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Abstract

The novel coronavirus (COVID-19) was first identified in China in December 2019.

Within a short period of time, the infectious disease has spread far and wide. This

study focuses on the distribution of COVID-19 confirmed cases in China—the original

epicenter of the outbreak. We show that the upper tail of COVID-19 cases in Chinese

cities is well described by a power law distribution, with exponent around one in

the early phases of the outbreak (when the number of cases was growing rapidly)

and less than one thereafter. This finding is significant because it implies that (i)

COVID-19 cases in China is heavy-tailed and disperse; (ii) a few cities account for a

disproportionate share of COVID-19 cases; and (iii) the distribution generally has no

finite mean or variance. We find that a proportionate random growth model predicated

by Gibrat’s law offers a plausible explanation for the emergence of a power law in the

distribution of COVID-19 cases in Chinese cities in the early phases of the outbreak.

Keywords: Coronavirus; COVID-19; Gibrat’s law; heavy-tailedness; Pareto distribu-

tion; power law; proportionate random growth.

1 Introduction

The coronavirus disease 2019 (COVID-19) was first discovered in Wuhan region of China in

December 2019 (Zhu et al., 2020). The contagious disease quickly spread within China, de-
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spite unprecedented and aggressive containment measures, and crossed the borders reaching

every corner of the world within a short period of time, with the World Health Organization

(WHO) declaring COVID-19 outbreak a global pandemic on March 11, 2020 (Cucinotta

and Vanelli, 2020). This study focuses on the distribution of COVID-19 confirmed cases in

China—the original epicenter of the outbreak—in the first wave of the epidemic. The pres-

ence of Chinese cities with very large number of COVID-19 cases, the very wide dispersion

in COVID-19 cases across China, and the effect of the pandemic on the economy and welfare

make it crucial for researchers and policymakers alike to better understand COVID-19 dis-

tribution for effective planning and policy design as well as more efficient use of government

resources.

In this article, we demonstrate that the right tail of the distribution of COVID-19 con-

firmed cases in Chinese cities is well-characterized by a power law (Pareto) distribution,

meaning that the probability that a number of COVID-19 cases is more than x is roughly

proportional to x−γ, i.e., Prob(X > x) ∼ x−γ, where γ is the power law (Pareto) exponent.1

While the estimated power law exponent is γ ' 1 in the early phases of the outbreak, when

the number of cases was rising precipitously, it is γ < 1 thereafter, which indicates the fit-

ted power law distribution in general has no finite moments, including mean and variance.

The power law fit is robust to a range of estimation methods and goodness-of-fit tests, and

the distribution outperforms several alternative distributions in fitting the data. Power law

distributions are characterized by heavy tails, which make the likelihood of extreme (upper-

tail) events more typical. In case of COVID-19, this implies an extremely large number of

cases becomes more likely, which is actually true for China, where a few cities had extremely

large number of cases (Han et al., 2020).

Power laws are extraordinarily ubiquitous in the social and natural sciences, having been

confirmed for the distributions of income and wealth (Pareto, 1896; Champernowne, 1953;

Wold and Whittle, 1957; Singh and Maddala, 1976; Klass et al., 2006; Benhabib et al., 2011;

Toda, 2012), consumption (Toda and Walsh, 2015; Toda, 2017), firm size (Stanley et al.,

1995; Axtell, 2001; Luttmer, 2007), farmland (Akhundjanov and Chamberlain, 2019), city

1For a detailed review of power laws, see Reed (2001), Newman (2005), Sornette (2006) and Gabaix

(2009, 2016). Notably, the power law distribution with exponent γ ' 1 generates Zipf’s law (Zipf, 1949).
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size (Krugman, 1996; Gabaix, 1999; Ioannides and Overman, 2003; Berliant and Watanabe,

2015; Devadoss et al., 2016), natural gas and oil production (Balthrop, 2016), carbon dioxide

(CO2) emissions (Akhundjanov et al., 2017), forest fires (Malamud et al., 1998), earthquakes

(Bak and Tang, 1989), frequency of words (Zipf, 1949; Irmay, 1997), and even university

research activities (Plerou et al., 1999). The omnipresence of power laws is partly explained

by the fact that they are preserved over an extensive array of mathematical transformations

(Gabaix, 2009). In fact, any multiplicative transformation of this distribution will, in theory,

be power-law distributed as well. This explains why a power-law distribution is also referred

to as a scale-free distribution. Our paper contributes to this body of work by presenting

evidence for the existence of power law in an epidemiological context.

An interesting aspect of power law distribution is that it is the macro-level steady-state

phenomenon that, in theory, can arise from a micro-level proportionate random growth

process, known as Gibrat’s law (Gibrat, 1931). According to Gibrat’s law of proportionate

growth, each unit’s (e.g., city’s) growth rate is drawn randomly and independently of its size,

meaning units (whether large or small) on average grow at similar rates.2 This empirical

regularity, similar to power laws, has been documented extensively in the social and natural

sciences.3 In this study, we formally test for proportionate random growth at micro-level by

analyzing growth rates of COVID-19 cases in Chinese cities. We find that a proportionate

random growth model is a plausible power-law generating mechanism for COVID-19 cases

in China in the early phases of the outbreak, when the number of cases was growing. In

the later phases of the outbreak, as the number of cumulative cases starts to stabilize, a

proportionate random growth model becomes less plausible. This is expected as, after all,

Gibrat’s law of proportionate growth is a model of growth. As with any theory, we remain

cognizant of Gabaix’s (2009) remark that, “the main question of empirical work should be

how well a theory fits, rather than whether it fits perfectly.”

There are a couple of noteworthy implications of the findings presented in this article.

2For a detailed review of Gibrat’s law, see Sutton (1997).
3In particular, Gibrat’s law has been shown to explain the growth process of consumption (Battistin

et al., 2009), firms (Luttmer, 2007), farms (Clark et al., 1992), cities (Ioannides and Overman, 2003; Eeck-

hout, 2004), countries (Rose, 2006; González-Val and Sanso-Navarro, 2010), carbon dioxide (CO2) emissions

(Ahundjanov and Akhundjanov, 2019), and bird population (Keitt and Stanley, 1998), among others.
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First, and foremost, the analysis uncovers potential heavy-tailedness and tail risk property

in COVID-19 cases in Chinese cities, which has a direct implication for empirical research.

Specifically, it shows that thin-tailed distributions (e.g., the normal) are not appropriate

for COVID-19 cases in Chinese cities as such distributions dismiss extremely large number

of cases as an improbable observation. Our analysis reveals that even some, more com-

mon heavy-tailed distributions (e.g., the lognormal and exponential) are not plausible in

this context. This is important because distributions like normal or lognormal are often

‘go-to’ distributions in empirical work, and the trend of adopting these distributions with

little or no a priori justification or on the basis of convenience has been observed in the

rapidly expanding COVID-19 literature. On the other hand, a power-law distribution is

able to capture the heavy upper-tail of the data more closely, outperforming a number of

alternative distributions. For sound analysis of the effects of COVID-19 pandemic, using

statistically justified and robust methods that account for possible heavy-tailedness and tail

risk properties is integral (Distaso et al., 2020).

Second, given the estimated Pareto exponent is generally less than one (γ < 1), the

distribution of COVID-19 cases in Chinese cities is heavy-tailed and so disperse that obser-

vations near the mean account for little of the cumulative distribution of COVID-19 cases.

This implies talking about the typical or average number of COVID-19 cases is inconse-

quential as it does not represent the majority of cases. In fact, even though it is possible to

compute sample mean and variance for the observed data, these moments are generally non-

convergent. Therefore, the distribution cannot be well characterized by quoting its mean

and variance. Instead, quantile analysis or order statistics would be a more appropriate

approach to describing the data.

Finally, the heavy upper-tail of the distribution is suggestive of concentration of COVID-

19 cases in China, with the total cases essentially being determined by a few cities that bore

the brunt of the outbreak, which is true in case of China (Han et al., 2020). This has

implications for more effective epidemiological planning and policy design as by directing

resources to disease epicenters (i.e., cities located in the upper tail), the spread of the

outbreak can potentially be contained or, at least, slowed. Moreover, by understanding

characteristics of these upper-tail cities that make them especially prone to the infection,
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more effective preventative measures can be designed and implemented to combat possible

subsequent waves of the pandemic.

The literature in this area is thin, but gradually forming. In the concurrent work, Beare

and Toda (2020), studying the distribution of COVID-19 confirmed cases for US counties,

find that the upper tail of this distribution follows a power law, with Pareto exponent close

to 1. Similarly, Blasius (2020), examining the distribution of COVID-19 confirmed cases and

deaths for US counties, concludes that both distributions exhibit a power-law behavior. Our

paper contributes to this nascent line of literature by exploring the distribution of COVID-

19 confirmed cases in China—the origin of the outbreak. A distinctive feature of our study

is that COVID-19 cases in China affords us to capture the entire life cycle of the pandemic

(at least in its first wave): outbreak detection, spread, peak, and decline to zero new daily

cases. In contrast, the analyses presented in Beare and Toda (2020) and Blasius (2020) are

based on datasets that were largely evolving at the time, as both the United States and a

whole host of other countries were battling to contain the spread of the virus when these

articles were initially written. Thus, the results of the above studies are likely subject to

change with newer data.

The remainder of the paper is structured as follows. Section 2 introduces the data for

the analysis. Section 3 presents the methods and findings for power law analysis. Section 4

reviews a prominent mechanism that can generate power-law distribution, and discusses its

plausibility in the case examined in this study. Section 5 provides some concluding remarks.

2 Data

Daily data on the cumulative number of COVID-19 confirmed cases for Chinese cities come

from Harvard Dataverse (China Data Lab, 2020). The dataset includes 339 cities in China

and tracks the COVID-19 cases starting from January 15, 2020. Our main analysis focuses

on COVID-19 cases as of May 23, 2020, the latest data on cumulative cases at the time of

writing this paper. By May 23, the number of cumulative cases in China had stabilized,

with zero new daily cases, which suggests the containment of the first wave of the outbreak
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in the country. Our analysis thus allows us to understand the distribution of COVID-19

cases in its first complete life cycle.

Figure 1 shows the location of Chinese cities with confirmed COVID-19 cases as of May

23 on the map of China. As illustrated in Figure 2, most Chinese cities in the sample had

reported a positive number of cases by February 8, 2020. Figure 3 shows the evolution of

empirical distribution of COVID-19 cases in Chinese cities over select dates. It is apparent

that the distribution has been right-skewed, with heavier right tail. Also, the distribution

has been gradually sliding rightward over time, which reflects growing number of COVID-19

cases across Chinese cities.

In Figure 4, we plot the ratio of COVID-19 cases to population size in Chinese cities

between January 15, 2020 and May 23, 2020.4 It is evident that COVID-19 cases represented

a minute fraction of total population throughout the study period, with majority of cities

having less than 0.00025 fraction of their population infected by the virus. Even Wuhan,

a city pummeled by the outbreak, had only 0.006 fraction of its population with confirmed

COVID-19 infection by the end of the first wave of the pandemic. This shows that the

population of cities in the beginning, and throughout the first wave, of the epidemic does

not limit its spread, meaning the population of cities can effectively be treated as “infinite”

relative to COVID-19 cases.

A power law analysis is data intensive, with Clauset et al. (2009) recommending a mini-

mum of 50 observations for reliable analysis. This condition is well-satisfied here, including

for the upper tail of our sample, as discussed further below.

3 Power law analysis

In this section, we examine the distribution of the cumulative number of COVID-19 con-

firmed cases for Chinese cities. We first present the methodology for power law analysis,

followed by estimation results and diagnostics.

4We use the 2020 population data for Chinese cities collected from United Nations (2018).
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3.1 Power-law parameter estimation

Suppose X is a random variable whose data generating process is a continuous power law

(Pareto) distribution. The corresponding probability distribution function (PDF) is specified

as

f(x) =
α− 1

xmin

(
x

xmin

)−α
, (1)

where x is an outcome of X for x ∈ R+, where R+ = {x ∈ R|x > 0}, xmin is the threshold

beyond which (i.e., x ≥ xmin) power-law behavior sets in, and α is the power-law (Pareto)

exponent, which is a parameter of interest. The mth non-central moment for the power law

distribution is given by

〈xm〉 =

∫ ∞
xmin

xmf(x)dx =

(
α− 1

α− 1−m

)
xmmin, ∀α > m+ 1. (2)

Hence only the first bα− 1c moments exist for m < α− 1. Although higher-order moments

can be calculated for any finite sample, these estimates do not asymptotically converge to

any particular value. Given the sample x1, . . . , xn, the joint log-likelihood function can be

written as

lnL(α;x1, . . . , xn) =
n∑
i=1

[
ln(α− 1)− lnxmin − α ln

xi
xmin

]
= n ln(α− 1)− n lnxmin − α

n∑
i=1

ln
xi
xmin

. (3)

First-order condition yields the maximum likelihood estimate (MLE) of

αMLE = 1 + n

(
n∑
i=1

ln
xi
xmin

)−1
(4)

with the standard error (SE) of the estimate given by

SE(αMLE) =
√
n

(
n∑
i=1

ln
xi
xmin

)−1
=
αMLE − 1√

n
. (5)
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It is standard to report the counter-cumulative parameter γ = αMLE − 1, known as the

Hill estimator (Hill, 1975), instead of (4). The Hill estimator, which is obtained from (4)

after a small-sample adjustment, takes the following form

γHill =
n− 2∑n−1

i=1 (lnxi − lnxmin)
(6)

with the standard error of the estimate given by

SE(γHill) =
γHill√
n− 3

. (7)

The power-law fit to data is typically illustrated by plotting the counter-cumulative

distribution function (counter-CDF)—also known as the survival function—on doubly log-

arithmic axes. The counter-CDF of a power law is specified as

Prob(X > x) =

(
x

xmin

)−α+1

=
k

xγ
, (8)

where k = xα−1min is a constant. Taking the log of both sides of (8) yields a well-known linear

relationship between log counter-cumulative probability (i.e., ln Prob(X > x)) and log data

(i.e., ln x), with the counter-cumulative parameter −γ being the slope of the line.

An alternative approach to estimating the counter-cumulative parameter γ is through

a regression-based technique. Specifically, estimate the following regression equation with

ordinary least squares (OLS)

ln(ranki) = φ− γOLS lnxi + εi, (9)

where ranki is observation i’s rank in the distribution, φ is the intercept term, γOLS is the

parameter of interest, and εi is the idiosyncratic disturbance term. Equation (9) also shows

that a power law distributed process appears approximately linear on a log-log plot of ranki

against xi, with slope of −γOLS. The asymptotic standard error for γOLS is given by (Gabaix
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and Ibragimov, 2011)

SE(γOLS) =
γOLS√
n/2

. (10)

An important consideration in power law analysis is the specification of the threshold

parameter xmin, beyond which power-law behavior takes hold. There are several approaches

proposed in the literature in this regard. For instance, one strand of literature suggests

to select xmin at either the 95% quantile of the data or the point where empirical PDF

or CDF roughly straightens out on a log-log plot (Gabaix, 2009). Another strand of the

literature simply uses the largest
√
n or n/10 observations in the analysis (Farmer et al.,

2004). Clearly, these approaches are rather arbitrary and thus suffer from a certain degree of

uncertainty about whether they can capture the true starting point of power-law behavior.

If the arbitrarily selected xmin is smaller than the true value of xmin, the estimate of power-

law exponent will be biased as it attempts to fit non-power law data to a power law model.

Conversely, if xmin exceeds the point where the true power-law behavior begins, it results

in discarding valuable data and causes the standard error to increase. Importantly, Perline

(2005), investigating the empirical consequences of this concern, shows that sufficiently

truncated Gumbel-type distributions (e.g., the lognormal) can also produce a linear pattern

on a log-log plot, hence imitating the power law distribution.

We adopt a more systematic, data-driven procedure to select xmin (Clauset et al., 2009).

The main advantage of this method is that it allows the analyst to identify the power-

law portion of the data (if any) in a more objective and principled manner, balancing the

tradeoff between setting xmin too small or too high relative to the true value of xmin. This

approach essentially treats each observation in the sample as a potential candidate for xmin

and selects the best candidate based on the minimization of the Kolmogorov-Smirnov (KS)

goodness-of-fit statistic, which is given by

KS = max
x≥xmin

|E(x)− F̂ (x)|. (11)

In (11), E(x) is the empirical CDF and F̂ (x) is the estimated power-law CDF. The optimal
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xmin minimizes the distance between the empirical CDF and the estimated power-law CDF.

The computational algorithm takes the following form:

Step 1: Set xmin = x1;

Step 2: Perform power-law parameter estimation using x ≥ xmin;

Step 3: Compute the KS statistic in (11);

Step 4: Repeat steps 1-3 for all xi for i = 1, . . . , n;

Step 5: Select xmin with the lowest KS statistic.

3.2 The goodness-of-fit tests

Significant parameter estimates alone do not provide sufficient evidence in favor of power-

law fit to data. Power-law analysis is accompanied by a series of diagnostic tests. To guard

against potential misspecification issues, one needs to conduct a goodness-of-fit test and

compare the power-law fit to data with those of alternative distributions.

Gabaix and Ibragimov (2011) proposed ‘rank – 1/2’ test to verify the goodness-of-fit of

power law distribution. Let x∗ be defined as

x∗ =
Cov[(lnxi)

2, lnxi]

2Var(ln xi)
. (12)

Then, regress bias-adjusted log rank against the log data and a quadratic deviation term,

as in

ln

(
ranki −

1

2

)
= φ+ ζ lnxi + q(lnxi − x∗)2 + εi. (13)

The goodness-of-fit statistic is specified as q/ζ2. The null hypothesis of power-law dis-

tributedness is rejected if q/ζ2 > 1.95(2n)−1/2, where the latter term is the goodness-of-fit

threshold.

Further, Clauset et al. (2009) suggest comparing power-law fit with those of other com-

peting (heavy-tailed) distributions, such as the lognormal and exponential. Accordingly, we

fit these alternative distributions to the data by MLE and provide visual comparisons of

the distributions’ fits on a doubly logarithmic plot as detailed above. In addition to con-
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ventional model fit measures, such as the Akaike information criterion (AIC) and Bayesian

information criterion (BIC), we also implement the likelihood ratio test of Clauset et al.

(2009) for a formal comparison. The likelihood ratio statistic is specified as

R =
n∑
i=1

[
ln f̂1(xi)− ln f̂2(xi)

]
, (14)

where f̂1(xi) and f̂2(xi) are the probabilities predicted by power law and an alternative

distribution, respectively. If the likelihood ratio statistic is positive, it indicates the power

law distribution fits the data more closely. If it is negative, then an alternative distribution

yields a better fit.5

3.3 Application

The methods discussed in Sections 3.1 and 3.2 are applied to the cumulative number of

COVID-19 confirmed cases in Chinese cities (x) as of May 23, 2020. The main results from

power law analyses appear in Tables 1-2 and Figure 5. As noted earlier, the requirement

placed on sample size for credible power law analysis is a minimum of 50 observations

(Clauset et al., 2009). This condition is well-satisfied here as the upper-tail sample contains

151 observations.6 The Hill and OLS estimates of the counter-cumulative parameter γ are

around 0.80 and statistically different from zero. Given m < 0.80, the moments of the

fitted power law distribution (including mean and variance) are generally non-convergent.

The goodness-of-fit test of Gabaix and Ibragimov (2011) suggests we fail to reject the null

hypothesis of power-law distributedness of COVID-19 cases in China.

Figure 5 depicts the power law and competing heavy-tailed distributions’ fits to the data.

It is clear that the power law distribution generally fits the data better than the rivaling

distributions, particularly in the lower to mid quantiles of the upper tail, where the observed

data forms a distinct linear pattern. The power law slightly overestimates the frequency

of the largest cases in the extreme upper tail (after log confirmed cases of about 7.8),

5For other properties of the likelihood ratio statistic, including its advantage over other goodness-of-fit

measures and the derivation of its p-value, see Clauset et al. (2009).
6The KS estimate of xmin is 24, as reported in Table 1. Consequently, 151 observations out of 339, which

satisfy x ≥ 24, are used in power law analysis in this case.
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where the fitted distribution decays relatively slowly. The fits of competing distributions—

the lognormal and exponential—noticeably deviate from the empirical data throughout the

domain. Formal goodness-of-fit measures in Table 2 provide further support in this regard.

As is evident from AIC and BIC, as well as large positive likelihood ratio statistics, the power

law distribution markedly outperforms both the lognormal and exponential distribution in

fitting COVID-19 cases in China, which is in line with our observations from Figure 5.

Therefore, we reject both the lognormal (and, by extension, the normal) and exponential as

an adequate specification for COVID-19 cases in Chinese cities.

In order to verify the sensitivity of our findings to the (data-driven) choice of xmin, we next

perform power-law estimation and diagnostics with alternative candidates for xmin. Figure 6

presents our results, where, as reflected by the horizontal axes, we treat each observation in

the sample as a potential choice for xmin. In panels (a) and (b), we plot the Hill and OLS

estimates, respectively, of power law parameter γ as a function of xmin. This amounts to

what is commonly known as a Hill plot, which is a visual approach to choosing xmin (Clauset

et al., 2009). Given the estimates of γ appear roughly stable beyond the data-driven choice

of xmin (i.e., the vertical dashed line), this suggests that the data-driven choice of xmin is also

plausible under the visual selection technique of xmin. Furthermore, the goodness-of-fit tests

in panels (c) and (d) establish that for any choice of xmin: (i) we consistently fail to reject

the null hypothesis of Gabaix and Ibragimov (2011) goodness-of-fit test, and (ii) the power

law fit emerges superior according to BIC (and AIC, which is omitted in the interest of

space). This illustrates the robustness of our observation that the distribution of COVID-19

cases in China is consistent with the characterization of power laws.

Lastly, we conduct a power law analysis through time to show a development, and

possible trend, in power law exponent γ. This exercise also helps us test the robustness

of our main finding to temporal variations and idiosyncrasies in the sample of COVID-19

cases in China. We fit the model to each day between January 15, 2020 and May 23, 2020,

with xmin identified for each date using the method detailed in Section 3.1. According to

panels (a) and (b) of Figure 7, the estimated value of power law parameter γ grows rapidly

during the early days of the pandemic, when the virus was spreading most intensely, with

the estimates of γ hovering around unity between late January and early February. By
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mid-February, the COVID-19 situation in China largely stabilized, which explains the trend

forming around γ ' 0.8 in the period thereafter. Of particular interest for our subsequent

analysis is the observation that γ ' 1 in the early phases of the outbreak. This indicates

the existence of a finite mean for the distribution of COVID-19 cases in China during that

time frame. Moreover, the diagnostic tests in panels (c) and (d) of Figure 7 indicate that

the power law fit to COVID-19 cases in Chinese cities is remarkably robust over the first

wave of the pandemic: (i) we consistently fail to reject the null hypothesis of Gabaix and

Ibragimov (2011) goodness-of-fit test, and (ii) the power law fit remains superior according

to BIC (and AIC, which is omitted in the interest of space). This shows that our main

results reported in Tables 1-2 and Figure 5 are not driven by the nature of a sample used in

that analysis, but rather power law is a genuine phenomenon in this case. Granted that the

number of confirmed cases is affected by the underlying infective process as well as detection

process, the power law analysis through time also establishes the robustness of our main

finding to any potential changes in the detection process of COVID-19 cases over the course

of the first wave of the pandemic.

It is worth mentioning that the distribution in (1) is a representative from the class of

regularly varying distributions (i.e., general power law). The power law estimation frame-

work presented in this study is consistent under the assumption that a given data comes

from a pure power law, which forms a small subset of general power laws. On the other hand,

the estimation framework reviewed in Voitalov et al. (2019) is shown to be consistent under

the more general assumption that the data comes from any impure power law. Indeed, there

are more flexible forms of the Pareto distribution—often with an extra parameter and/or of

mixture form—that allow for capturing extreme upper-tail probabilities more closely. Such

generalized, or, composite, distributions have been shown to improve upon the benchmark

power law distribution in fitting empirical data (see, for instance, Giesen et al., 2010, Patel

and Schoenberg, 2011, Ioannides and Skouras, 2013, Luckstead and Devadoss, 2017, and Ni-

gai, 2017). The main goal of the present study is to determine whether a power law generally

approximates the upper-tail COVID-19 cases in China, which has an implication for under-

standing tail risk properties of COVID-19, and not the investigation of various distributions

within the power law family, which is beyond the scope of this research. Our estimation
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results and diagnostic tests provide empirical evidence that the right-tail of COVID-19 cases

in Chinese cities is well-characterized by the power law (Pareto) distribution.

4 Explaining a power law in COVID-19 cases in China

There are different mechanisms proposed in the literature that can generate power laws.7 In

this section, we explore whether a growth model involving Gibrat’s law (Gibrat, 1931) can

potentially explain the emergence of the observed power-law behavior in COVID-19 cases

in China. We focus on Gibrat’s law specifically granted a random multiplicative growth is

the prevalent attribute of models explaining the genesis of power laws (Reed, 2001; Gabaix,

1999, 2009).

4.1 A link between power law and Gibrat’s law

Suppose Sit is the size of a stochastic process of interest for unit i at time t. For instance,

COVID-19 cases in city i up to day t. According to Gibrat’s law, the size of the process (at

least in the upper tail) exhibits random multiplicative growth, evolving as

Sit+1 = µit+1Sit (15)

over time, where µit+1 is independently and identically distributed (i.i.d.) random variable

with an associated PDF of f(µ). Hence, random growth factor µit+1 = Sit+1/Sit is inde-

pendent of the current size Sit, which is commonly known as Gibrat’s law of proportionate

growth. Gibrat’s law alone is not sufficient to give rise to a power law. In fact, it leads to

the lognormal distribution, which was noted by Gibrat (1931) himself early on.8 Gabaix

(1999) showed that power law can arise from Gibrat’s law with an auxiliary assumption, a

sketch of which we provide below.

7For a detailed review, see Reed (2001), Mitzenmacher (2004), Newman (2005), and Gabaix (2016).
8Interestingly, many examples used by Gibrat (1931) have recently been shown to actually follow a

Pareto-type distribution rather than the lognormal (Akhundjanov and Toda, 2020).
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Let Gt(s) = Prob(St > s) be the counter-CDF of St. Substituting (15) into the counter-

CDF, the equation of motion for Gt+1(s) boils down to

Gt+1(s) = Prob(St+1 > s)

= Prob

(
Sit >

s

µt+1

)
=

∫ ∞
0

Gt

(
s

µ

)
f(µ)dµ. (16)

If there is a steady state process Gt = G, then

G(s) =

∫ ∞
0

G

(
s

µ

)
f(µ)dµ. (17)

The mechanism ensuring that power law distribution is the (only) suitable steady state

distribution in (17) is if St has lower reflecting barrier Smin, i.e., the minimal size of the

process, such that St > Smin (Gabaix, 1999, Proposition 1). In this case, G(s) = k
xγ

, from

(8). Thus, Gibrat’s law combined with a lower bound on St can plausibly yield power law

distribution.

The standard theory of proportionate random growth is valid if the mean of the sta-

tionary distribution is finite (Gabaix, 1999, 2009). Our analysis in Section 3.3 uncovers a

power law in COVID-19 cases (as of May 23, 2020) with no finite mean, which seemingly

indicates that the specific power law for COVID-19 cases in China cannot be generated

by the standard model for Gibrat’s law of proportionate growth. But, as our temporal

power-law analysis has demonstrated (see Figure 7), the fitted power-law distribution does

have a finite mean during the early phases of the outbreak (as γ ' 1), when the number of

confirmed cases was rising. This implies a proportionate random growth model can offer a

possible explanation for the emergence of a power law in the distribution of COVID-19 cases

in the early phases of the outbreak.9 In the later phases of the outbreak, as the number

of cumulative cases starts to stabilize, a proportionate random growth model becomes less

and less plausible, as E(µit) = 1 in (15). This is anticipated as, after all, Gibrat’s law of

proportionate growth is a model of growth. Therefore, we formally test for proportionate

9Similar observation was made by Beare and Toda (2020) for COVID-19 cases in US counties.
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random growth at micro-level by analyzing growth rates of COVID-19 cases in Chinese cities

during the early days of the pandemic.

4.2 Testing for Gibrat’s law

For empirical purposes, we consider a continuous time representation of Gibrat’s law, given

by geometric Brownian motion

dSit = gSitdt+ νSitdBit, (18)

where g is the expected growth rate, ν > 0 is the volatility, and Bit is a standard Brownian

motion that is i.i.d. across cross-sectional units. Applying Itô’s lemma to (18) yields

d lnSit = (g − ν2/2)dt+ νdBit, (19)

meaning the cross-sectional distribution of Sit, with the initial size of Si0, is lognormal

ln(Sit/Si0) ∼ N [(g − ν2/2)t, ν2t]. (20)

Equation (19), along with Proposition 1 in Gabaix (1999), suggests that growth rates

under Gibrat’s law can be described by a random walk process of the form (Sutton, 1997;

Eeckhout, 2004; Gabaix, 2009)

lnSit = lnSit−1 + ζit. (21)

Setting the random growth component ζit = φi+ξit, where φi is the effect of unit-wide factors

and ξit is an i.i.d. random effect, produces a random walk with drift. A standard method to

test for Gibrat’s law is through estimation of the following cross-sectional regression equation

lnSit = φ+ ρ lnSit−1 + ξit. (22)

In (22), ρ is the parameter of interest, with ρ ' 1 providing statistical evidence that the

growth process of St adheres to Gibrat’s law.
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An alternative approach for testing for proportionate random growth is through estima-

tion of the cross-sectional regression equation of the form (Beare and Toda, 2020)

∆ lnSit+1 = β0t + β1t lnSit + β2t∆ lnSit + β3Dit + eit, (23)

where ∆ is the difference operator, ∆ lnSit+1 is the COVID-19 growth rate in city i between

day t and t + 1, ∆ lnSit is the COVID-19 growth rate in city i between day t − 1 and

t, Dit is the number of days between day t and the day of the first COVID-19 case in

city i, and eit is an i.i.d. error term. The parameters of interest are β1t, β2t, β3t, with

β1t ' 0, β2t ' 0, β3t ' 0 providing empirical evidence for the presence of Gibrat’s law. A

distinctive feature of equation (23) is the inclusion of age distribution—days since outbreak

for each city—in addition to the growth rate. Obtaining age distribution has traditionally

been cumbersome in power law analysis (e.g., of cities). Fortunately, our data conveniently

affords us this variable as we observe the entire timeline of the evolution of COVID-19 across

Chinese cities.

4.3 Application

As discussed in Section 4.1, a proportionate random growth model can potentially explain

a power law in the data during the early phases of the pandemic. We thus apply the

methods reviewed in Section 4.2 to each day between January 23, 2020, and February 2,

2020 (inclusive). The reason for choosing these dates is twofold. First, at least 30 cities had

a nonzero number of cumulative cases (Sit > 0) during that period (see Figure 2). Second,

the estimated power law exponent is γ ' 1 between late January and early February (see

Figure 7), which is a condition necessary for the validity of a proportionate random growth

process, as noted above.

Figure 8 shows the estimation results for ρt in equation (22) for t = Jan 23, . . . ,Feb 2.

Clearly, the estimates of ρt are statistically indistinguishable from unity (ρt ' 1), which

confirms the random growth model predicated by Gibrat’s law. The 95% confidence interval

shrinks moving left to right, which can be attributed to increasing sample size (i.e., increasing

number of cities with confirmed cases) over time (see Figure 1).
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Figure 9 reports the estimation results for β0t, β1t, β2t, β3t in equation (23) for t =

Jan 23, . . . ,Feb 2. Panels (b)–(d) contain the estimates for β1t, β2t, β3t, which are of pri-

mary interest here. It is apparent that these estimates are mostly equal to zero (β1t '

0, β2t ' 0, β3t ' 0), which indicates the growth rate between days t and t + 1 does not

depend on the number of cases on day t, nor on the growth rate between days t − 1 and

t, nor on the number of days since the first confirmed case. This provides strong evidence

for the existence of Gibrat’s law for COVID-19 cases in Chinese cities during the period

under consideration. The estimates of β0t in panel (a) show that the expected growth rate

of confirmed cases was indeed positive between January 23 and February 2, with a general

downward trend.

In summary, confirmation of Gibrat’s law provides support for a proportionate random

growth model as a plausible power-law generating mechanism for COVID-19 cases in China

in the early phases of the outbreak, when the number of cases was still rising. In addition,

confirmation of Gibrat’s law implies that COVID-19 cases in Chinese cities grew propor-

tionately during the early phases of the pandemic (when the number of cases was rising),

with the underlying stochastic process remaining the same for all cities. This means each

city’s COVID-19 growth rate was drawn randomly and independently of its size. In the later

phases of the outbreak, as the number of cumulative cases starts to stabilize, a proportionate

random growth model becomes less plausible, as E(µit) = 1 in (15), hence the underlying

stochastic process is no longer the same for all cities.

5 Conclusion

The dynamics of the novel coronavirus pandemic are complex and determined by a myriad

of factors, which are yet to be fully understood. In spite of the apparent chaotic evolution

of the pandemic, surprising regularities can still be observed in the size distribution and

growth process of COVID-19 cases. In this article, we examined the distribution of the

novel coronavirus cases in China—the original epicenter of the ongoing pandemic. We

presented empirical evidence for a power law distribution for the upper tail of the number

of COVID-19 cases in Chinese cities. The power law fit is robust to different estimation
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methods, passes rigorous diagnostic tests, and fits the data better than a number of natural

alternatives. As such, the power law surmounts the statistical hurdle.

The implications of the power law fit are that (i) the number of COVID-19 cases in

Chinese cities is heavy-tailed and disperse; (ii) mean and variance are generally not finite,

so that average number of COVID-19 cases is problematic to talk about; and (iii) COVID-19

cases are concentrated within a few cities that account for a disproportionately large amount

of infections. Admittedly, there may always be a distribution that fits the data better than a

power law granted there are virtually an infinite number of distributions. What we showed in

this study is that the power law distribution is able to capture the upper tail of the data, and

better than several ‘go-to’ distributions. This has important implications for empirical work

as, for reliable analysis of the effects of COVID-19 pandemic, using econometrically justified

and robust methods that account for potential heavy-tailedness and tail risk property is in

order.
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Figure 1: Chinese cities with confirmed COVID-19 cases as of May 23,
2020. Data source: Harvard Dataverse (China Data Lab, 2020).
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Figure 2: The number of Chinese cities with confirmed COVID-19 cases
over time. Data source: Harvard Dataverse (China Data Lab, 2020).
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Figure 3: The empirical distribution of cumulative number of COVID-19
confirmed cases for Chinese cities. The empirical distribution is obtained
using kernel density with Epanechnikov kernel and the smoothing band-
width based on unbiased cross-validation method.
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Figure 4: The ratio of COVID-19 cases to city population in China
between January 15, 2020 and May 23, 2020.
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Figure 5: Plot of empirical and fitted log counter-cumulative probability
and log COVID-19 confirmed cases. Estimation is based on upper-tail
observations x > xmin as of May 23, 2020, where xmin is determined based
on the minimization of the KS statistic.
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(c) The Gabaix and Ibragimov goodness-of-fit test
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Figure 6: Sensitivity analysis with the choice of xmin. Estimation for
each given choice of xmin is based on upper-tail observations x > xmin

as of May 23, 2020. The vertical (dashed) line indicates the position of
optimal (data-driven) choice xmin. For the Gabaix and Ibragimov (2011)
test, the null hypothesis that COVID-19 confirmed cases is distributed
according to a power law is rejected if a goodness-of-fit statistic is greater
than a corresponding threshold value.
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Figure 7: Power law analysis over the first wave of the pandemic. Esti-
mation is based on upper-tail observations x > xmin on each day, where
xmin for each date is determined based on the minimization of the KS
statistic. For the Gabaix and Ibragimov (2011) test, the null hypothesis
that COVID-19 confirmed cases is distributed according to a power law
is rejected if a goodness-of-fit statistic is greater than a corresponding
threshold value.
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Figure 8: Estimates of ρt in equation (22) between January 23, 2020, and
February 2, 2020, with 95% confidence bands. ρt ' 1 provides empirical
evidence for Gibrat’s law.
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Figure 9: Estimates of β0t, β1t, β2t, β3t in equation (23) between January
23, 2020, and February 2, 2020, with 95% confidence bands. The param-
eters of interest are β1t, β2t, β3t, with β1t ' 0, β2t ' 0, β3t ' 0 providing
empirical evidence for Gibrat’s law.
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Table 1: Power law parameter estimates and goodness-of-fit test.

Estimate Standard Error

γHill 0.808 (0.066)
γOLS 0.762 (0.087)
xmin 24
Observations (x > xmin) 151
Observations (total) 339

The Gabaix and Ibragimov goodness-of-fit test
Goodness of fit test statistic 0.013
Goodness of fit threshold 0.112

Note: Estimation is based on upper-tail observations x > xmin as of May
23, 2020, where xmin is determined based on the minimization of the KS
statistic. For the Gabaix and Ibragimov (2011) test, the null hypothesis that
COVID-19 confirmed cases is distributed according to a power law is rejected
if a goodness-of-fit statistic is greater than a corresponding threshold value.
Clauset et al. (2009) recommend to have at least 50 observations for accurate
power law analysis, a condition satisfied here.
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Table 2: Model fit measures of competing distributions.

Log-likelihood AIC BIC Likelihood ratio statistic P-value

Power law -845.545 1,693.089 1,696.106
Exponential -1,097.721 2,197.441 2,200.459
Lognormal -1,174.851 2,353.702 2,359.736

Power law vs. exponential 252.176 0.002
Power law vs. lognormal 329.306 0.000

Note: Estimation is based on upper-tail observations x > xmin as of May 23, 2020, where xmin is determined
based on the minimization of the KS statistic. A positive value of the likelihood ratio statistic indicates
that the power law is the better fitting distribution. A negative value indicates the alternative distribution
fits the data more closely. P-values are calculated using the methods detailed in Clauset et al. (2009). The
null hypothesis is there is no significant differences in likelihoods of the distributions tested.
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