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Abstract 

We developed a mobility-informed disease-transmission model for COVID-19, inspired by collision theory 
in gas-phase chemistry. This simple kinetic model leads to a closed-form infectious population as a function 
of time and cumulative mobility. This model uses fatality data from Johns Hopkins to infer the infectious 
population in the past, and mobility data from Google, without social-distancing policy, geological or 
demographic inputs. It was found that the model appears to be valid for twenty hardest hit counties in the 
United States. Based on this model, the number of infected people grows (shrinks) exponentially once the 
relative mobility exceeds (falls below) a critical value (~30% for New York City and ~60% for all other 
counties, relative to a median mobility from January 3 to February 6, 2020). A simple mobility cap can be 
used by government at different levels to control COVID-19 transmission in reopening or imposing another 
shutdown. 
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Introduction 

Novel Coronavirus Disease 2019 (COVID-19) pandemic is probably the most challenging issue facing the 
world today. The loss of lives, the emerging new social norms and the stagnant if not collapsing economy 
are hallmarks of an era that the world has not seen in recent memory. COVID-19 has already exacerbated 
many pressing issues such as food, poverty, social justice, health care, education, government 
accountability, with a possible singular exception of pollution. There are tremendous economic, social and 
political pressures to reopen society. Thus, it becomes critical to have quantitative forecast of COVID-19 
infections and fatalities to guide federal, state and local governments in formulating reopening and resource 
allocation policy. 

The classical model for infectious disease transmission is the SIR (susceptible, infectious, recovered) model 
by Kermack and Mckendrick,1 a kinematic compartment model considering the change of infectious 
population, susceptible population and recovered (immune) population. According to the SIR model, a 
disease outbreak will occur once the basic reproduction number R0 (the number of new infections in a 
completely susceptible population prior to removal) is higher than the reciprocal of the initial susceptibility 
of the population (fraction of people without immunity). The idea of “herd immunity” is essentially to 
control the disease outbreak by allowing infection to immunize the population thus reducing the 
susceptibility. The original SIR model can be expanded to include immunity with limited lifetime,2,3 vital 
dynamics with birth and death,4 maternally-derived immunity,5 or incorporate an extra population for 
exposed individuals not yet infectious.6 In addition, statistical tools have been frequently used to describe 
the probabilistic nature of disease transmission, uncertainty in the disease data and variations in pathogens 
to provide better prediction.7–9 Using such advanced compartment models, disease spread dynamics can be 
predicted by COVID-19 Simulator,10 Delphi,11 and LMIC.12,13 

Stay-at-home order (or the more draconian city-wide lockdown) and other public health intervention 
measures (e.g., social distancing) have been proven the most effective ways to combat COVID-19 outbreaks. 
Reduced mobility leads to reduced contacts and disease transmission. It has been shown that there is clear 
correlation between mobility patterns and COVID-19 transmission.14 Basellini et al. have linked excess 
mortality to human mobility in England and Wales.15 Vollmer et al. estimated disease transmission using 
mobility in Italy.16 The effect of travel restriction policies on the global COVID-19 outbreak has also been 
studied by Chinazzi et al. using a metapopulation disease transmission model.17 The stay-at-home policies 
could lead to the so-called “suppressed equilibrium”, and possible eventual “heard-immunity” yet with less 
overall death. To this end, Tung and co-workers have built a statistical model to account for diminished 
infectivity due to social distancing.18 Numerical simulations of stochastic disease spreading also consider 
mobility directly by incorporating the sociodemographic and population mobility data (such as the GLEAM 
framework19). LMIC also incorporates mobility data by dynamically varying the reproductive number using 
Google mobility data.13 

There are probably close to a hundred different COVID-19 models available with varying predictability. 
To our best knowledge, there is no mechanistic model that incorporates mobility and has a close-formed 
solution, without which it is difficult to evaluate the efficacy of the model and avoid ever-growing number 
of parameters causing overfitting. Here, we introduce a minimalist’s mechanistic infectious disease model 
incorporating mobility information directly, motivated by molecular collision used in gas-phase chemical 
reaction. The key of this model is to acknowledge that the total contacts of a community are proportional 
to the cumulative mobility, which should play the role of time in epidemic outbreaks. This simple model 
has an analytical solution relative to a reference date, which can be directly tested against publicly available 
data. It was found that infections in twenty counties in the United States with the highest fatalities as of 
July 12th, 2020 agree well with the model. Importantly, we found there exists a critical value for the relative 
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mobility that dictates whether outbreak will occur, which could be utilized in designing reopening policy 
or possibly imposing a second shutdown. 

 

Mobility-informed Disease-Transmission Model 

The fundamental process in understanding the chemical reaction in gas-phase is the binary collisions 
between molecules. As shown in Figure 1(a), the green molecule travels along a path that could encounter 
other molecules resulting in collisions and possibly reactions. Analogously, a person travels along a path 
that could encounter other people or contaminated surfaces/air, and possibly gets infected. Thus, for a given 
duration, the shorter the path a molecule covers (equivalently, the fewer number of places a person visits), 
the lower the number of collisions (equivalently, the lower number of encounters leading to infections). It 
should be noted that the original SIR model is in fact motivated by McKendrick’s “particle collisions” 
metaphor,9 in which the mobility information is not explicitly considered.   

The overarching assumption of this mobility-informed disease-transmission model is that, the number of 
encounters of a person during a given time is proportional to his or her mobility m. Mobility here is defined 
as the number of visits to activity locations within a day, relative to that in the baseline day before the 
pandemic. Due to the convenient linear relation, this assumption can be easily extended to a community 
such that the total number of encounters is proportional to the sum of the community mobility (the number 
of people times the average mobility). In addition, the infection must be also proportional to the fraction of 
the population that is currently infectious, as in the SIR model. For simplicity, this model does not consider 
the immunity of recovered population, which is reasonable as the overall infected population is still low 
and the short duration of immunity after infection.20 The total population is assumed to be a constant without 
considering birth or death. Similar to the SIR model, recovery is proportional to the current infectious 
population, we have,  

 dI I
N m I

dt N
       .        (1) 

I is the current infectious population. N is the total population. I/N is the fraction of population that is 
currently infectious. m is the current mobility. β is the community-specific infection rate. γ is the recovery 
rate. Here we assume both β and γ are constant for simplicity. Integrate from a reference time t0, we have, 

( )
0( ) ( ) M t tI t I t e    .         (2) 

Here 
0

( ) ( )
t

t

M t m t dt   is the cumulative mobility from t0 to t. The rather simple two-parameter analytical 

solution to this mobility-informed disease transmission model permits critical examination. A direct test 
can be conducted by recasting the infectious population I(t) in Eq. (2), 

0
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For a given community with a given reference time, the locus of (
( )M t

t
,

0

1 ( )
ln

( )

I t

t I t
) should be on a straight 

line, from which both β and γ can be determined. 

 

Results and Discussions 

To critically examine the aforementioned mobility-informed disease-transmission model using Eq. (4), we 
chose twenty counties in the United States with the highest COVID-19 fatalities as of July 11, 2020, which 
is listed in Table S1 of the Supporting Information. We need both the time series of current infectious 
population, as well as the time series of mobility for each county. Regarding the infectious population, the 
number of confirmed cases cannot be used directly due to the fact that a significant fraction of COVID-19 
carriers are asymptomatic and undetected. Moreover, the COVID-19 testing capacity varies over time and 
location. Here, assuming that the mortality rate of COVID-19 does not vary over time without a collapsing 
healthcare system nor new effective pharmaceutical treatment, we chose instead to use the daily fatality to 

infer the infectious population in the past with a time delay. Thus, the infection ratio 
0
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I t

I t
 equals to 

0
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 with f(t) being the daily fatality and td being the time delay. This conversion is valid as long as 

the mortality rate is constant over time for a given county even if it varies from county to county. The time 
delay td essentially is the average time from infection to death. For all counties, the time delay is 35 days 
with the only exception of New York City (New York, New York) with a time delay of 20 days. This time 
delay is reasonable considering it has been reported the time until hospitalization is five days and the mean 
hospitalization for critical care patient is 16 days according to Imperial College.21 New York City is unique 
due to its high population density with its hospitals nearing capacity at the height of the pandemic. The 
time-series of COVID-19 fatality used here was acquired on July 12, 2020 (data up to July 11, 2020), which 
is curated by Johns Hopkins University.22 To reduce fluctuation, the daily fatality is subjected to a running 
average over a span of five days. 

Regarding the mobility, we resort to Google “COVID-19 Community Mobility Reports”23 which contain 
the changes in visits to places (i.e., activity locations), relative to a baseline of five-week average between 
January 3 to February 6, 2020. The places are divided into six different categories. For convenience, the 
“retail and recreation” mobility is used here to represent the overall mobility. As the Google mobility report 
is per day, the integral mobility M(t) here is essentially the cumulative mobility from a reference date. The 
Google mobility data was also acquired on July 12, which contains data up to July 7, 2020. 

Figure 2 shows 
0
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) as a function of 
( )M t

t
 for twenty hardest-hit counties in 

the United States from a reference date (five-day running-average first reaching 1.5) to July 11, 2020 for 
the fatality data. The reference date for all twenty counties can be found in Table S1. The first twenty days 
after the reference date are not shown as data points are scattered at the onset of an outbreak. It is clear that 
all twenty counties show roughly a linear plot. The R2 value of the linear fitting is listed in Table S1. Hudson 
in New Jersey shows the lowest R2 value which is probably related to its uncommon trend of daily fatality. 
The model works particularly well for New York City, which shows almost a perfect linear line. It should 
be noted that the raw fatality and mobility data are used here, without removing outlier points (such as the 
fatality spikes in a number of New Jersey counties, as seen in Figure 3). 
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The infection rate β and recovery rate γ can be conveniently estimated from Figure 2, tabulated in Table S1. 
Based on the input data, both the infection rate and the recovery rate have a unit of day-1. The average 
infection rate over all twenty counties is around 0.3 day-1, which means: if people behave normally (same 
mobility as the baseline), without recovery, COVID-19 cases will increase 30% every day (i.e., double 
roughly every three days). The average recovery rate is around 0.16 day-1. Under normal mobility, the 
corresponding basic reproduction number is ~1.9. From the recovery rate, one can infer an average recovery 
time of about 6 days. The recovery time is reasonable as it has been shown that infectious virus can be 
isolated from patient samples in the first eight days after illness but not afterwards.24 In addition, the mean 
serial interval between clinical onsets was estimated to be 5.8 days among 94 patients in China.25 With 
county-specific infection rate and recovery rate, one can use Eq. (2) to calculate the current infected (or 
daily fatality in the future) based on the cumulative mobility using infection rate and recovery rate in Table 
S1, as shown in Figure 3 (green lines). The model reproduces the daily fatality trend from the mobility data 
reasonably well. Figure 3 (blue lines) also shows the 35-day fatality prediction (20-day prediction for New 
York City) based on the information known then. In other words, the infection rate and recovery rate are 
different from Table S1 and are updating daily. The fatality prediction agrees reasonably well with the 
actual fatality. 

It is also instrumental to visualize the daily fatality and cumulative mobility of all counties together to 
further understand the model. Recast Eq. (2) as, 

0

( )
ln ( )

( )

I t
t M t

I t
 

 
    

 
.        (5) 

Now we can plot 
0

( )
ln

( )

I t
t

I t


 
  

 
 as a function of ( )M t   for all twenty counties, shown in Figure 4. 

As expected, data points from different counties collapse into a linear line with a slope of 1 passing the 
origin. Figure 4 essentially shows how COVID-19 infection will grow without any recovery, as a function 
of cumulative mobility, which is indeed exponential. Importantly, the cumulative mobility plays the role of 
time in dictating the COVID-19 outbreak. Therefore, the obvious non-medical strategy of fighting COVID-
19 pandemic is to control the cumulative mobility for every community. 

The mobility-informed disease-transmission model offers a quantitative guideline in terms of mobility. Let 
us go back to Eq. (1), from which a critical mobility mc can be defined, 

cm



 .          (6) 

If the current mobility is higher than mc, new infection outpaces recovery, resulting in outbreak, and vice 
versa. It is interesting to note that the critical mobility is analogous to the reciprocal of the basic 
reproduction number R0, yet with very different model assumptions and physical meaning of the infection 
rate. More importantly, the basic reproduction number is obtained without mobility information which 
varies over time, while the critical mobility is obtained using mobility information and does not vary for a 
community (unless strict face-mask mandate is imposed). Figure 5 plots the critical mobility against the 
population density for twenty counties. It appears that the critical mobility centered around 60% for all 
counties, except the New York City (at ~30%), which is not surprising due to its population density. The 
critical mobility seems to not vary much if a different delay time is chosen, as demonstrated for New York 
City and Los Angeles in Figure S4. Figure 5 also shows the month-average mobility from April to July 
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2020, which is consistent with the recent resurgence of COVID-19 cases especially in some of the southern 
states. 

The obvious message for policy makers is to utilize the critical mobility value to cap the daily mobility in 
monitoring reopening. As the results presented so far uses only the “retail and recreation” category of 
Google mobility, we also examined the “grocery and pharmacy”, “transit station” and “workplace” mobility. 
The other two categories are not included as the “residential” mobility varies generally in the opposite 
direction with the overall mobility, while the “parks” mobility has more complex behavior depending on 
the location. As shown in Figure S2 and S3, “transit station” and “workplace” work almost as well as “retail 
and recreation”, while “grocery and pharmacy” performs slightly worse. The critical mobility for different 
categories are given in Figure S3, such that the mobility of “transit station” should be capped around 50%, 
the mobility of “retail and recreation” and “workplace” should be capped around 60%. The critical mobility 
of “grocery and pharmacy” is around 90% which indicates it plays a lesser role in COVID-19 transmission. 
One could aggregate a composite weighted mobility from the above four types of data to better quantify 
mobility. We envision that the critical mobility using such a composite mobility will lie in-between the 
calculated critical mobility from individual types of mobility as shown in Figure S3. 

In addition to monitor daily mobility in reference to the critical mobility, the second message for policy 
makers is to use the average mobility to help devise reopening plan or impose stay-at-home orders. The key 
insight is that the average mobility over a period of time must be lower than the critical mobility mc to 
control COVID-19. For instance, if the mobility of a county in the past 30 days is 80% (assuming its mc is 
60%), this county may need to impose a stay-at-home order for the next 15 days (or 30 days) if the mobility 
can be reduced to 20% (or 40%) to average out the excessive mobility. 

Without considering explicitly the effects of public health intervention measures such as face masking, or 
changing of human behaviors over time, it is surprising to see this model works well using solely the 
mobility data. This is probably due to the fact that all large gatherings (schools, Universities, sports, concerts 
and political rallies) were mostly closed for the duration of the data used in this model, which could have 
very different transmission characteristics due to high local population density. In addition, the late adoption 
of mask mandates, lack of effective enforcement, and general reluctance in following mandates by the 
citizens, all contribute to a roughly constant infection rate for each community. Due to the recent second 
wave of COVID-19, more states and local governments move to mask mandates, a time-dependent infection 
rate may be needed to apply the model to data of coming months. An expected consequence is that the 
critical daily mobility mc will increase accordingly. For instance, let us assume that a face-mask mandate 
reduces 35% of the COVID-19 transmission compared to the pre-mandate period, the critical daily mobility 
will increase from a pre-mandate 60% to over 90%. Therefore, an effective face-mask mandate could raise 
the critical mobility back to normal level. For communities in which the mobility is difficult to regulate, 
face-mask mandate is necessary. On the other hand, for communities in which enforcing masks is not 
practical or popular, local government can choose to cap the daily mobility as a convenient tool to control 
COVID-19 spreading. 

 

Conclusions 

In summary, we developed a mobility-informed infectious disease model, based on the collision theory 
used in understanding the kinetics of gas-phase chemical reactions. This simplified model yields an 
analytical solution to the infectious population, with the cumulative mobility dominating in the exponent 
thus controlling the disease transmission. Using fatality data from late January to early July to infer 
infectious population, as well as mobility data from mid-February to early July, we show the COVID-19  
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transmission in twenty hardest-hit counties of the United States agrees well with this model. From the fitting 
parameters obtained from all twenty counties, it appears that the critical daily relative mobility is around 
60% (except the New York City, which is around 30%). This information can be utilized by different levels 
of governments to regulate reopening, particularly in the absence of mask mandates or enforcements.  
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Figure 1 

 

 

 

Figure 1.  A comparison between binary collisions of gas-phase molecules (left) and the encounters between 
people (right). As the number of collisions per time is proportional to velocity of the molecule, the number 
of human encounters per time is proportional to the mobility of the person. 
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Figure 2 

 

 

 

Figure 2. 
0

1 ( )
ln

( )

I t

t I t
 (time averaged natural logarithmic of relative infection) is plotted against 

( )M t

t
 

(average cumulative mobility) for twenty hardest-hit counties in the United States. Most counties show a 
linear relation, as expected from Eq. (4).  We use Google mobility in the category of “retail and recreation”, 
relative to a baseline value. The infectious population ratio is inferred from the fatality ratio with a delay 
time of 35 days (except New York City, for which the delay time is 20 days). The reference date t0 is 
selected as the five-day running average fatality reaches 1.5. The first twenty days of data are not shown 
due to significant noise. The daily fatality is up to July 11, 2020. 
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Figure 3 

 

 

Figure 3. Daily fatality (red dots) for twenty hardest-hit counties in the United States. Time origin is January 
22, 2020. The last day is July 11, 2020. The green lines are calculated according to Eq. (2) with the infection 
rate and recovery rate obtained from Figure 2, including all data available. The blue lines are also calculated 
according to Eq. (2), yet each fatality data point of a particular date is using slightly different parameters 
obtained from fitting data up to that date. Therefore, the blue line is the prediction using only information 
available then. The blue line prediction starts at 40 days after the reference date t0. 
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Figure 4 

 

 

Figure 4. 
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 is plotted as a function of ( )M t   for all twenty hardest-hit counties in the 

United States. The infectious population data and mobility data are the same as in Figure 2. The infection 
and recovery rates for each county are obtained from linear fitting in Figure 2. Data points from all counties 
collapse into a linear line with a slope of 1 passing the origin, as expected from Eq. (5).  
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Figure 5 

 

 

Figure 5. Critical daily mobility mc is plotted as a function of population density for the twenty hardest-hit 
counties in the United States. It appears that most counties have a roughly constant mc of around 60%, while 
mc of New York City is around 30%. Depending on the daily mobility, each community faces either 
outbreak (daily mobility is higher than mc) or slowdown (daily mobility is lower than mc). We also plot the 
average mobility for about 325 counties with populations higher than 200,000 from April to July (only 
about one week of mobility is available for July), each colored green (lower than 70%), orange (70% to 
80%), and red (over 80%), with the disk area proportional to the population. The increasing mobility in 
May to July shown in the figure is consistent with the drastically increasing number of cases (i.e., outbreaks) 
especially in some of the southern states. 
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Supporting Information 

Capping Mobility to Control COVID-19: A Collision-based Infectious Disease 
Transmission Model 

Yunfeng Shi1,* and Xuegang Ban2  
1Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 
2Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 

 

Table 1. Important model information for the twenty hardest-hit counties in the United States in terms of 
the reference date (five-day running average daily fatality reaches 1.5), the infection rate β , recovery rate 
γ and critical daily mobility mc. The parameters are obtained using all data up to July 12, 2020. 

State County 
Population 

Density  
(1/km2) 

Reference 
Date t0 

td  
(day)

β 
(1/day) 

γ 
(1/day) 

R2 mc 

California Los Angeles 2910 3/22/2020 35 0.26 0.14 0.98 55% 

Connecticut Fairfield 744 3/23/2020 35 0.37 0.26 0.94 69% 

Connecticut Hartford 2713 3/30/2020 35 0.40 0.27 0.95 67% 

Florida Miami-Dade 400 3/31/2020 35 0.13 0.07 0.87 55% 

Illinois Cook 2195 3/21/2020 35 0.31 0.18 0.96 60% 

Massachusetts Essex 582.6 3/29/2020 35 0.27 0.17 0.90 65% 

Massachusetts Middlesex 709.6 3/29/2020 35 0.29 0.17 0.94 58% 

Michigan Oakland 535 3/23/2020 35 0.24 0.15 0.96 63% 

Michigan Wayne 1148 3/22/2020 35 0.33 0.23 0.96 69% 

New Jersey Bergen 1499.8 3/27/2020 35 0.21 0.12 0.90 54% 

New Jersey Essex 2398 3/27/2020 35 0.28 0.16 0.93 58% 

New Jersey Hudson 5566 3/30/2020 35 0.16 0.10 0.61 62% 

New Jersey Middlesex 1496 3/27/2020 35 0.19 0.10 0.90 54% 

New Jersey Passaic 8563.6 3/27/2020 35 0.22 0.13 0.93 58% 

New Jersey Union 2014 3/30/2020 35 0.20 0.14 0.84 67% 

New York Nassau 1840 3/23/2020 35 0.31 0.20 0.95 65% 

New York New York 10715 3/13/2020 20 0.42 0.12 1.00 29% 

New York Suffolk 632 3/21/2020 35 0.34 0.23 0.93 68% 

New York Westchester 760 3/26/2020 35 0.28 0.17 0.98 62% 

Pennsylvania Philadelphia 4337 3/27/2020 35 0.26 0.16 0.90 60% 
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Figure S1 

 

 

(a) 

 

(b) 

Figure S1. Google mobility as a function of time for the twenty hardest-hit counties in the United States. 
Time origin is January 22, 2020. (a) Retail and recreation (red), grocery and pharmacy (green) and parks 
(blue). (b) Transit station (red), workplace (green) and residential (blue). Parks and residential mobility 
behave very differently from the rest four categories of mobility. Note that the raw data from google 
mobility is plotted here. Relative mobility m used in our model is calculated from raw data x by m = (100 
+ x)/100. 
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Figure S2 

 

(a) 

 

(b) 

Figure S2. (a) 
0

1 ( )
ln
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t I t
 (time averaged natural logarithmic of relative infection) is plotted against 

( )M t

t
 

(average cumulative mobility) for the twenty hardest-hit counties in the United States using different 
categories of Google mobility as labeled. The one using retail and recreation mobility is the same plot as 
shown in Figure 2. (b) Daily fatality (red dots) and calculated fatality (green lines) using different categories 
of Google mobility. The one using retail and recreation is the same plot as shown in Figure 3 without the 
prediction.  
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Figure S3 

 

 

Figure S3. Critical daily mobility mc is plotted as a function of population density for the twenty hardest-
hit counties in the United States based on different categories of Google mobility. The critical daily mobility 
using the retail and creation mobility is the same as shown in Figure 5. 
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Figure S4 

 

 

 

Figure S4. 
0
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 (time averaged natural logarithmic of relative infection) is plotted against 
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(average cumulative mobility) for New York city and Los Angeles, with different time delay td in days. For 
New York City, the linearity gets worsened either below or above 20 days. Similar observation can be made 
for Los Angeles, with 30 or 35 days both work well. It is also interesting to see that, the critical mobility 

( cm



 , X-intercept) stays roughly the same for different values of time delay td for both New York City 

and Los Angeles, if fitting is applied to the linear portion. 
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