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Abstract

The novel coronavirus (COVID-19) was first identified in China in December 2019.

Within a short period of time, the infectious disease has spread far and wide. This

study focuses on the distribution of COVID-19 confirmed cases in China—the original

epicenter of the outbreak. We show that the upper tail of COVID-19 cases in Chinese

cities is well described by a power law distribution, with exponent less than one, and

that a random proportionate growth model predicated by Gibrat’s law is a plausible

explanation for the emergence of the observed power law behavior. This finding is sig-

nificant because it implies that COVID-19 cases in China is heavy-tailed and disperse,

that a few cities account for a disproportionate share of COVID-19 cases, and that the

distribution has no finite mean or variance. The power-law distributedness has impli-

cations for effective planning and policy design as well as efficient use of government

resources.
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1 Introduction

The coronavirus disease 2019 (COVID-19) was first discovered in Wuhan region of China in

December 2019 (Zhu et al., 2020). The contagious disease quickly spread within China, de-

spite unprecedented and aggressive containment measures, and crossed the borders reaching

every corner of the world within a short period of time, with the World Health Organization

(WHO) declaring COVID-19 outbreak a global pandemic on March 11, 2020 (Cucinotta

and Vanelli, 2020). This study focuses on the distribution and growth dynamics of COVID-

19 cases in China—the original epicenter of the outbreak. The presence of Chinese cities

with very large number of COVID-19 confirmed cases, the very wide dispersion in COVID-

19 cases across Chinese cities, and the effect of COVID-19 pandemic on the economy and

welfare make it crucial for researchers and policymakers to better understand COVID-19

distribution for effective planning and policy design as well as efficient use of government

resources.

In this paper, we demonstrate that the right tail of the distribution of COVID-19 con-

firmed cases in Chinese cities is well-characterized by a power law (Pareto) distribution,

meaning that the probability that a number of COVID-19 cases is more than x is roughly

proportional to x−γ, i.e., Prob(X > x) ∼ x−γ, where γ is the power law (Pareto) exponent.1

The estimated power law exponent is γ < 1, meaning the fitted power law distribution has

no finite moments, including mean and variance. The power law fit is robust to a range of

estimation methods and goodness-of-fit tests, and the distribution parsimoniously describes

the heavy tail of the data. Power law distributions are characterized by heavy tails, which

make the likelihood of extreme (upper-tail) events more typical. So, in case of COVID-19,

this implies an extremely large number of cases becomes more likely, which is actually true

for China, where few cities had extremely large number of cases (Han et al., 2020).

Power laws are extraordinarily ubiquitous in the social and natural sciences, having

been confirmed for the distributions of income and wealth (Pareto, 1896; Champernowne,

1953; Wold and Whittle, 1957; Singh and Maddala, 1976; Klass et al., 2006; Toda, 2012),

consumption (Toda, 2017; Toda and Walsh, 2015), firm size (Stanley et al., 1995; Axtell,

1For a detailed review of power laws, see Reed (2001), Newman (2005), Sornette (2006) and Gabaix

(2009, 2016). The power law distribution with exponent γ ' 1 generates Zipf’s law (Zipf, 1949).
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2001; Luttmer, 2007), farmland (Akhundjanov and Chamberlain, 2019), city size (Krugman,

1996; Gabaix, 1999; Ioannides and Overman, 2003; Devadoss et al., 2016), natural gas and

oil production (Balthrop, 2016), carbon dioxide (CO2) emissions (Akhundjanov et al., 2017),

frequency of words (Zipf, 1949; Irmay, 1997), among others. Our paper finds the existence

of a power law in epidemiology as well. The omnipresence of power laws is partly explained

by the fact they are preserved over an extensive array of mathematical transformations

(Gabaix, 2009).

An interesting aspect of power law distribution is that it is the macro-level steady-state

phenomenon that, in theory, can arise from a micro-level random proportionate growth

process, known as Gibrat’s law (Gibrat, 1931),2 whereby each unit’s (e.g., city’s) growth rate

is drawn randomly and independently of its current size.3 Given power law and Gibrat’s law

often go hand-in-hand, Gibrat’s law has also been extensively documented in the social and

natural sciences.4 The robust fit of power law to cross-sectional distribution of COVID-19

cases in Chinese cities potentially provides macro-level evidence for random proportionate

growth posited by Gibrat’s law. However, it is well known that power laws can similarly be

obtained from other models and systems (Barabási and Albert, 1999; Carlson and Doyle,

1999; Mitzenmacher, 2004; Newman, 2005; Gabaix, 2016). Therefore, we formally test for

random proportionate growth at micro-level by analyzing growth rates of COVID-19 cases

in Chinese cities. Our empirical analysis provides support for Gibrat’s law of proportionate

growth, which, in turn, offers a plausible explanation for the emergence of a power law

behavior in the data.

2For a detailed review of Gibrat’s law, see Sutton (1997).
3Gibrat’s law alone is not sufficient to give rise to a power law. In fact, it leads to the lognormal

distribution as shown by Gibrat (1931); though many examples used by Gibrat (1931) have recently been

shown to actually follow a Pareto-type distribution rather than the lognormal (Akhundjanov and Toda,

2020). Nonetheless, Gibrat’s law can generate a power law with an auxiliary assumption (Gabaix, 1999).

Section 4.1 elaborates on a link between Gibrat’s law and power law.
4In particular, Gibrat’s law has been shown to explain the growth process of consumption (Battistin

et al., 2009), firms (Luttmer, 2007), farms (Clark et al., 1992), trucking industry (Balthrop, 2020), cities

(Ioannides and Overman, 2003; Eeckhout, 2004; González-Val, 2010; Luckstead and Devadoss, 2014), coun-

tries (Rose, 2006; González-Val and Sanso-Navarro, 2010), bird population (Keitt and Stanley, 1998), among

others.
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There are a number of practical implications of the power law fit. First, given the es-

timated Pareto exponent is less than one (γ < 1), the distribution is heavy-tailed and so

disperse that observations near the mean account for little of the cumulative distribution

of COVID-19 cases. This implies talking about the average number of COVID-19 cases

is inconsequential as it no longer represents the majority of cases. In fact, even though

it is possible to compute sample mean and variance for the observed data, these moments

are generally non-convergent. In this case, quantile analysis or order statistics would be

more appropriate. Second, the heavy upper-tail of the distribution (also, the confirmation

of Gibrat’s law) is suggestive of concentration of COVID-19 cases in China, with the total

cases essentially determined by a few cities that bore the brunt of the outbreak, which is

true in case of China (Han et al., 2020). This has implications for more effective epidemi-

ological planning and policy design as by focusing on and directing appropriate amount of

resources to those epicenters total cases of infection can be greatly slashed and the spread

of an outbreak potentially contained. Finally, on a more technical note, a heavy upper-tail

of COVID-19 cases in Chinese cities has implications for empirical research. Specifically, it

shows that thin-tailed distributions (e.g., the normal) or moderately heavy-tailed distribu-

tions (e.g., the lognormal), which are often ‘go-to’ distributions in empirical research, are

inappropriate for COVID-19 cases in Chinese cities as such distributions dismiss extremely

large number of cases as an improbable observation. On the other hand, a power-law distri-

bution is able to capture the heavy upper-tail of the data, which it does so parsimoniously,

outperforming a number of competing distributions.

The literature in this area is thin, but gradually forming. In the concurrent work, Beare

and Toda (2020), studying the distribution of COVID-19 confirmed cases for US counties,

find that the upper-tail of this distribution follows a power law, with Pareto exponent close

to 1. Similarly, Blasius (2020), examining the distribution of COVID-19 confirmed cases

and deaths for US counties, concludes that both distributions exhibit a power-law behavior.

Our paper contributes to this nascent line of literature by exploring the distribution as well

as underlying growth dynamics of COVID-19 confirmed cases in China—the origin of the

outbreak. A distinctive feature of our study is that COVID-19 cases in China affords us to

capture the entire life cycle of the pandemic (at least in its first wave): outbreak detection,
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spread, peak, and decline to zero daily cases. In contrast, the analyses of Beare and Toda

(2020) and Blasius (2020) are based on data sets that were largely evolving at the time, as

both the United States of America and a whole host of other countries are still battling to

contain the spread of the virus to this date. Thus, the results of the above studies are likely

subject to change with newer data.

The remainder of the paper is structured as follows. Section 2 introduces the data for

COVID-19 cases in China. Section 3 presents the methods and findings for power law

analysis. Section 4 provides the methods and results for Gibrat’s law analysis. Section 5

includes some concluding remarks.

2 Data

Daily data on the cumulative number of COVID-19 confirmed cases for Chinese cities comes

from Harvard Dataverse (China Data Lab, 2020). The dataset includes 339 cities in China

and covers periods between January 15, 2020, and May 23, 2020, which are determined by

the data source. Our main (power-law) analysis focuses on COVID-19 cases as of May 23,

2020, the latest data on cumulative cases, while an auxiliary analysis potentially explaining

the emergence of a power law behavior uses the data between January 15, 2020, and May

23, 2020. A power law analysis is data intensive, with Clauset et al. (2009) recommending

a minimum of 50 observations for reliable analysis. This condition is well-satisfied here,

including for the upper tail (see Section 3.3).

Figure 1 shows the evolution of empirical distribution of COVID-19 cases in Chinese

cities over select dates. It is apparent that the distribution has been right-skewed, with

heavier right tail, and it has been gradually sliding rightward, which reflects increasing

number of COVID-19 cases across Chinese cities over time.

3 Power law analysis

In this section, we study the distribution of the cumulative number of COVID-19 confirmed

cases for Chinese cities. We first present the methodology for power law analysis, followed

by estimation results.
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3.1 Power-law parameter estimation

Suppose X is a random variable whose data generating process is a continuous power law

(Pareto) distribution. The corresponding probability distribution function (PDF) is specified

as

f(x) =
α− 1

xmin

(
x

xmin

)−α
, (1)

where x is an outcome of X for x ∈ R+, where R+ = {x ∈ R|x > 0}, xmin is the threshold

beyond which (i.e., x ≥ xmin) power-law behavior sets in, and α is the power-law (Pareto)

exponent, a parameter of interest. The mth non-central moment for the power law distri-

bution is given by

〈xm〉 =

∫ ∞
xmin

xmf(x)dx =

(
α− 1

α− 1−m

)
xmmin, ∀α > m+ 1. (2)

Hence only the first bα− 1c moments exist for m < α− 1. Although higher-order moments

can be calculated for any finite sample, these estimates do not asymptotically converge to

any particular value. Given the sample x1, . . . , xn, the joint log-likelihood function can be

written as

lnL(α;x1, . . . , xn) =
n∑
i=1

[
ln(α− 1)− lnxmin − α ln

xi
xmin

]
= n ln(α− 1)− n lnxmin − α

n∑
i=1

ln
xi
xmin

. (3)

First-order condition yields the maximum likelihood estimate (MLE) of

αMLE = 1 + n

(
n∑
i=1

ln
xi
xmin

)−1
(4)

with the standard error (SE) of the estimate given by

SE(αMLE) =
√
n

(
n∑
i=1

ln
xi
xmin

)−1
=
αMLE − 1√

n
. (5)
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It is standard to report the counter-cumulative parameter γ = αMLE − 1, known as the

Hill estimator (Hill, 1975), instead of (4). The Hill estimator is obtained from (4), after a

small-sample adjustment, and takes the following form

γHill =
n− 2∑n−1

i=1 (lnxi − lnxmin)
(6)

with the standard error of the estimate given by

SE(γHill) =
γHill√
n− 3

. (7)

The power-law fit to data is depicted by plotting the counter- (complimentary-) cumula-

tive distribution function (CDF) on doubly logarithmic axes. The counter-CDF of a power

law is specified as

Prob(X > x) =

(
x

xmin

)−α+1

=
k

xγ
, (8)

where k = xα−1min is a constant. Taking the log of both sides of (8) yields a linear relationship

between log counter-cumulative probability (i.e., ln Prob(X > x)) and log data (i.e., lnx),

with the counter-cumulative parameter −γ being the slope of the line.

An alternative approach to estimate the counter-cumulative parameter γ is through a

regression-based technique. Specifically, estimate the following regression equation with

ordinary least squares (OLS)

ln(ranki) = φ− γOLS lnxi + εi, (9)

where ranki is observation i’s rank in the distribution, φ is the intercept term, γOLS is the

parameter of interest, and εi is the idiosyncratic disturbance term. Equation 9 also shows

that a power law distributed process appears approximately linear on a log-log plot of ranki

against xi, with slope of −γOLS. The asymptotic standard error for γOLS is given by (Gabaix
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and Ibragimov, 2011)

SE(γOLS) =
γOLS√
n/2

. (10)

An important consideration in power law analysis is the specification of the threshold

parameter xmin, beyond which power-law behavior takes hold. There are several approaches

proposed in the literature in this regard. For instance, one strand of literature suggests to

select xmin arbitrarily at either the 95% quantile of the data (Gabaix, 2009) or the point

where empirical PDF or CDF roughly straightens out on a log-log plot. Clearly, both of these

approaches are rather subjective and thus suffer from a certain degree of uncertainty about

whether they are able to capture the true starting point of power-law behavior. In fact,

Perline (2005), exploring the empirical consequences of this concern, shows that sufficiently

truncated Gumbel-type distributions (e.g., the lognormal) can also produce a linear pattern

on a log-log plot, hence imitating the power law distribution. Consequently, we adopt a

more systematic, data-driven procedure proposed by another strand of literature (Clauset

et al., 2009) to select xmin. This approach essentially treats each observation in the sample

as a potential candidate for xmin and selects the best candidate based on the minimization

of the Kolmogorov-Smirnov (KS) goodness-of-fit statistic, which is given by

KS = max
x≥xmin

|E(x)− F̂ (x)|, (11)

where E(x) is the empirical CDF and F̂ (x) is the estimated power-law CDF. The optimal

xmin minimizes the distance between the empirical CDF and the estimated power-law CDF.

The computational algorithm takes the following form:

Step 1: Set xmin = x1;

Step 2: Perform power-law parameter estimation using x ≥ xmin;

Step 3: Compute the KS statistic in (11);

Step 4: Repeat steps 1-4 for all xi for i = 1, . . . , n;

Step 5: Select xmin with the lowest KS statistic.
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3.2 The goodness of fit tests

Power-law analysis is accompanied by a series of diagnostic tests given significant parameter

estimates alone do not provide sufficient evidence in favor of power-law fit to data. In order

to guard against potential misspecification issues, one needs to conduct a goodness-of-fit

test and compare the power-law fit to data with those of alternative distributions.

Gabaix and Ibragimov (2011) proposed ‘rank - 1/2’ test to verify the goodness-of-fit of

power law distribution. Let x∗ be defined as

x∗ =
Cov[(lnxi)

2, lnxi]

2Var(ln xi)
. (12)

Then, regress bias-adjusted log rank against the log data and a quadratic deviation term,

as in

ln

(
ranki −

1

2

)
= φ+ ζ lnxi + q(lnxi − x∗)2 + εi. (13)

The goodness-of-fit statistic is specified as q/ζ2. The null hypothesis of power-law dis-

tributedness is rejected if q/ζ2 > 1.95(2n)−1/2, where the latter term is the goodness-of-fit

threshold.

Further, Clauset et al. (2009) suggest comparisons of power-law fit with those of other,

competing, heavy-tailed distributions, such as the lognormal and exponential. Accordingly,

we fit these alternative distributions to the data by MLE and provide visual comparisons of

the distributions’ fits on a doubly logarithmic plot as detailed above. We also implement the

likelihood ratio test of Clauset et al. (2009) for a more formal comparison. The likelihood

ratio statistic is specified as

R =
n∑
i=1

[
ln f̂1(xi)− ln f̂2(xi)

]
, (14)

where f̂1(xi) and f̂2(xi) are the probabilities predicted by power law and an alternative

distribution, respectively. If the likelihood ratio statistic is positive, it indicates the power

law distribution fits the data more closely. If it is negative, then an alternative distribution
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yields a better fit.5

3.3 Application

The methods discussed in Section 3 are applied to the cumulative number of COVID-19

confirmed cases in Chinese cities (x) as of May 23, 2020. The results from power law

analysis are provided in Tables 1-2 and Figure 2. As noted earlier, the requirement placed

on sample size for credible power law analysis is a minimum of 50 observations (Clauset

et al., 2009). This condition is well-satisfied here as the upper-tail sample (x > xmin)

contains 151 observations. The Hill and OLS estimates of the counter-cumulative parameter

γ are around 0.80 and highly statistically significant. Given m < 0.80, the moments of the

fitted power law distribution (including mean and variance) are generally non-convergent.

The goodness-of-fit test of Gabaix and Ibragimov (2011) suggests we fail to reject the null

hypothesis of power-law distributedness, which provides strong evidence in favor of power

law fit to COVID-19 cases in China.

Figure 2 depicts the power law and competing heavy-tailed distributions’ fits to the

data. It is apparent that the power law distribution generally fits the data better than

the rivals, particularly in the lower to mid quantiles of the upper tail, where the observed

data forms a distinct linear pattern. The power law slightly overestimates the frequency of

the largest cases in the extreme upper tail (after log confirmed cases of about 7.8), where

the distribution decays relatively slowly. Now, there are more flexible forms of the Pareto

distribution—often with an extra parameter and/or of mixture form—that allow the extreme

upper-tail probabilities of the distribution to decay more quickly, and they have repeatedly

been shown to improve upon the benchmark power law distribution in fitting empirical data

(see, for instance, Patel and Schoenberg, 2011). The main goal of the present study is to

examine whether a power law in general approximates COVID-19 cases in China, and not

the investigation of various (modified) distributions within the power law family.

The fits of competing distributions—the lognormal and exponential—noticeably deviate

from the empirical data throughout the domain. The likelihood ratio tests in Table 2 provide

5For other properties of the likelihood ratio statistic, including the derivation of the corresponding

p-value, see Clauset et al. (2009).
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formal evidence in this regard. As is evident from large positive likelihood ratio statistics,

the power law distribution significantly outperforms both the lognormal and exponential

distribution in fitting COVID-19 cases in China, which is in line with our observations from

Figure 2. We reject both the lognormal and exponential as an adequate specification for

COVID-19 cases. In summary, our estimation results and diagnostic tests provide strong

evidence that the COVID-19 cases in Chinese cities can be well characterized by the power

law (Pareto) distribution.

4 Gibrat’s law as a plausible explanation for power law behavior

In this section, we explore whether a growth model involving Gibrat’s law (Gibrat, 1931) can

potentially explain the emergence of the observed power-law behavior in COVID-19 cases in

China. We focus on Gibrat’s law specifically granted a random multiplicative growth (with

a caveat) is the prevalent attribute of models explaining the genesis of power laws (Gabaix,

1999, 2009).

4.1 A link between power law and Gibrat’s law

There are different mechanisms proposed in the literature, including the Yule process (Willis

and Yule, 1922; Yule, 1925) and random growth models with geometrically distributed age

distribution (Wold and Whittle, 1957; Reed, 2001; Toda, 2014; Beare and Toda, 2017), that

can generate power laws.6 In what follows, we describe a simple of such mechanisms.

Suppose Sit is the size of a stochastic process of interest for unit i at time t. For instance,

COVID-19 cases in city i up to day t. According to Gibrat’s law, the size of the process (at

least in the upper tail) exhibits random multiplicative growth, evolving as

Sit+1 = µit+1Sit (15)

over time, where µit+1 is independently and identically distributed (i.i.d.) random variable

with an associated PDF of f(µ). Hence, random growth factor µit+1 = Sit+1/Sit is inde-

pendent of the current size Sit, which is commonly known as Gibrat’s law of proportionate

6For a detailed review, see Newman (2005).
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growth. Gibrat’s law alone does not generate power law but, instead, gives rise to the log-

normal distribution for the size of the process (see Section 4.2 for details), which was noted

by Gibrat (1931) himself early on. Later, Gabaix (1999) showed that power law can arise

from Gibrat’s law with an additional assumption, a sketch of which we provide below.

Let Gt(s) = Prob(St > s) be the counter-CDF of St. Substituting (15) into the counter-

CDF, the equation of motion for Gt+1(s) boils down to

Gt+1(s) = Prob(St+1 > s) = Prob(µt+1Sit > s) = Prob

(
Sit >

s

µt+1

)
=

∫ ∞
0

Gt

(
s

µ

)
f(µ)dµ. (16)

If there is a steady state process Gt = G, then

G(s) =

∫ ∞
0

G

(
s

µ

)
f(µ)dµ. (17)

The mechanism ensuring that power law distribution is the (only) suitable steady state

distribution in (17) is if St has lower reflecting barrier Smin, i.e., the minimal size of the

process, such that St > Smin (Gabaix, 1999, Proposition 1). In this case, G(s) = k
xγ

, from

(8). Thus, Gibrat’s law combined with a lower bound on St can plausibly yield power law

distribution.

4.2 Testing for Gibrat’s law

For empirical purposes, we consider a continuous time representation of Gibrat’s law, given

by geometric Brownian motion

dSit = gSitdt+ νSitdBit, (18)

where g is the expected growth rate, ν > 0 is the volatility, and Bit is a standard Brownian

motion that is i.i.d. across cross-sectional units. Applying Itô’s lemma to (18) yields

d lnSit = (g − ν2/2)dt+ νdBit, (19)
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meaning the cross-sectional distribution of Sit, with the initial size of Si0, is lognormal

ln(Sit/Si0) ∼ N [(g − ν2/2)t, ν2t]. (20)

Equation (19) (along with Proposition 1 in Gabaix (1999)) suggests that growth rates

under Gibrat’s law can be described by a random walk process of the form (Sutton, 1997;

Eeckhout, 2004; Gabaix, 2009)

lnSit = lnSit−1 + ζit. (21)

Setting the random growth component ζit = φi+ξit, where φi is the effect of unit-wide factors

and ξit is an i.i.d. random effect, produces a random walk with drift. A standard method to

test for Gibrat’s law is through estimation of the following cross-sectional regression equation

lnSit = φ+ ρ lnSit−1 + ξit. (22)

In (22), ρ is the parameter of interest, with ρ ' 1 providing statistical evidence that the

growth process of St adheres to Gibrat’s law.

An alternative approach for testing for Gibrat’s law of proportionate growth is through

estimation of the cross-sectional regression equation of the form (Beare and Toda, 2020)

∆ lnSit+1 = β0t + β1t lnSit + β2t∆ lnSit + β3Dit + eit, (23)

where ∆ is the difference operator, ∆ lnSit+1 is the COVID-19 growth rate in city i between

day t and t+1, ∆ lnSit is the COVID-19 growth rate in city i between day t−1 and t, Dit is

the number of days between day t and the day of the first COVID-19 case in city i, and eit is

an i.i.d. error term. The parameters of interest are β1t, β2t, β3t, with β1t ' 0, β2t ' 0, β3t ' 0

providing empirical evidence for the presence of Gibrat’s law. The distinctive feature of

equation (23) is the inclusion of age distribution—days since outbreak for each city—in

addition to the growth rate. Obtaining age distribution has traditionally been cumbersome

in power law analysis (e.g., of cities). Fortunately, our data conveniently affords us this

13



variable as we observe the entire timeline of the evolution of COVID-19 across Chinese

cities.

4.3 Application

We apply the methods discussed in Section 4.2 to each day between January 23, 2020, and

February 25, 2020 (inclusive). The reason for starting from January 23 is because at least

30 cities had a positive number of cumulative cases (Sit > 0) starting from January 23 (see

Figure 3). The reason for stopping at February 25 is because COVID-19 dynamics in China

had largely stabilized by February 25 (Sit+1 ' Sit), with a small to zero number of new daily

cases after February 25, which left the distribution of cumulative cases after February 25

virtually unaffected (see Figure 1). This will also become apparent from our findings below.

Figure 4 shows the estimation results for ρt in equation (22) for t = Jan 23, . . . ,Feb 25.

Clearly, the estimates of ρt are statistically indistinguishable from unity (ρt ' 1), which

confirms the random growth model predicated by Gibrat’s law. The 95% confidence inter-

val shrinks moving left to right, which can be attributed to two factors. First, it reflects

increasing sample size (i.e., increasing number of cities with confirmed cases), at least until

February 8, when most Chinese cities had reported a positive number of cases (Figure 3).

Second, the thinning of the confidence interval can also be attributed to the stabilization of

COVID-19 situation in China, which saw a rapid decline in new daily cases starting from

mid-February, with the daily change (growth rate) approaching to zero.

Figure 5 reports the estimation results for β0t, β1t, β2t, β3t in equation (23) for t =

Jan 23, . . . ,Feb 25. Panels (b)-(d) contain the estimates for β1t, β2t, β3t, which are of main

interest here. It is apparent that these estimates are largely equal to zero or close to zero

(β1t ' 0, β2t ' 0, β3t ' 0), which indicates the growth rate between days t and t + 1 does

not depend on the number of cases on day t, nor on the growth rate between days t − 1

and t, nor on the number of days since the first confirmed case. This also provides evidence

for the presence of Gibrat’s law for COVID-19 cases in Chinese cities. The estimates of β0t

in panel (a) show that the expected growth rate of confirmed cases declined over the study

period, with some fluctuations, and eventually approached to zero around February 9, which

is consistent with the observed data.
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In light of the discussion in Section 4.1, the confirmation of Gibrat’s law for COVID-

19 cases in Chinese cities provides a plausible explanation for the emergence of power law

behavior shown for the data.

5 Conclusion

The dynamics of the novel coronavirus pandemic are complex and affected by a plethora

of factors, which are yet to be fully understood. In spite of the apparent chaotic evolution

of the pandemic, surprising regularities can still be observed in the size distribution and

growth process of COVID-19 cases. In this paper, we examined the distribution of the novel

coronavirus cases in China—the original epicenter of the ongoing pandemic. We presented

empirical evidence for a power law distribution for the upper tail of the number of COVID-19

cases in Chinese cities. The power law fit is robust to different estimation methods, passes

rigorous diagnostic tests, and fits the data better than a number of rivaling distributions.

The implications of the power law fit are that the number of COVID-19 cases in Chinese

cities is heavy-tailed and disperse, so that average number of COVID-19 cases is problematic

to talk about; that COVID-19 cases are concentrated within a few cities that account for

a disproportionately large amount of infections; and that mean and variance are generally

not finite. Admittedly, there may always be a distribution that fits the data better than a

power law granted there are virtually an infinite number of distributions. What we showed

here is that the power law distribution is able to capture the upper tail of the data, which

it do so parsimoniously, and better than a couple ‘go-to’ distributions. In addition, given

that the data is not lognormally distributed, we reject Gibrat’s law of random proportionate

growth in its standard form. However, the nuanced version of Gibrat’s law (Gabaix, 1999),

as discussed in Section 4.1, is demonstrated to be a plausible mechanism for the emergence

of power law behavior in COVID-19 cases in China.
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Figure 1: The empirical distribution of cumulative number of COVID-19
confirmed cases for Chinese cities. The empirical distribution is obtained
using kernel density with Epanechnikov kernel and the smoothing band-
width based on unbiased cross-validation method.
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Figure 2: Plot of empirical and fitted log counter-cumulative probability
and log COVID-19 confirmed cases. Estimation is based on upper-tail ob-
servations x > xmin as of May 23, 2020, where xmin is determined based on
the minimization of the KS statistic. Clauset et al. (2009) recommend to
have at least 50 observations for accurate power law analysis, a condition
well-satisfied here.
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Figure 3: The number of Chinese cities with confirmed COVID-19 cases
over time. By February 8, 2020, most Chinese cities had reported a
positive number of cases.
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Figure 4: Estimates of ρt in equation (22) between January 23, 2020, and
February 25, 2020, with 95% confidence bands. ρt ' 1 provides empirical
evidence for Gibrat’s law.
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Figure 5: Estimates of β0t, β1t, β2t, β3t in equation (23) between January
23, 2020, and February 25, 2020, with 95% confidence bands. The param-
eters of interest are β1t, β2t, β3t, with β1t ' 0, β2t ' 0, β3t ' 0 providing
empirical evidence for Gibrat’s law.
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Table 1: Power law parameter estimates and goodness-of-fit test.

Estimate Standard Error

γHill 0.808 (0.066)
γOLS 0.762 (0.008)
xmin 24
Observations (x > xmin) 151
Observations (total) 339

The Gabaix and Ibragimov goodness-of-fit test
Goodness of fit test statistic 0.013
Goodness of fit threshold 0.112

Note: Estimation is based on upper-tail observations x > xmin as of May 23,
2020, where xmin is determined based on the minimization of the KS statistic.
For the Gabaix and Ibragimov (2011) test, the null hypothesis that COVID-
19 confirmed cases is distributed according to a power law is rejected if test
statistic > threshold. Clauset et al. (2009) recommend to have at least 50
observations for accurate power law analysis, a condition well-satisfied here.
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Table 2: Likelihood ratio tests of competing distributions.

Likelihood ratio statistic P-value

Power law vs. exponential 252.176 0.002
Power law vs. lognormal 329.306 0.000

Note: Estimation is based on upper-tail observations x > xmin as
of May 23, 2020, where xmin is determined based on the minimiza-
tion of the KS statistic. A positive value of the likelihood ratio
statistic indicates that the power law is the better fitting distri-
bution. A negative value indicates the alternative distribution fits
the data more closely. P-values are calculated using the methods
detailed in Clauset et al. (2009). The null hypothesis is there is
no significant differences in likelihoods of the distributions tested.
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