Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Persistent heterogeneity not short-term overdispersion determines herd immunity to COVID-19

View ORCID ProfileAlexei V. Tkachenko, View ORCID ProfileSergei Maslov, View ORCID ProfileAhmed Elbanna, View ORCID ProfileGeorge N. Wong, View ORCID ProfileZachary J. Weiner, View ORCID ProfileNigel Goldenfeld
doi: https://doi.org/10.1101/2020.07.26.20162420
Alexei V. Tkachenko
1Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alexei V. Tkachenko
  • For correspondence: oleksiyt{at}bnl.gov maslov{at}illinois.edu
Sergei Maslov
2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
4Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
5Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sergei Maslov
  • For correspondence: oleksiyt{at}bnl.gov maslov{at}illinois.edu
Ahmed Elbanna
3Department of Civil Engineering, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Ahmed Elbanna
George N. Wong
2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for George N. Wong
Zachary J. Weiner
2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Zachary J. Weiner
Nigel Goldenfeld
2Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
5Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Nigel Goldenfeld
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

It has become increasingly clear that the COVID-19 epidemic is characterized by overdispersion whereby the majority of the transmission is driven by a minority of infected individuals. Such a strong departure from the homogeneity assumptions of traditional well-mixed compartment model is usually hypothesized to be the result of shortterm super-spreader events, such as individual’s extreme rate of virus shedding at the peak of infectivity while attending a large gathering without appropriate mitigation. However, heterogeneity can also arise through long-term, or persistent variations in individual susceptibility or infectivity. Here, we show how to incorporate persistent heterogeneity into a wide class of epidemiological models, and derive a non-linear dependence of the effective reproduction number Re on the susceptible population fraction S. Persistent heterogeneity has three important consequences compared to the effects of overdispersion: (1) It results in a major modification of the early epidemic dynamics; (2) It significantly suppresses the herd immunity threshold; (3) It significantly reduces the final size of the epidemic. We estimate social and biological contributions to persistent heterogeneity using data on real-life face-to-face contact networks and age variation of the incidence rate during the COVID-19 epidemic, and show that empirical data from the COVID-19 epidemic in New York City (NYC) and Chicago and all 50 US states provide a consistent characterization of the level of persistent heterogeneity. Our estimates suggest that the hardest-hit areas, such as NYC, are close to the persistent heterogeneity herd immunity threshold following the first wave of the epidemic, thereby limiting the spread of infection to other regions during a potential second wave of the epidemic. Our work implies that general considerations of persistent heterogeneity in addition to overdispersion act to limit the scale of pandemics.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

Our calculations would have been impossible without the data kindly provided by the Illinois Department of Public Health through a Data Use Agreement with Civis Analytics. This work was supported by the University of Illinois System Office, the Office of the Vice-Chancellor for Research and Innovation, the Grainger College of Engineering, and the Department of Physics at the University of Illinois at Urbana-Champaign. Z.J.W. is supported in part by the United States Department of Energy Computational Science Graduate Fellowship, provided under Award No. DE-FG02-97ER25308. This work made use of the Illinois Campus Cluster, a computing resource that is operated by the Illinois Campus Cluster Program (ICCP) in conjunction with the National Center for Supercomputing Applications (NCSA) and which is supported by funds from the University of Illinois at Urbana-Champaign. This research was partially done at, and used resources of the Center for Functional Nanomaterials, which is a U.S. DOE Office of Science Facility, at Brookhaven National Laboratory under Contract No.∼DE-SC0012704.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

This manuscript does not involve research on human subjects. The public data used in this study contains no identifiable private information.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

The manuscript uses data provided by the Illinois Department of Public Health through a Data Use Agreement with Civis Analytics. The source code for the model is freely available online at https://github.com/uiuc-covid19-modeling/pydemic https://github.com/uiuc-covid19-modeling/pydemic

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted July 29, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Persistent heterogeneity not short-term overdispersion determines herd immunity to COVID-19
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Persistent heterogeneity not short-term overdispersion determines herd immunity to COVID-19
Alexei V. Tkachenko, Sergei Maslov, Ahmed Elbanna, George N. Wong, Zachary J. Weiner, Nigel Goldenfeld
medRxiv 2020.07.26.20162420; doi: https://doi.org/10.1101/2020.07.26.20162420
Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Persistent heterogeneity not short-term overdispersion determines herd immunity to COVID-19
Alexei V. Tkachenko, Sergei Maslov, Ahmed Elbanna, George N. Wong, Zachary J. Weiner, Nigel Goldenfeld
medRxiv 2020.07.26.20162420; doi: https://doi.org/10.1101/2020.07.26.20162420

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (430)
  • Allergy and Immunology (756)
  • Anesthesia (221)
  • Cardiovascular Medicine (3294)
  • Dentistry and Oral Medicine (364)
  • Dermatology (280)
  • Emergency Medicine (479)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (1171)
  • Epidemiology (13378)
  • Forensic Medicine (19)
  • Gastroenterology (899)
  • Genetic and Genomic Medicine (5155)
  • Geriatric Medicine (482)
  • Health Economics (783)
  • Health Informatics (3271)
  • Health Policy (1141)
  • Health Systems and Quality Improvement (1191)
  • Hematology (431)
  • HIV/AIDS (1018)
  • Infectious Diseases (except HIV/AIDS) (14632)
  • Intensive Care and Critical Care Medicine (913)
  • Medical Education (477)
  • Medical Ethics (127)
  • Nephrology (523)
  • Neurology (4927)
  • Nursing (262)
  • Nutrition (730)
  • Obstetrics and Gynecology (883)
  • Occupational and Environmental Health (795)
  • Oncology (2524)
  • Ophthalmology (725)
  • Orthopedics (281)
  • Otolaryngology (347)
  • Pain Medicine (323)
  • Palliative Medicine (90)
  • Pathology (543)
  • Pediatrics (1302)
  • Pharmacology and Therapeutics (550)
  • Primary Care Research (557)
  • Psychiatry and Clinical Psychology (4214)
  • Public and Global Health (7506)
  • Radiology and Imaging (1706)
  • Rehabilitation Medicine and Physical Therapy (1014)
  • Respiratory Medicine (980)
  • Rheumatology (480)
  • Sexual and Reproductive Health (498)
  • Sports Medicine (424)
  • Surgery (548)
  • Toxicology (72)
  • Transplantation (236)
  • Urology (205)