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It has become increasingly clear that the COVID-19 epidemic is char-
acterized by overdispersion whereby the majority of the transmis-
sion is driven by a minority of infected individuals. Such a strong de-
parture from the homogeneity assumptions of traditional well-mixed
compartment model is usually hypothesized to be the result of short-
term super-spreader events, such as individual’s extreme rate of
virus shedding at the peak of infectivity while attending a large gath-
ering without appropriate mitigation. However, heterogeneity can
also arise through long-term, or persistent variations in individual
susceptibility or infectivity. Here, we show how to incorporate persis-
tent heterogeneity into a wide class of epidemiological models, and
derive a non-linear dependence of the effective reproduction num-
ber Re on the susceptible population fraction S. Persistent hetero-
geneity has three important consequences compared to the effects
of overdispersion: (1) It results in a major modification of the early
epidemic dynamics; (2) It significantly suppresses the herd immunity
threshold; (3) It significantly reduces the final size of the epidemic.
We estimate social and biological contributions to persistent hetero-
geneity using data on real-life face-to-face contact networks and age
variation of the incidence rate during the COVID-19 epidemic, and
show that empirical data from the COVID-19 epidemic in New York
City (NYC) and Chicago and all 50 US states provide a consistent
characterization of the level of persistent heterogeneity. Our esti-
mates suggest that the hardest-hit areas, such as NYC, are close to
the persistent heterogeneity herd immunity threshold following the
first wave of the epidemic, thereby limiting the spread of infection to
other regions during a potential second wave of the epidemic. Our
work implies that general considerations of persistent heterogeneity
in addition to overdispersion act to limit the scale of pandemics.

The COVID-19 pandemic is nearly unprecedented in the
level of disruption it has caused globally, but also, potentially,
in the degree to which it will change our understanding of
epidemic dynamics and the efficacy of various mitigation strate-
gies. Ever since the pioneering works of Kermack and McK-
endrick (1), epidemiological models have been widely and suc-
cessfully used to quantify and predict progression of infectious
diseases (2–6). More recently, the important role played by
population heterogeneity and the complex structure of social
networks in spreading of epidemics has been appreciated and
highlighted in multiple studies (7–22). However, an adequate
integration of this conceptual progress into reliable, predictive
epidemiological models remains a formidable task. Among the
key effects of heterogeneity and social network structure are (i)
the role played by superspreaders and superspreading events
during initial outbreaks (8, 9, 14, 23–25) and (ii) substantial
corrections to the herd immunity threshold (HIT) and the final

size of epidemic (FSE) (10, 13, 15, 18, 22, 26). The COVID-19
pandemic has re-ignited interest in the effects of heterogeneity
of individual susceptibility to the disease, in particular to the
possibility that it might lower both HIT and FSE (27–31).

There are several existing approaches to model the effects
of heterogeneity on epidemic dynamics, each focusing on a
different characteristic and parameterization. In the first
approach, one can stratify the population into several demo-
graphic groups (e.g. by age), and account for variation in
susceptibility of these groups and their mutual contact prob-
abilities (2). While this approach represents many aspects
of population dynamics beyond the homogeneous and well-
mixed assumption, it clearly does not encompass the whole
complexity of individual heterogeneity, interpersonal commu-
nications and spatial and social structures. These details
can be addressed in a second approach, where one analyzes
epidemic dynamics on real-world or artificial social networks
(9, 18, 32, 33). Through elegant mathematics, it is possible to
obtain detailed results in idealized cases, including the map-
ping onto well-understood models of statistical physics such
as percolation (10). In the context of the COVID-19 epidemic,
this mapping suggests that the worst-case FSE may be sig-
nificantly smaller than expected from classical homogeneous
models (27). Such methods have so far been mostly limited
to analysis of the final state of epidemics and outbreaks on a
static network.

For practical purposes, it is desirable to predict the com-
plete time-dependent dynamics of an epidemic, preferably
by explicitly including heterogeneity into classical well-mixed
mean-field compartment models. This third approach was
developed long ago (13, 18),and has recently been applied
in the context of COVID-19 (28). Here, the conclusion was
that the HIT may be well below that expected in classical
homogeneous models.

These approaches to heterogeneity delineate end-members
of a continuum of theories: overdispersion describing short-
term, bursty dynamics (e.g. due to super-spreader accidents),
as opposed to persistent heterogeneity, which is a long-term
characteristic of an individual and reflects behavioral propen-
sity to (e.g.) socialize in large gatherings without prudent
social distancing. Overdispersion is usually modeled in terms
of a negative binomial branching process (8, 9, 14, 23–25), and
is expected to be a much stronger source of variation com-
pared to the longer-term characteristics that reflect persistent
heterogeneity. How, then, can we bridge the gap between
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these model end-members in order to calculate both the herd
immunity threshold and the final size of the epidemic in a
unified way that treats the dynamics on long time-scales? In
this work, we present a comprehensive yet simple theory that
accounts for both social and biological aspects of heterogeneity,
and predicts how together they modify early and intermediate
epidemic dynamics, as well as global characteristics of the
epidemic such as the herd immunity threshold and the final
size of the epidemic. Our starting point is a generalized version
of the heterogeneous well-mixed theory in the spirit of Ref.
(13), but we use the age-of-infection approach (1) rather than
compartmentalized SIR/SEIR models of epidemic dynamics
(see, e.g. (2)). The resulting model can be recast into an effec-
tive homogeneous theory that can readily encompass a wide
class of epidemiological models, including various versions of
the popular SIR/SEIR approaches. Specific innovations that
emerge from our analysis are the non-linear dependence of the
effective reproduction number Re on the overall population
fraction S of susceptible individuals, and another non-linear
function Se(S) that gives an effective susceptible fraction, tak-
ing into account preferential removal of highly susceptible
individuals.

A convenient and practically useful aspect of this approach
is that it does not require extensive additional calibration
in order to be applied to real data. In the effort to make
quantitative predictions from epidemic models, accurate cal-
ibration is arguably the most difficult step, but is necessary
due to the extreme instability of epidemic dynamics in both
growth and decay phases (34, 35). We find that with our
approach, the entire effect of heterogeneity is in many cases
well-characterized by a single parameter which we call the
immunity factor λ. It is related to statistical properties of
heterogeneous susceptibility across the population and to its
correlation with individual infectivity. The immunity factor
determines the rate at which Re drops during the early stages
of the epidemic as the pool of susceptibles is being depleted:
Re ≈ R0(1− λ(1− S)). Beyond this early linear regime, for
an important case of gamma-distributed individual suscepti-
bilities, we show that the classical proportionality, Re = R0S,
transforms into a power-law scaling relationship Re = R0S

λ.
This leads to a modified version of the result for the herd
immunity threshold , S0 = R

−1/λ
0 , and a corresponding result

for the final size of an unmitigated epidemic.
Heterogeneity in the susceptibility of individual members

of the population has several different contributions: (i) bio-
logical, which takes into account differences in factors such as
strength of immune response, genetics, age, and co-morbidities;
and (ii) social, reflecting differences in the number of close
contacts of different people. The immunity factor λ in our
model combines these sources of heterogeneous susceptibility
as well as its correlation with individual infectivity. As we
demonstrate, under certain assumptions, the immunity fac-
tor is simply a product of social and biological contributions:
λ = λsλb. In our study, we leverage existing studies of real-life
face-to-face contact networks (9, 15, 33, 36–39) to estimate
the social contribution to heterogeneous susceptibility, and
the corresponding immunity factor λs. The biological contri-
bution, λb, is expected to depend on specific details of each
infection. For the case of COVID 19, we determine a lower
bound for it, based on the age distribution of reported cases.

To test this theory, we use the empirical data on COVID-

19 epidemic to independently estimate the immunity factor
λ. In particular, we apply our previously-described epidemic
model that features multi-channel Bayesian calibration (34)
to describe epidemic dynamics in New York City and Chicago.
This model uses high quality data on hospitalizations, Intensive
Care Unit (ICU) occupancy and daily deaths to extract the
underlying Re(S) dependence in each of two cities. In addition,
we perform a similar analysis of data on individual states in the
USA, using data generated by the model in Ref. (40). Using
both approaches, we find that the locations that were severely
impacted by COVID-19 epidemic show a more pronounced
reduction of the effective reproduction number. This effect
is much stronger than predicted by classical homogeneous
models, suggesting a significant role of heterogeneity. The
estimated immunity factor ranges between 4 and 5, and is
in very good agreement with the value expected based on
analysis of social and biological heterogeneity. This analysis
shows how our model is able to make concrete and testable
predictions.

Finally, we integrate the persistent heterogeneity theory
into our time-of-infection epidemiological model (34), and
project possible outcomes of the second wave of the COVID-19
epidemic in NYC and Chicago. By considering the worst-case
scenario of a full relaxation of any currently imposed mitiga-
tion, we find that the results of the heterogeneity-modified
model significantly modify the results from the homogeneous
mode. In particular, based on our estimate of the immunity
factor, we expect virtually no second wave in NYC, indicat-
ing that the herd immunity has likely been achieved there.
Chicago, on the other hand, has not passed the herd immu-
nity threshold that we infer, but the effects of heterogeneity
would still result in a substantial reduction of the magnitude
of the second wave there, even under the worst-case scenario.
This, in turn, suggests that the second wave can be completely
eliminated in such medium-hit locations, if appropriate and
economically mild mitigation measures are adopted, including
e.g. mask wearing, contact tracing, and targeted limitation
of potential super-spreading events, through limitations on
indoor bars, dining and other venues.

Theory of epidemics in heterogeneous populations

Following in the footsteps of Refs.(12, 13, 15, 18, 26, 28), we
consider the spread of an epidemic in a population of individu-
als who exhibit significant heterogeneity in their susceptibilities
to infection α. This heterogeneity may be biological or so-
cial in origin, and we assume these factors are independent:
α = αbαs. The biologically-driven heterogeneous suscepti-
bility αb is shaped by variations of several intrinsic factors
such as the strength of individuals’ immune responses, age, or
genetics. In contrast, the socially-driven heterogeneous suscep-
tibility αs is shaped by extrinsic factors, such as differences
in individuals’ social interaction patterns (their degree in the
network of social interactions). Furthermore, individuals’ dif-
ferent risk perceptions and attitudes towards social distancing
may further amplify variations in socially-driven susceptibility
heterogeneity. We only focus on susceptibility that is a persis-
tent property of an individual. For example, people who have
elevated occupational hazards, such as healthcare workers,
typically have higher, steady values of αs. Similarly, people
with low immune response, highly social individuals (hubs in
social networks), or scofflaws would all be characterized by
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above-average overall susceptibility α.
In this work, we group individuals into sub-populations

with similar values of α and describe the heterogeneity of
the overall population by the probability density function
(pdf) of this parameter, f(α). Since α is a relative measure
of individual susceptibilities, without loss of generality we
set 〈α〉 ≡

∫∞
0 αf(α)dα = 1. Each person is also assigned

an individual reproduction number Ri, which is an expected
number of people that this person would infect in a fully
susceptible population with 〈α〉 = 1. Accordingly, from each
sub-population with susceptibility α there is a respective mean
reproductive number Rα. Any correlations between individ-
ual susceptibility and infectivity will significantly impact the
epidemic dynamics. Such correlations are an integral part
of most network-based epidemiological models due to the as-
sumed reciprocity in underlying social interactions, which leads
to Rα ∼ α (10, 18). In reality, not all transmissions involve
face-to-face contacts, and biological susceptibility need not be
strongly correlated with infectivity. Therefore, it is reasonable
to expect only a partial correlation between α and Rα.

Let Sα(t) be the fraction of susceptible individuals in the
subpopulation with susceptibility α, and let jα(t) = −Ṡα be
the corresponding daily incident rate, i.e., the fraction of newly
infected individuals per day in that sub-population. At the
start of the epidemic, we assume everyone is susceptible to
infection: Sα(0) = 1. The course of the epidemic is described
by the following age-of-infection model:

− dSα
dt

= jα(t) = αSα(t)J(t) [1]

J(t) =
〈∫ ∞

0
dτRαK(τ)jα(t− τ)

〉
α

[2]

Here t is the physical time and τ is the time since infection
for an individual. 〈. . .〉α represents averaging over α with pdf
f(α). J(t) represents the mean daily attack rate across the
entire population. K(τ) is the distribution of the generation
interval, which we assume is independent of α for the sake of
simplicity.

According to Eq. (1), the susceptible subpopulation for any
α is expressed as

Sα(t) = exp(−αZ(t)) , [3]

Here Z(t) =
∫ t

0 J(t′)dt′ represents the cumulative attack rate.
The total susceptible fraction of the population is related to
the moment generating function Mα of the distribution f(α)
(i.e., the Laplace transform of f(α)) according to:

S(t) =
∫ ∞

0
f(α)e−αZ(t)dα = Mα(−Z(t)) [4]

Similarly, the effective reproductive number Re can be
expressed in terms of the parameter Z:

Re(t) =
∫ ∞

0
αRαf(α)e−αZ(t)dα [5]

Note that for Z = 0, this expression gives the basic reproduc-
tion number R0 = 〈αRα〉. Since both S and Re depend on
time only through Z(t), Eqs. (4)–(5) establish a parametric
relationship between these two important quantities during
the time course of an epidemic. In contrast to the classical
case when these two quantities are simply proportional to each

other, i.e. Re = SR0, the relationship in the present theory
is non-linear due to heterogeneity. Now one can re-write the
renewal equation for the daily attack rate in the same form
that it would have for a homogeneous problem:

J(t) =
∫ ∞

0
dτK(τ)Re(t− τ)J(t− τ) [6]

Furthermore, by integrating Eqn. (1) over the whole sus-
ceptible population, we arrive at the following heterogeneity-
induced modification to the relationship between the attack
and the incident rates:

dS

dt
= −SeJ [7]

Here

Se(t) =
∫ ∞

0
αf(α)e−αZ(t)dα = −Mα(−Z(t))

dZ
[8]

is the effective susceptible fraction of the population, which
is less than S due to the disproportionate removal of highly
susceptible individuals. Just as with Re, it is a non-linear
function of S, defined parametrically by Eqs. (4),(8). Further
generalization of this theory for the time-modulated age-of-
infection model is presented in the Supplementary Information
(SI). There, we also discuss the adaptation of this approach for
the important special case of a compartmentalized SIR/SEIR
model. Such non-linear modifications to homogeneous epi-
demiological models have been proposed in the past, both
as plausible descriptions of heterogeneous populations and in
other contexts (15, 20, 21). However, those empirical models
exhibited a limited range of applicability (15) and have not had
a solid mechanistic foundation, with a noticeable exception of
a special case of SIR model without correlation between sus-
ceptibility and infectivity studied in Ref. (26). Our approach
is more general: it provides an exact mapping of a wide class
of heterogeneous well-mixed models onto homogeneous ones,
and provides a specific relationship between the underlying
statistics of α and Rα and the non-linear functions Re(S) and
Se(S).

We now derive a simple yet remarkably general result for
the final size of an unmitigated epidemic. To do this, we
integrate Eq. (6) over time t. This yields a relation Z∞ =∫∞

0 Re(t)J(t)dt =
∫ 1
S∞

Re(S)dS/Se(S) for the final value of
Z when the epidemic has run its course, and this in turn can
conveniently be expressed in terms of the final fraction of the
susceptible population, S∞:

S∞ = Mα

(
−
∫ 1

S∞

Re(S)dS
Se(S)

)
[9]

This equation is valid for an arbitrary distribution of α, arbi-
trary correlation between susceptibility and infectivity, and
for any statistics of the generation interval. It combines and
generalizes several well-known results: (i) in the weak correla-
tion limit (Rα = R0), when the integral in the r.h.s. is equal
to R0(1−S∞), Eq.(9) reproduces results of Refs. (22, 26, 30),
(ii) in the opposite limit of a strong correlation (Rα ∼ α), the
integration gives R0(1− Se(S∞))/〈α2〉, and one recovers the
result for the FSE on a network (10, 13).

One of the striking consequences of the non-linearity of
Re(S) is that the effective reproduction number could be
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decreasing at the early stages of epidemics significantly faster
than predicted by homogeneous models. Specifically, for (1−
S)� 1 one obtains

Re ≈ R0(1− λ(1− S)) [10]

We named the coefficient λ the immunity factor because it
quantifies the effect that a reduction in the susceptible popu-
lation due to immunity has on the spread of an epidemic. The
classical value of λ is 1, but it may be significantly larger in a
heterogeneous case.

λ = 〈α
2Rα〉
〈αRα〉

[11]

As one can see, the value of the immunity factor, thus depends
both on the statistics of susceptibility, and on its correlation
with infectivity Rα.

We previously defined the overall susceptibility α as a com-
bination of biological and social factors: α = αsαb Here αs is
a measure of the overall social connectivity of an individual,
such as the cumulative time of close contact with other indi-
viduals averaged over a sufficiently long time interval (known
as node strength in network science). Since the interpersonal
contacts contribution to an epidemic spread is mostly recipro-
cal, we assume Rα ∼ αs. On the other hand, in our analysis
we neglect a correlation between the biological susceptibility
and infectivity, as well as between αb and αs. Under these
approximations, the immunity factor itself is a product of
biological and social contributions, λ = λbλs. Each of them
can be expressed in terms of leading moments of αb and αs,
respectively:

λb = 〈α2
b〉

〈αb〉2
= 1 + CV 2

b [12]

λs = 〈α3
s〉

〈αs〉〈α2
s〉

= 1 + CV 2
s (2 + γsCVs)
1 + CV 2

s
[13]

Note that the biological contribution to the immunity factor
depends only on the coefficient of variation CVb of αb. On the
other hand, the social factor λs depends both on the coefficient
of variation CVs and the skewness γs of the distribution of αs.
Due to our normalization, 〈αs〉〈αb〉 ≈ 〈αsαb〉 = 〈α〉 = 1.

The relative importance of biological and social contribu-
tions to the overall heterogeneity of α may be characterized by
a single parameter χ. For a log-normal distribution of αb, χ
appears as a scaling exponent between infectivity and suscep-
tibility: Rα ∼ αχ (see SI for details). The corresponding ex-
pression for the overall immunity factor is λ = 〈α2+χ〉/〈α1+χ〉.
The limit χ = 0 corresponds to a predominantly biological
nature of heterogeneity, i.e., λ ≈ λb = 1 + CV 2

α where CVα is
the coefficient of variation for the overall susceptibility. In the
opposite limit χ = 1, the variation is primarily of social origin,
hence λ ≈ λs will be affected by both CVα and the skewness
γα of the pdf f(α).

Recently, real-world networks of face-to-face communica-
tions have been studied using a variety of tools, including RFID
devices (36), Bluetooth and Wi-Fi wearable tags, smartphone
apps (37, 38), as well as census data and personal surveys
(9, 33, 39). Despite coming from a wide variety of contexts,
the major features of contact networks are remarkably robust.
In particular, both the degree (the number of contacts per
person), and the node strength pdfs appear nearly constant
when plotted in log-log coordinates, followed up by a sharp

fall after a certain cut-off. This behavior is generally consis-
tent with an exponential distribution in fs(αs) (15, 37, 39),
fs(αs) ∼ e−αs/〈αs〉, leading to λs ≈ 3!/2! = 3.

The biological contribution λb depends on specific biological
details of the disease and thus is unlikely to be as universal
and robust as the social one. For the COVID-19 epidemic, we
estimated this parameter based on the the age distribution
of cases as reported by the NYC Department of Health (41).
This analysis suggests λb = 1 + CV 2

b ≈ 1.3. On one hand,
the variation in the infection rates reported among different
age groups may be exaggerated by the variation of the disease
severity. On the other hand, age is not the only factor that
determines biological susceptibility: it may also depend on
genetics, pre-existing conditions, etc. The overall immunity
factor, based on this rather conservative estimate is λ ≈ 4.
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Fig. 1. A)Re/R vs S dependence for gamma-distributed susceptibility for λ = 4±1
(blue area). The dashed line shows the classical homogeneous result, Re = R0S.
Note a substantial reduction ofRe for COVID-19 in both NYC and Chicago, compared
to that value. Approximate fractions of susceptible populations, S, for both cities are
estimated as of the end of May 2020, by using the model described in Ref. (34). B)
Herd Immunity threshold (blue area) and final size of epidemic (FSE, green area)
for gamma-distributed susceptibilities. The range of λ is the same as in (A). FSE is
shown assuming maximum correlation between susceptibility and infectivity (χ = 1),
which corresponds toCV 2

α ranging from 1 to 2. Notice a substantial reduction of both
HIT and FSE compared to the classical results for homogeneous population which
are shown as blue dashed and green dotted lines, respectively.
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So far, our discussion has focused on the early stages of
epidemics, when the Re(S) dependence is given by a lin-
earized expression Eq. (10). To describe the non-linear regime,
we consider a gamma-distributed susceptibility: f(α) ∼
α1/η−1 exp(−α/η), where η = CV 2

α . In this case, accord-
ing to Eqs. (4) and (5), Re, Se and S are related by scaling
relationships:

Se(S) = S1+η [14]

and
Re(S) = R0S

λ [15]

The exponent λ = 1+(1+χ)CV 2
α = 1+(1+χ)η coincides with

the early-epidemics immunity factor defined in Eqs. (10)–(11)
for a general case. Note that without correlation (χ = 0),
both scaling exponents would be the same; this result has
been previously obtained for the SIR model in Ref. (26) The
scaling behavior Re(S) is shown in Fig. 1(A) for λ = 4± 1 .
This function is dramatically different from the classical linear
dependence Re = SR0. To emphasize the importance of this
difference, we indicate the estimated fractions of the population
in New York City and Chicago susceptible to COVID-19, as
of the end of May 2020. It is evident from the plot that
the reduction of Re for immunity factor between 3 and 5
may substantially reduce or eliminate the chances of future
outbreaks in both cities.

Eq. (15) immediately leads to a major revision of the
classical result S0 = 1/R0 for the herd immunity threshold,
i.e. the fraction of susceptible population below which the
exponential growth stops. By setting Re = 1 in Eq. (15), we
obtain:

S0 =
( 1
R0

)1/λ
[16]

An unmitigated epidemic of course does not stop once the
HIT is passed, but continues until there are no more infected
individuals left, a phenomenon known as overshoot. To find
the FSE for the case of gamma-distributed susceptibility we
apply our general result, Eq. 9, which gives:

S∞ =

(
1 +

R0η
(
1− Sλ−η∞

)
λ− η

)−1/η

[17]

The values of HIT and FSE for various values of R0 are
presented in Figure 1B. As expected, in both cases the number
of remaining susceptible individuals is substantially larger than
in the homogeneous case.

Our focus on the gamma distribution is well justified by the
observation that the social strength αs is approximately expo-
nentially distributed, i.e., it is a specific case of the gamma
distribution with η = CV 2

α = 1. A moderate biological hetero-
geneity would lead to an increase of the overall CVα, but the
pdf f(α) will still be close to the gamma distribution family.
From the conceptual point of view, it is nevertheless important
to understand how the function Re(S) would change if f(α)
had a different form. In SI, we present analytic and numeri-
cal calculations for two other families of distributions: (i) an
exponentially bounded power law f(α) ∼ e−α/α+/αq (q ≥ 1,
with an additional cut-off at lower values of α) and (ii) the
log-normal distribution. In addition, we give an approximate
analytic result that generalizes Eq. (15) for arbitrary skewness
of f(α). This generalization works remarkably well for all
three of the families of distributions analyzed in this work. As

suggested by Eqs. (12)-(13), when the distribution becomes
increasingly skewed, the range between the χ = 0 and χ = 1
curves broadens. For instance, for distributions dominated
by a power law, f(α) ∼ 1/αq, λ diverges at q slightly larger
than 3 and χ = 1, even if CVα remains finite. This repre-
sents a crossover to the regime of so-called scale-free networks
(2 ≤ q ≤ 3, which are characterized by zero epidemic threshold
yet strongly self-limited dynamics: the epidemics effectively
kills itself by immunizing the hubs on the network (13, 18, 42).

Application to COVID-19 epidemic

The COVID-19 epidemic reached the US in early 2020, and
by March it was rapidly spreading across multiple states. The
early dynamics was characterized by a rapid rise in the number
of cases with doubling times as low as 2 days. In response to
this, the majority of states imposed a broad range of mitigation
measures including school closures, limits on public gatherings,
and Stay-at-Home orders. In many regions, especially the hard-
est hit ones like New York City, people started to practice some
degree of social distancing even before government-mandated
mitigation. In order to quantify the effects of heterogeneity on
the spread of the COVID-19 epidemic, we apply the Bayesian
age-of-infection model described in Ref. (34) to New York
City and Chicago. For both cities, we have access to reliable
time series data on hospitalization, ICU room occupancy, and
daily deaths due to COVID-19 (41, 43–45). We used these
data to perform multi-channel calibration of our model (34),
which allows us to infer the underlying time progression of
both S(t) and Re(t). The fits for Re(S) for both cities are
shown in Fig. 2A. In both cases, a sharp drop of Re that
occurred during the early stage of the epidemic is followed by
a more gradual decline. For NYC, there is an extended range
over which Re(S) has a constant slope in logarithmic coordi-
nate. This is consistent with the power law behavior predicted
by Eq. 15 with the slope corresponding to immunity factor
λ = 4.5± 0.05. Chicago exhibits a similar behavior but over a
substantially narrower range of S. This reflects the fact that
NYC was much harder hit by the COVID-19 epidemic. Impor-
tantly, the range of dates we used to estimate the immunity
factor corresponds to the time interval after state-mandated
Stay-At-Home orders were imposed, and before the mitigation
measures began to be gradually relaxed. The signatures of
the onset of the mitigation and of its partial relaxation are
clearly visible on both ends of the constant-slope regime. To
examine the possible effects of variable levels of mitigation
on our estimates of λ in Fig. S2 we repeated our analysis in
which Re(t) was corrected by Google’s community mobility
report in these two cities (46) (see SI). Although the range of
data consistent with the constant slope shrank somewhat, our
main conclusion remains unchanged. This provided us with a
lower bound estimate for the immunity factor: λ = 4.1± 0.1.

To test the sensitivity of our results to details of the epi-
demiological model and choice of the region we performed an
alternative analysis based on the data reported in (40). In
that study, the COVID-19 epidemic was modelled in each of
the 50 US states and the District of Columbia. Because of the
differences in population density, level of urbanization, use of
public transport, etc., different states were characterized by
substantially different initial growth rates of the epidemic, as
quantified by the basic reproduction number R0. Furthermore,
the time of arrival of the epidemic also varied a great deal
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Fig. 2. Correlation between the relative reduction in the effective reproduction number
Re(t)/R0 (y-axis) with the susceptible population S(t). In Panel A, we present
the progression of these two quantities for New York City and Chicago, as given by
the epidemiological model described in Ref. (34). Panel B shows the scatter plot of
Re(t0)/R0 and S(t0) in individual states of the US, evaluated in Ref. (40) (t0 is
the latest date covered in that study).

between individual states, with states hosting major airline
transportation hubs being among the earliest ones hit by the
virus. As a result of these differences, at any given time the
infected fraction of the population differed significantly across
the US (40). We use state level estimates of Re(t), R0 and
S(t) as reported in Ref. (40) to construct the scatter plot
Re(t0)/R0 vs S(t0) shown in Fig. S3, with t0 chosen to be the
last reported date in that study, May 17, 2020. By performing
the linear regression on these data in logarithmic coordinates,
we obtain the fit for the slope λ = 5.3± 0.6 and for S = 1 in-
tercept around 0.54. In the SI, we present an extended version
of this analysis for the 10 hardest-hit states and the District of
Columbia, which takes into account the overall time progres-
sion of Re(t) and S(t), and gives similar estimate λ = 4.7±1.5.
Both estimates of the immunity factor based on the state data
are consistent with our earlier analysis of NYC and Chicago.
Furthermore, the range of λ between 4 and 5 extracted from
these COVID-19 data sources, is in a very good agreement
with the value λ = λsλb ≈ 4 that we obtained above, based on
the statistics of interpersonal contacts and the age variation
of biological susceptibility to COVID-19 infection.
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Fig. 3. Projections of daily deaths under the worst-case scenario in which any
mitigation is completely eliminated on June 1 2020, for (A) NYC and (B) Chicago.
Different curves correspond to different values of the immunity factor λ = 1 (blue), 3
(red), 4 (green) and 5 (black lines). The model was fully calibrated on daily deaths
(circles), ICU occupancy and hospitalization data up to the end of May (see SI and
Ref. (34) for details).

We can now incorporate heterogeneity into our epidemi-
ological model, and examine how future projections change
as a result of this modification. This is done by plugging the
scaling relationships, Eq. (14)-(15) into the attack rate and
incident rate equations of the original model. These equations
are similar to Eqs. (6)-(7), but also include time modulation
due to mitigation and a possible seasonal forcing (see SI for
more details). After calibrating the model by using the data
streams on ICU occupancy, hospitalization and daily deaths
up to the end of May, we explore a hypothetical worst-case
scenario in which any mitigation is completely relaxed as of
June 1, in both Chicago and NYC. In other words, the basic
reproduction number R0 is set back to its value at the initial
stage of the epidemic, and the only factor limiting the second
wave is the partial or full herd immunity, Re = R0S

λ. The
projected daily deaths for each of the two cities under this (un-
realistically harsh) scenario are presented in Fig. 3 for various
values of λ. For both cities, the homogeneous model (λ = 1,
blue lines) predicts a second wave which is larger than the first
one with an additional death toll of around 35, 000 in NYC
and 12, 800 in Chicago. The magnitude of the second wave is

6

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.26.20162420doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.26.20162420
http://creativecommons.org/licenses/by-nc-nd/4.0/


greatly reduced by heterogeneity, resulting in no second wave
in either of the two cities for λ = 5 (black lines). Even for a
modest value λ = 3 (red lines), which is less than our estimate,
the second wave is dramatically reduced in both NYC and
Chicago (by about 90% and 70%, respectively).

Discussion

We have demonstrated that population heterogeneity due to
biological and/or social susceptibility to infection may lead
to dramatic changes affecting the early dynamics, the herd
immunity threshold and the final size of an epidemic. Hetero-
geneity can be easily integrated into a wide class of traditional
epidemiological models in the form of two non-linear functions
Re(S) and Se(S), both of which are fully determined by the
statistics of individual susceptibilities and infectivities. Fur-
thermore, Re(S) is largely defined by a single parameter, the
immunity factor λ, introduced in our study. Like susceptibility
itself, λ has two contributions: biological and social (see Eqs.
(12-13)). By applying our theory to the COVID-19 epidemic
we found evidence that the hardest hit areas such as New York
City, have likely passed the heterogeneity-modified herd immu-
nity threshold. Other places that had intermediate exposure,
such as e.g. Chicago, while still above the HIT, have their
effective reproduction number reduced by a significantly larger
factor than predicted by traditional epidemiological models.
This gives a better chance of suppressing the future waves of
the epidemic in these locations by less disruptive measures
than those used during the first wave, e.g. by contact tracing,
control of potential super-spreading events, etc.

According to our results, a significant suppression of the
second wave in both cities is expected even for a rather moder-
ate value of the immunity factor. This is because, in the limit
of a strong correlation between susceptibility and infectivity
λ = 1 + 2CV 2

α , yielding CVα = 1 and thus a moderate value
of λ = 3. A conceptually similar analysis from Ref. (28)
for Italy and Austria suggested that a much greater level of
heterogeneity would be needed to suppress second waves in
those countries. Specifically, CVα = 1 did not give a noticeable
effect in that study, so CVα = 3 had to be assumed, which
corresponds to λ as high as 19. While the fraction of suscepti-
ble population in Austria is indeed very low, Italy was among
the the hardest-hit countries during the COVID-19 epidemic,
with some areas affected as strongly as NYC, and the national
average number of deaths per capita is comparable to that in
Chicago. We therefore expect the hardest-hit regions of Italy,
such as Lombardy, to be close to herd immunity, despite our
more conservative estimate of the level of heterogeneity. The
quantitative difference between our conclusions and the results
of Ref. (28) is likely to have methodological origin. First, we
used daily deaths, hospitalization and ICU occupancy, rather
than case statistics for calibration of our model. Second, we
focused on city rather than country level, which certainly
enhances the overall effect of the herd immunity. In Table
1 we show how Re is suppressed as a result of depletion of
susceptible population in selected locations in the world, as of
early June 2020.

In another recent study (31), the reduction of HIT due to
heterogeneity has been illustrated on a toy model. In that
model, 25% of the population was assumed to have their
social activity reduced by 50% compared to a baseline, while
another 25% had their social activity elevated twofold. The

rest of the population was assigned the baseline level of activity.
According to Eq. 13, the immunity factor in that model is
λ = 1.54. For this immunity factor, Eq. (16) predicts HIT at
S0 = 64%, 55% and 49%, for R0 = 2, 2.5, and 3, respectively.
Despite the fact that the model distribution is not gamma-
shaped, these values are in a very good agreement with the
numerical results reported in Ref. (31): S0 = 62.5%, 53.5%,
and 47.5%, respectively.

Table 1. Effect of heterogeneity-modified herd immunity on Re in se-
lected locations. The fraction of susceptible population as of early
June 2020 is estimated from reported death count, assuming infec-
tion fatality rate of 0.7% (47). The range in the last column corre-
sponds to λ = 4± 1.

Location Deaths per 1000 1− S Re/R0 = Sλ

New York City, USA (41) 2.1 30% 25%± 9%
Lombardy, Italy (48) 1.7 24% 35%± 9%

London,UK (49) 0.9 13% 58%± 8%
Chicago, USA (43) 0.9 13% 58%± 8%

Stockholm, Sweden (50) 0.9 13% 58%± 8%

Finally, we summarise the assumptions and limitations of
our study. First, we assume a long-lasting immunity of re-
covered individuals. Second, we present a slightly different
perspective on heterogeneity than that used in other recent
papers. The susceptibility used in our model is defined as
a persistent (or time-averaged) property of each individual.
Thus there is a crucial distinction between the heterogeneity
relevant for our study, which is long-term, and overdispersion
in transmission statistics associated with short-term super-
spreading events (8, 9, 14, 23–25). In our theory, a personal
decision to attend a large party or a meeting would only be
significant to the epidemic dynamics if it represents a recurring
behavioral pattern. On the other hand, superspreading events
are shaped by short-time variations in individual infectivity
(e.g. a person during the highly infectious phase of the disease
attending a large gathering). Hence, the level of heterogeneity
inferred from the analysis of such events (8, 24) would be
significantly exaggerated compared to time-averaged quan-
tities relevant for self-limiting epidemic dynamics and herd
immunity. Specifically, the statistics of superspreading events
is commonly described by the negative binomial distribution
with dispersion parameter k estimated to be about 0.1 for
the COVID-19 (25). According to Ref. (8), this is consistent
with the expected value of the individual-level reproduction
number Ri drawn from a gamma distribution with the shape
parameter k ' 0.1. This distribution has a very high coeffi-
cient of variation, CV 2 = 1/k ' 10. In the case of a perfect
correlation between individual infectivity and susceptibility
α, this would result in an unrealistically high estimate of the
immunity factor: λ = 1 + 2CV 2 = 1 + 2/k ' 20. For this
reason, according to our perspective and calculation, the final
size of the COVID-19 epidemic may have been substantially
underestimated in Ref. ((27)).

One of the consequences of the persistent nature of αs is
that the heterogeneity-modified herd immunity might wane
after some time as individuals change their social interac-
tion patterns. In particular, in the context of the COVID-19
epidemic, individual responses to mitigation factors such as
Stay-at-Home orders may differ across the population. When
mitigation measures are relaxed, the social susceptibility αs
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inevitably changes. The impact of these changes on the herd
immunity depends on whether each person’s αs during and
after the mitigation are sufficiently correlated. For example,
herd immunity would be compromised if people who prac-
ticed strict self-isolation would compensate for it by an above-
average social activity after the first wave of the epidemic has
passed.

Population heterogeneity manifests itself at multiple scales.
At the most coarse-grained level, individual cities or even
countries can be assigned some level of susceptibility and
infectivity, which inevitably vary from one location to another
reflecting differences in population density and its connectivity
to other regions. Such spatial heterogeneity will result in self-
limiting epidemic dynamics at the global scale. For instance,
hard-hit hubs of the global transportation network such as
New York City during the COVID-19 epidemic would gain
full or partial herd immunity thereby limiting the spread of
infection to other regions during a potential second wave of the
epidemic. This might be a general mechanism that ultimately
limits the scale of many pandemics, from the Black Death to
the 1918 influenza.

As we were finalizing this paper for submission, a preprint
by Aguas et al. appeared online (51). They independently
obtained the analytic expression for the HIT in case of a
Gamma-distributed susceptibility, a special case of our anal-
ysis. However our estimates for the coefficient of variation
of heterogeneity and therefore the immunity factor are sig-
nificantly lower than the estimates reported in Ref. (51),
reflecting methodological differences.

ACKNOWLEDGMENTS. We gratefully acknowledge discussions
with Mark Johnson at Carle Hospital. The calculations we have
performed would have been impossible without the data kindly
provided by the Illinois Department of Public Health through a
Data Use Agreement with Civis Analytics. This work was sup-
ported by the University of Illinois System Office, the Office of the
Vice-Chancellor for Research and Innovation, the Grainger College
of Engineering, and the Department of Physics at the University of
Illinois at Urbana-Champaign. Z.J.W. is supported in part by the
United States Department of Energy Computational Science Grad-
uate Fellowship, provided under Grant No. DE-FG02-97ER25308.
A.E. acknowledges partial support by NSF CAREER Award No.
1753249. This work made use of the Illinois Campus Cluster, a
computing resource that is operated by the Illinois Campus Clus-
ter Program (ICCP) in conjunction with the National Center for
Supercomputing Applications (NCSA) and which is supported by
funds from the University of Illinois at Urbana-Champaign. This
research was partially done at, and used resources of the Center
for Functional Nanomaterials, which is a U.S. DOE Office of Sci-
ence Facility, at Brookhaven National Laboratory under Contract
No. DE-SC0012704.

1. WO Kermack, AG McKendrick, A contribution to the mathematical theory of epidemics. Proc.
Royal Soc. London. Ser. A, Containing papers a mathematical physical character 115, 700–
721 (1927).

2. MJ Keeling, P Rohani, Modeling infectious diseases in humans and animals. (Princeton
University Press), (2011).

3. K Rock, S Brand, J Moir, MJ Keeling, Dynamics of infectious diseases. Reports on Prog.
Phys. 77, 026602 (2014).

4. J Ma, Estimating epidemic exponential growth rate and basic reproduction number. Infect.
Dis. Model. 5, 129 – 141 (2020).

5. C Fraser, Estimating individual and household reproduction numbers in an emerging epi-
demic. PLoS One 2, e758 (2007).

6. G Chowell, Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A
Primer for parameter uncertainty, identifiability, and forecasts. Infect Dis Model. 2, 379–398
(2017).

7. AL Lloyd, RM May, Epidemiology - how viruses spread among computers and people. Sci-
ence 292, 1316–1317 (2001).

8. JO Lloyd-Smith, SJ Schreiber, PE Kopp, WM Getz, Superspreading and the effect of individ-
ual variation on disease emergence. Nature 438, 355–9 (2005).

9. LA Meyers, B Pourbohloul, MEJ Newman, DM Skowronski, RC Brunham, Network theory
and sars: predicting outbreak diversity. J. Theor. Biol. 232, 71–81 (2005).

10. MEJ Newman, Spread of epidemic disease on networks. Phys. Rev. E 66 (2002).
11. MJ Ferrari, S Bansal, LA Meyers, ON Bjornstad, Network frailty and the geometry of herd

immunity. Proc. Royal Soc. B-Biological Sci. 273, 2743–2748 (2006).
12. S Bansal, LA Meyers, The impact of past epidemics on future disease dynamics. J. Theor.

Biol. 309, 176–184 (2012).
13. Y Moreno, R Pastor-Satorras, A Vespignani, Epidemic outbreaks in complex heterogeneous

networks. Eur. Phys. J. B 26, 521–529 (2002).
14. M Small, C Tse, DM Walker, Super-spreaders and the rate of transmission of the sars virus.

Phys. D: Nonlinear Phenom. 215, 146–158 (2006).
15. S Bansal, BT Grenfell, LA Meyers, When individual behaviour matters: homogeneous and

network models in epidemiology. J. Royal Soc. Interface 4, 879–891 (2007).
16. Y Kim, H Ryu, S Lee, Agent-based modeling for super-spreading events: A case study of

mers-cov transmission dynamics in the republic of korea. Int. J. Environ. Res. Public Heal.
15, 2369 (2018).
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Supplementary Information

Derivation of quasi-homogeneous model.

Age-of-infection model. We start we the same age-of-infection model
as described in the main text, but include additional time-dependent
modulation of the attack rate:

J(t) = µ(t)
〈∫ ∞

0
dτRαK(τ)jα(t− τ)

〉
α

[S1]

Here modulation factor µ(t) can be e.g. due to mitigation measures
or seasonal forcing. Due to this modification, Eq. (5) should be
rewritten as follows:

SR(S) ≡
Re(t)
µ(t)R0

=
1
R0

∫ ∞
0

αRαf(α)e−αZ(t)dα [S2]

Here R0 =
∫∞

0 αRαf(α)dα is basic reproduction number. Now one
can write integral equation for the attack rate which is formally
identical to the one for a homogeneous case:

J(t) = µ(t)R0

∫ ∞
0

dτK(τ)j∗(t− τ) [S3]

Here introducing infectivity-weighted incident rate, j∗ = SRJ . Eq.
(7) completes the set of our quasi-homogeneous equations:

dS

dt
= −SeJ [S4]

As discussed in the main text, the inhomogeneity is fully accounted
for by non-liner function SR(S), and variable effective susceptibility
αe(S).

Compartmentalized SIR/SEIR models. The basic SIR and SIER mod-
els can be viewed as particular cases of the age-of infection model
discussed above. However, because of their great importance and
wide use, we present our construction for a specific case of SEIR:

Ṡα = −αSαJ [S5]
Ėα = αSαJ − γEEα [S6]
İα = γEEα − γIIα [S7]

Here attack rate is J(t) = µ(t)γI
∫∞

0 RαI(α)f(α)dα. We define
infectivity-weighted "Exposed" and "Infectious" fractions as

E =
∫ ∞

0
RαE(α)f(α)dα [S8]

I =
J

γIµ(t)
=
∫ ∞

0
RαI(α)f(α)dα [S9]

[S10]
This leads to a complete description of epidemic dynamics with
three ODEs formally equivalent to those for the homogeneous case.
The difference are, once again, functions Re = µ(t)SR(S)R0 and
Se(S):

Ṡ = −µ(t)γISeI [S11]
Ė = Re(t)γII − γEE [S12]

İ = γEE − γII [S13]

Correlation parameter and scaling relationship between infectivity
and susceptibility. . Below we consider a model in which biolog-
ical susceptibility αb is not correlated either with infectivity nor
with social strength αs of an individual. On the other hand, both
the overall susceptibility and infectivity are proportional to αs. Let
fx and fy be pdfs of variables x ≡ lnαs) and y ≡ lnαb. It is
reasonable to assume log-normal distribution for αb, since biological
susceptibility can be modeled as a product several random factors
(due to age, gender, genetics, pre-existent conditions, etc). This
corresponds to Gaussian fy with variance σ2 and mean −σ2/2
(assuming normalization 〈αb〉 = 1). For a given value of α, this
translates into Gaussian distribution of variable x with the same
variance, and mean lnα + σ2/2. This allows us to calculate the
average αs which is proportional to Rα:

Rα ∼ 〈αs〉 ∼

∫
fx(x) exp

(
x− (x−lnα−σ2/2)2

2σ2

)
dx∫

fx(x) exp
(
− (x−lnα−σ2/2)2

2σ2

)
dx

[S14]

This integral, for most pdfs fx and fy , will be dominated by the
vicinity of point x0 defined by condition f ′(x0)/f(x0) = (x0/σ2 −
1/2). By expanding ln f(x) in x′ = x − x0, we obtain fx(x′) ≈
f(xσ) exp(rx′ − κx′2/2), where r = f ′(x0)/f(x0) = x0/σ2 − 1/2
and κ = −f ′′(x0)/f(x0) + r2. After substituting this Gaussian
approximation for fx back into the above equation, we obtain the
scaling relationship between α and Rα

Rα ∼ exp
(

(σ2 + lnα)2 − (lnα)2

2σ2(1 + κσ2)

)
∼ αχ [S15]

Here χ = 1/(1 + κσ2).

Functions SR(S) and Se(S).. According to Eq.(4), function S(Z) is
directly related to the moment generating function Mα for pdf f(α)

S = 〈e−αZ〉α = Mα(−Z) = 1−Z +
〈α2〉Z2

2
−
〈α3〉Z3

6
+ ... [S16]

This function also determines effective fraction of susceptible popu-
lation Se:

Se = 〈αe−αZ〉α = −
d lnS
dZ

[S17]

Remarkably, once function Se(S) is found, it completely deter-
mines how SR, and hence Re, behaves in the limiting cases of both
the strong and weak correlations:

SR =
{
〈αe−αZ〉α = −dS/dZ = Se, χ = 0

1
〈α2〉

dS2

dZ2 = Se
〈α2〉

dSe
dS

, χ = 1 [S18]

Application to specific distributions of susceptibility..

Gamma distribution. Consider gamma distribution with 〈α〉 = 1 and
CV 2

α = η:
f(α) ∼ α1/η−1 exp(−α/η) [S19]

By using Eqs. (4)-(5), we obtain:

S = (1 + ηZ)−1/η [S20]

Se = (1 + ηZ)−1/η−1 = S1+η [S21]

SR = (1 + ηZ)−(1+χ+1/η) = Sλ [S22]
This leads to the scaling relationship Re = R0Sλ, Eq. (15).

Truncated power law distribution. We now consider power law dis-
tributed α, f(α) ∼ 1/α1+s (s > 0), with upper and lower cut-offs,
εα+ and α+, respectively. If the upper cut-off is implemented as
exponential factor exp(−α/α+), we recover the functional form
identical to the gamma distribution, Eq. (S19) discussed above, but
with negative values of the shape factor:

f(α) =
αq−1

+ exp(−α/α+)
αqΓ(1− q, ε)

[S23]

Due to normalization 〈α〉 = 1,

α+ =
Γ(1− q, ε)
Γ(2− q, ε)

[S24]

In the case of gamma distribution, the coefficient of variation CVα
would completely determine the overall shape of pdf. For power law
with exponent 1 ≤ q ≤ 3, the value of η = CV 2 sets the dynamic
range the between upper and lower cut-offs, i.e. parameter ε:

1 + η = 〈α2〉 =
Γ(1− q, ε)Γ(3− q, ε)

Γ(2− q, ε)2 [S25]

By using Eq. (4)-(5), we can obtain exact results for S SR in
terms of Z:

S =
Γ(1− q, ε(1 + α+Z))

Γ(1− q, ε)(1 + α+Z)1−q [S26]
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SR =
Γ(ν, ε(1 + α+Z))
Γ(ν, ε)(1 + α+Z)ν

[S27]

Here ν = 2 + χ − q. The resulting function Re/R0 = SR(S) is
shown in Fig. S1 for several values of exponent q.

For χ = 0, the overall function SR(S) = Se(S) can be very well
fitted by a simplified analytic formula that depends only on λ0 =
1+CV 2

α and an additional shape parameter ∆λ = CVα(γα−2CVα):

Se(S) ≈
S

(1 + ∆λ(1− S))(λ0−1)/∆λ
[S28]

According to Eq. (S18), this function completely defines behavior
of SR in both limits of the weak and strong correlation regimes :

SR ≈
(1 + (∆χ − 1)(1− S))S

(1 + ∆λ(1− S))(λ−∆χ)/∆λ
[S29]

Here ∆χ = (∆λ + 1)/λ0, and λ = λ1 for χ = 1. For χ = 0, δχ has
to be set to 1.

Fig. S1. Re/R0 vs S dependence for three different distribution families f(α)
(gamma, truncated power law, log-normal). Different curves correspond to the same
value CV 2

α = 2, and two limiting values of correlation parameter χ.

Log-normal distribution. Log-normal distribution is a very natural
candidate to describe statistics of α. It universally emerges for mul-
tiplicative random processes. Transmission of an infection involves
a complex chain of random events, both social and biological, which
can be conceptualized as such multiplicative process. For instance,
it may depend on how likely a given person would be involved in a
potential superspreading event, how likely that person would have a
close contact with a potential infector, what would be the duration
of their contact, how effective the individual immune system is in
preventing and suppressing the infection.

For log-normal distribution, the initial drop in Re according to
Eq. (11), is noticeably faster than for gamma: λ = (1 + CV 2

α )(1 +
χCV 2

α ). However, the initial linear regime is also much narrower.
Figure S1 shows dependence Re(S) both for log-normal alongside
with the above results for gamma and scaling distributions, for the
same values of CV (specifically, CV 2

α = 2). As one can see from the
plots, despite the stronger effect of heterogeneuity at the early stage,
the curves generated by log-normal distribution approach Re = 0
significantly slower than those corresponding to gamma. Note that
the overall Re(S) behavior generated by log-normal distribution
closely matches the one obtain for power law with certain scaling
exponent q. That exponent would depend on CV and should
approach 1 in the limit of sufficiently wide distribution when log-
normal pdf asymptotically approaches a power law 1/α with upper
and lower cut-offs.
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Fig. S2. Exploration of effect of mobility on data presented in Figure 2(A). Triangles
represent data points for NYC and Chicago with Re(t)/R0 corrected by a mobility
factor calculated from Google community mobility report, Ref. (46). We compute
the mobility for NYC using average mobility of its five counties: New York county,
Bronx county, Kings county, Richmond county, and Queens county, weighted by their
population fraction.
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DC, as reported in Ref. (40).
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