Predicting critical state after COVID-19 diagnosis: Model development using a large US electronic health record dataset
View ORCID ProfileMike D. Rinderknecht, View ORCID ProfileYannick Klopfenstein
doi: https://doi.org/10.1101/2020.07.24.20155192
Mike D. Rinderknecht
1IBM Switzerland Ltd, Zurich, Switzerland
Yannick Klopfenstein
1IBM Switzerland Ltd, Zurich, Switzerland

Article usage
Posted August 31, 2020.
Predicting critical state after COVID-19 diagnosis: Model development using a large US electronic health record dataset
Mike D. Rinderknecht, Yannick Klopfenstein
medRxiv 2020.07.24.20155192; doi: https://doi.org/10.1101/2020.07.24.20155192
Subject Area
Subject Areas
- Addiction Medicine (216)
- Allergy and Immunology (495)
- Anesthesia (106)
- Cardiovascular Medicine (1101)
- Dermatology (141)
- Emergency Medicine (274)
- Epidemiology (9782)
- Gastroenterology (481)
- Genetic and Genomic Medicine (2318)
- Geriatric Medicine (223)
- Health Economics (463)
- Health Informatics (1563)
- Health Policy (737)
- Hematology (238)
- HIV/AIDS (507)
- Medical Education (240)
- Medical Ethics (67)
- Nephrology (258)
- Neurology (2148)
- Nursing (134)
- Nutrition (338)
- Oncology (1183)
- Ophthalmology (366)
- Orthopedics (129)
- Otolaryngology (220)
- Pain Medicine (148)
- Palliative Medicine (50)
- Pathology (313)
- Pediatrics (698)
- Primary Care Research (267)
- Public and Global Health (4673)
- Radiology and Imaging (781)
- Respiratory Medicine (624)
- Rheumatology (274)
- Sports Medicine (210)
- Surgery (252)
- Toxicology (43)
- Transplantation (120)
- Urology (94)