00% 85.96% 92.98%

SVM 77.76% 89.69% 83.73%

XGBoost 99.42% 54.27% 76.85%

Decision tree 100.00% 2.22% 51.11%

With SCGF-β

Without SCGF-β
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Figure 1: CART classification tree of role of SCGF-β in predicting SARS-CoV-2 morbidity 
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Figure 2: CART classification tree of rule of IL-16 and M-CSF in predicting SARS-CoV-2 morbidity in the absence of SCGF-β 
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Figure 3: Two-sample T-tests of statistical significance of difference in means of four leading prognostic 
biomarkers for asymptomatic or symptomatic SARS-CoV-2 
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Figure 4: Relative importance of immunological variables from random forest analysis in predicting SARS-CoV-2 morbidity 
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