Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Predicting critical state after COVID-19 diagnosis: Model development using a large US electronic health record dataset

View ORCID ProfileMike D. Rinderknecht, View ORCID ProfileYannick Klopfenstein
doi: https://doi.org/10.1101/2020.07.24.20155192
Mike D. Rinderknecht
1IBM Switzerland Ltd, Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Mike D. Rinderknecht
Yannick Klopfenstein
1IBM Switzerland Ltd, Zurich, Switzerland
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Yannick Klopfenstein
  • For correspondence: yannick.klopfenstein@ch.ibm.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Supplementary material
  • Data/Code
  • Preview PDF
Loading

Article usage

Article usage: July 2020 to February 2023

AbstractFullPdf
Jul 20206480153
Aug 20206960185
Sep 20203780142
Oct 2020112066
Nov 2020106052
Dec 202088075
Jan 202177062
Feb 20211251459
Mar 20211013640
Apr 20211331220
May 2021109824
Jun 2021961836
Jul 2021601530
Aug 2021652028
Sep 202152517
Oct 202162438
Nov 2021551047
Dec 2021371018
Jan 202226169
Feb 20223269
Mar 202225104
Apr 20222749
May 202221617
Jun 20224237
Jul 20221536
Aug 202223512
Sep 202230313
Oct 20222377
Nov 202214310
Dec 202220311
Jan 20232087
Feb 2023222
Back to top
PreviousNext
Posted August 31, 2020.
Download PDF

Supplementary Material

Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Predicting critical state after COVID-19 diagnosis: Model development using a large US electronic health record dataset
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Predicting critical state after COVID-19 diagnosis: Model development using a large US electronic health record dataset
Mike D. Rinderknecht, Yannick Klopfenstein
medRxiv 2020.07.24.20155192; doi: https://doi.org/10.1101/2020.07.24.20155192
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Predicting critical state after COVID-19 diagnosis: Model development using a large US electronic health record dataset
Mike D. Rinderknecht, Yannick Klopfenstein
medRxiv 2020.07.24.20155192; doi: https://doi.org/10.1101/2020.07.24.20155192

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Health Informatics
Subject Areas
All Articles
  • Addiction Medicine (216)
  • Allergy and Immunology (495)
  • Anesthesia (106)
  • Cardiovascular Medicine (1101)
  • Dentistry and Oral Medicine (196)
  • Dermatology (141)
  • Emergency Medicine (274)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (502)
  • Epidemiology (9782)
  • Forensic Medicine (5)
  • Gastroenterology (481)
  • Genetic and Genomic Medicine (2318)
  • Geriatric Medicine (223)
  • Health Economics (463)
  • Health Informatics (1563)
  • Health Policy (737)
  • Health Systems and Quality Improvement (606)
  • Hematology (238)
  • HIV/AIDS (507)
  • Infectious Diseases (except HIV/AIDS) (11656)
  • Intensive Care and Critical Care Medicine (617)
  • Medical Education (240)
  • Medical Ethics (67)
  • Nephrology (258)
  • Neurology (2148)
  • Nursing (134)
  • Nutrition (338)
  • Obstetrics and Gynecology (427)
  • Occupational and Environmental Health (518)
  • Oncology (1183)
  • Ophthalmology (366)
  • Orthopedics (129)
  • Otolaryngology (220)
  • Pain Medicine (148)
  • Palliative Medicine (50)
  • Pathology (313)
  • Pediatrics (698)
  • Pharmacology and Therapeutics (302)
  • Primary Care Research (267)
  • Psychiatry and Clinical Psychology (2188)
  • Public and Global Health (4673)
  • Radiology and Imaging (781)
  • Rehabilitation Medicine and Physical Therapy (457)
  • Respiratory Medicine (624)
  • Rheumatology (274)
  • Sexual and Reproductive Health (226)
  • Sports Medicine (210)
  • Surgery (252)
  • Toxicology (43)
  • Transplantation (120)
  • Urology (94)