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Predicting Critical State after COVID-19 Diagnosis
Using Real-World Data from 20152 US Patients

Mike D. Rinderknecht'* and Yannick Klopfenstein'*
'IBM Schweiz AG, Zurich, Switzerland

The global COVID-19 pandemic caused by the virus SARS-CoV-2 has led to over 10 million
confirmed cases, half a million deaths, and is challenging healthcare systems worldwide. With
limited medical resources, early identification of patients with a high risk of progression to severe
disease or a critical state is crucial. We present a prognostic model predicting critical state within
28 days following COVID-19 diagnosis trained on data from US electronic health records (EHR)
within IBM Explorys, including demographics, comorbidities, symptoms, laboratory test results,
insurance types, and hospitalization. Our entire cohort included 20152 COVID-19 cases, of
which 3160 patients went into critical state or died. Random, stratified train-test splits were
repeated 100 times to obtain a distribution of performance. The median and interquartile range
of the areas under the receiver operating characteristic curve (ROC AUC) and the precision recall
curve (PR AUC) were 0.863 [0.857, 0.866] and 0.539 [0.526, 0.550], respectively. Optimizing
the decision threshold led to a sensitivity of 0.796 [0.775, 0.821] and a specificity of 0.784 [0.769,
0.805]. Good model calibration was achieved, showing only minor tendency to over-forecast
probabilities above 0.6. The validity of the model was demonstrated by the interpretability
analysis confirming existing evidence on major risk factors (e.g., higher age and weight, male
gender, diabetes, cardiovascular disease, and chronic kidney disease). The analysis also revealed
higher risk for African Americans and “self-pay patients”. To the best of our knowledge, this is
the largest dataset based on EHR used to create a prognosis model for COVID-19. In contrast
to large-scale statistics computing odds ratios for individual risk factors, the present model
combining a rich set of covariates can provide accurate personalized predictions enabling early

treatment to prevent patients from progressing to a severe or critical state.
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1 Introduction

The coronavirus disease (COVID-19), caused by the se-
vere acute respiratory syndrome coronavirus 2 (SARS-CoV-
2) (Gorbalenya et al., 2020), has started to spread since the end
of December 2019 from the province Hubei of the People’s
Republic of China to more than 180 countries becoming a
global pandemic (Johns Hopkins University (JHU), 2020).
Despite having a lower case fatality rate than SARS in 2003
and MERS in 2012 (Peeri et al., 2020), the overall number of
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12123257 confirmed cases and 551 384 deaths from COVID-
19 (Johns Hopkins University (JHU), 2020) (status July 9,
2020) far outweigh the other two epidemics. These high
numbers have forced governments to respond with severe
containment strategies to delay the spread of COVID-19 in
order to avoid a global health crisis and collapse of the health-
care systems (Anderson et al., 2020; Armocida et al., 2020).
Several countries have been facing shortages of intensive care
beds or medical equipment such as ventilators (Ranney et al.,
2020). Given these circumstances, appropriate diagnostic
and prognostic tools for identifying high-risk populations and
helping triage are essential for informed protection policies
by policymakers and optimal allocation of resources to ensure
best possible care (e.g., early treatments) for the patients.

Today’s availability of data enables the development of dif-
ferent solutions using machine learning to address these needs,
as described in the recent reviews by Bullock et al. (2020)
and Wynants et al. (2020). One type of proposed solutions is
prognostic prediction modeling, which consists in predicting
patient outcomes such as hospitalization or exacerbation to a
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critical state, using longitudinal data from medical healthcare
records of COVID-19 patients (Bai et al., 2020; Feng et al.,
2020; Ferrari et al., 2020; Gong et al., 2020; Haimovich et al.,
2020; Jiang et al., 2020; Liu et al., 2020a; Petrilli et al., 2020;
Vaid et al., 2020; Xie et al., 2020; Yan et al., 2020a) or proxy
datasets based on other upper respiratory infections (DeCaprio
et al., 2020). To this date, most studies include data exclu-
sively from one or few hospitals and therefore relatively small
sample sizes of confirmed COVID-19 patients (i.e., below
1000 patients), with the exception of the retrospective studies
in New York City by Petrilli et al. (2020) with 4103 or by
Vaid et al. (2020) with a total of 3055 patients.

The aim of this work was to create a prognostic prediction
model for critical state after COVID-19 diagnosis based on a
retrospective analysis of a large set of de-identified electronic
health records (EHRs) of patients across the US using the
IBM® Explorys® database (IBM, Armonk, NY). Such a
predictive model allows identifying patients at risk based on
predictive factors to support risk stratification and enable early
triage.

2 Methods
2.1 RWE Insights Platform

This work was achieved by using the RWE Insights Plat-
form, a data science platform for analyses of medical real-
world data to generate real-world evidence (RWE) recently
developed by IBM. The RWE Insights Platform is a data sci-
ence pipeline facilitating the setup, execution, and reporting of
analyses of medical real-world data to discover RWE insights
in an accelerated way. The platform architecture is built in
a fully modular way to be scalable to include different types
of analyses (e.g., treatment pathway analysis, treatment re-
sponse predictor analysis, comorbidity development analysis)
and interface with different data sources (e.g., the Explorys
database).

For the present use case of COVID-19 prognosis predic-
tion, we used the comorbidity development analysis which
allows defining a cohort, an outcome to be predicted, a set of
predictors, and relative time windows for the extraction of the
samples from the data source. New data-extraction modules
for specific disease, outcome, treatments, and variables for
the current use case were developed.

The RWE Insights Platform has been developed using open-
source tools and includes a front end based on HTML and
CSS interfacing via a Flask RESTful API to a Python back end
(python 3.6.7) using the following main libraries: imbalanced-
learn 0.6.2, numpy 1.15.4, pandas 0.23.4, scikit-learn 0.20.1,
scipy 1.1.0, shap 0.35.0, statsmodel 0.90.0, and xgboost 0.90.
The platform is a proprietary software owned by IBM. The
detailed description of the RWE Insights Platform is beyond
the scope of this publication.

2.2 Real-world data source

Our work was based on de-identified data from the Ex-
plorys database. The Explorys database is one of the largest
clinical datasets in the world containing EHRs of around
64 million patients and spanning over 360 hospitals across the
US as well as over 920 000 providers (Watson Health, IBM
Corporation, 2016). Data were standardised and normalised
using common ontologies, searchable through a Health In-
surance Portability and Accountability Act (HIPAA)-enabled,
de-identified dataset from IBM Explorys. Individuals were
seen in multiple primary and secondary healthcare systems
from 1999 to 2020 with a combination of data from clini-
cal electronic medical records, health-care system outgoing
bills, and adjudicated payer claims. The de-identified EHR
data include patient demographics, diagnoses, procedures,
prescribed drugs, vitals, and laboratory test results. Hundreds
of billions of clinical, operational, and financial data elements
are processed, mapped, and classified into common standards
(e.g., ICD, SNOMED, LOINC, and RxNorm) within the data
lake. As Explorys is updated continuously, a view of the
database was created and frozen on July 16, 2020 for repro-
ducibility of this work.

2.2.1 Cohort

The cohort included all patients in the Explorys database
with a diagnosis of COVID-19 since December 1, 2019. As
the new ICD-10 (International Classification of Diseases)
code U07.1 for confirmed COVID-19 cases has been created
and prereleased a couple of months after pandemic onset,
hospitals may have used for early cases other already existing
ICD codes related to coronavirus. The December 2019 cutoff
was instituted to be consistent with the spread of COVID-19 in
the US and to limit inclusion of patients who may have been
diagnosed with other forms of coronavirus besides SARS-
CoV-2. The ICD codes used to create the cohort are listed
in Table 1. In case of multiple entries per patient after De-
cember 1, 2019, the first entry date was used as COVID-19
diagnosis date. In order to have enough data to extract the
patient’s outcome, the diagnosis date had to be at least 7 weeks
before the freeze date of the database (July 16, 2020), as it
may take up to 7 weeks from symptom onset to death (Wang
et al., 2020b). LOINC codes for SARS-CoV-2 tests (e.g.,
94500-6, 94309-2, 94502-2) (LOINC, 2020) with positive
results available in the database were not used, as patients
may have gone to a provider within the Explorys network to
perform the test, but may have been treated in another hospital
not covered by Explorys. This would generate a large number
of additional subjects without known outcome and generate
unreliable data for training the model. In contrast, patients
having a diagnosis based on an ICD code may have a higher
chance to be treated or have a follow-up in the same hospital.
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Table 1

ICD-10 codes for the cohort. Patients with any diagnosis of the
following ICD-10 codes after December 1, 2019 were considered in
the cohort.

Table 2

ICD-10 codes for the prediction target. Patients with first diag-
nosis of any of the listed ICD-10 codes within the specified time
window were labeled as entering critical state.

ICD-10 code  Description ICD-10 code Description
uo07.1 Confirmed COVID-19 case A41.89 Other specified sepsis
B34.2 Coronavirus infection, unspecified A41.9 Sepsis, unspecified organism
B97.29 Other coronavirus as the cause of diseases classified elsewhere R65.2 Severe sepsis
R65.20 Severe sepsis without septic shock
R65.21 Severe sepsis with septic shock
J80 Acute respiratory distress syndrome (ARDS)
J96 Respiratory failure, not elsewhere classified
2.2.2 Prediction target 196.0 Acute respiratory failure
J96.00 Acute respiratory failure, unspecified whether with hypoxia
Critical state was used as a binary prediction target and or hypercapnia
J96.01 Acute respiratory failure with hypoxia
included sepsis, septic shock, and respiratory failure (e.g., J96.02 Acute respiratory failure with hypercapnia

acute respiratory distress syndrome (ARDS)) (WHO, 2020).
Severe sepsis is associated with multiple organ dysfunction
syndrome. The precise definition based on ICD codes used
for critical state is listed in Table 2. In case of multiple entries
for a patient, the first entry was retained. In addition, the date
of the entry for critical state had to be in a window of [0,
+28] days (boundaries included) after the diagnosis date to be
eligible, as illustrated in Figure 1). Four weeks were chosen
to ensure coverage of the majority of critical outcomes, as the
interquartile range of time from illness onset to sepsis and
ARDS were reported to be [7, 13] and [8, 15] days, respec-
tively (Zhou et al., 2020). Patients with an eligible entry for
critical state were labeled as entering critical state, whereas
patients eligible based on cohort definitions without any entry
for critical state were labeled as not entering critical state.
One exception to these rules were patients who are flagged
as deceased in the Explorys database. In order to include
death cases potentially related to COVID-19 in the critical
state group, and as death dates and records with diagnoses and
procedures relating to the patient’s death are not available in
Explorys to avoid re-identification of patients and ensure data
privacy, patients with one of the following conditions were
also labeled as entering critical state: deceased with an entry
for critical state within the window, deceased with an entry for
critical state within and after the window, or deceased with-
out any entry for critical state (and thus excluding deceased
patients with an entry for critical state before the window).
In the latter case, the date was set to the end of the window
for critical state entries. To validate these assumptions, the
proportion of patients assumed to be deceased due to COVID-
19 in our cohort was compared to epidemiological numbers.

2.2.3 Features

Features were mainly grouped into “acute” features and
“chronic” features. Acute features are a set of features
which should be temporally close to the COVID-19 diagnosis
(e.g., recent laboratory tests, symptoms potentially related to
COVID-19, or hospitalization prior to the diagnosis), whereas
chronic features are a set of features which have no direct
temporal relation to the COVID-19 diagnosis (e.g., chronic co-

J96.9 Respiratory failure, unspecified

J96.90 Respiratory failure, unspecified, unspecified whether with hy-
poxia or hypercapnia

J96.91 Respiratory failure, unspecified with hypoxia

196.92 Respiratory failure, unspecified with hypercapnia

COVID-19 diagnosis  Critical state

_ 1 1 Time (days)

B i Critical state [0, +28]
Acute features [—14, 0] !

Chronic features [*, 0] ‘

* no starting boundary

Figure 1. Time windows for prediction target and feature ex-
traction. Schematic illustration of time window definitions relative
to the COVID-19 diagnosis or to the critical state (time not to scale).
The brackets define the boundaries (included) in days.

morbidities, measurable demographics, or long-term habits).
Features were selected based on their appearance in literature
on potential risk factors and predictors related to COVID-19.
Figure 1 illustrates their difference in terms of time windows
for extraction. A negative value for boundaries of time win-
dow definitions stand for dates prior to the reference date (e.g.,
prior to the diagnosis date). Ideally, acute features should have
been recorded for higher consistency at diagnosis date. How-
ever, this may not be always the case in the EHR compared to
data from clinical studies. To account for recorded symptoms
previous to the diagnosis (e.g., through tele-medicine before
performing a SARS-CoV-2 test or due to potentially required
multiple testing because of false negatives delaying diagno-
sis), a time window of [-14, 0] days before the diagnosis
was used to extract acute features. Patients were considered
hospitalized (inpatient) if the reported admission—discharge
period of the hospitalization overlapped with the acute feature
extraction time window. Entries for chronic features were
considered if prior to the diagnosis date, without additional
restriction. Demographic features which were not restricted
to any time window (e.g., gender or race) or required a spe-


https://doi.org/10.1101/2020.07.24.20155192
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.07.24.20155192; this version posted August 11, 2020. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

4 RINDERKNECHT AND KLOPFENSTEIN

cial way of extraction/computation (e.g., age) are grouped as
“special” features and are not represented in Figure 1. As part
of the de-identification process, for patients over 90 years of
age, the age is truncated to 90 years. Similarly, the age of
all patients born within the last 356 days is be set to O years.
The full list of features including their definitions (e.g., based
on ICD or LOINC codes) is provided in Table 3, grouped by
extraction time window type. As features entries (especially
relevant for chronic features) may have been entered several
years ago, ICD-9 codes were used as well for the extraction.
In general, the last entry within the specific extraction time
window was used to construct the feature, except if described
otherwise in Table 3.

2.3 Dataset preparation and modeling approach

The full dataset was constructed based on COVID-19 diag-
nosis including binary prediction target labels for critical state
and enriched by the various features. Patients with missing
age or gender information were removed from the dataset,
and all missing binary features (i.e., obtained from ICD code
entries) of Table 3 were imputed with zero. Descriptive dis-
tribution statistics were created for all features, and features
with more than 90% missing values were removed from the
feature set. For the remaining feature set, the concurvity
(non-linear collinearity) among features was assessed using
Kendall’s 7, a non-parametric measure of correlation. In case
of [r] > 0.7 (Dormann et al., 2013), the feature with more
missing values was removed from the feature set. In case of
equal number of missing values, the feature with the higher
mean was removed in order to keep the minorities and make
the larger group part of the predicted probability baseline.
To train and evaluate the model, the dataset was split into a
train set (80%) and test set (20%) using stratification of the
prediction target. This procedure was repeated 100 times
based on different random seeds to get a distribution and
confidence intervals of the model performance and feature
importance, as performance may change depending on the
choice of splits.

For each random split the following steps were executed:
The non-binary features of the train set and the test set were
imputed based on the feature medians of the train set to avoid
data leaking. An XGBoost model was trained on the train
set using default parameters of the XGBoost Python pack-
age without additional hyperparameter tuning. XGBoost is
a decision-tree-based ensemble machine learning algorithm
using a gradient boosting framework. Gradient tree boosting
models have shown to outperform other types of models on
a large set of benchmarking datasets (Olson et al., 2018).
The trained XGBoost model was subsequently used to create
predictions for the test set.

2.4 Performance analysis and model interpretability

The performance of the model was evaluated on the test
set for each random train-test split seed and reported with
median and interquartile range across seeds. This provides a
distribution of expected performance, if a new model would
be trained on similar data. Following metrics were computed:
receiver operating characteristic (ROC) curve and precision
recall (PR) curve as well as their respective areas under the
curve (ROC AUC and PR AUC). The confusion matrix, sensi-
tivity, and specificity were reported for the optimal probability
classification threshold. This threshold was obtained based
on maximizing the largest Youden’s J statistic (corresponding
to the largest geometric mean as a metric for imbalanced
classification seeking for a balance between sensitivity and
specificity). Furthermore, the calibration of the model was
reported, comparing binned mean predicted values (i.e., prob-
abilities) to the actual fraction of positives (labeled as critical
state) (Van Calster et al., 2019), in order to evaluate whether
the predicted probability is realistic and can provide some
confidence on the prediction.

Interpretability of the model was generated using
Tree SHAP (Lundberg et al., 2020), a version of SHAP (SHap-
ley Additive exPlanations) optimized for tree-based models.
SHAP is a framework to explain the contribution of feature
values to the output of individual predictions by any type of
model and to compute the global importance of features. This
individual contribution is expressed as SHAP value, corre-
sponding to log-odds (output of the trees in XGBoost), before
they are converted into probabilities with a logistic function.
The global feature importance as well as a summary plot of
individual contributions including feature values were created.
In our case, a positive SHAP value indicates a contribution
towards increased probability for critical state, whereas a
negative SHAP value indicates a reduction of probability for
critical state.

3 Results
3.1 Cohort, descriptive statistics, and concurvity

The total number of identified patients diagnosed with
COVID-19, the number of patients with age and gender in-
formation (referred to as the cohort), the number of patients
labeled as not entering critical state and labeled as entering
critical state as well as the sizes of the partitions for training
and testing are reported in the schematic in Figure 2. Among
patients labeled as critical state, a total of 1009 patients were
flagged as deceased in the Explorys database. This corre-
sponds to 5.0% of the entire cohort. Figure 3 shows the
distribution of included Explorys patients with COVID-19
diagnosis across the US. The majority of the patients are in
the states LA (43.9%), OH (25.8%), DC (7.5%), FL (7.3%),
and MD (7.3%). In comparison, the percentages of totally
recorded patients (i.e., also non-COVID cases) in Explorys
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Table 3
Feature definitions. Feature names, units and details (e.g., ICD and LOINC codes) grouped by extraction time window specifications.
Extraction time window Feature Units Details
Special features Age Years Computed at diagnosis date, based on birth year entry
Gender NA (0: male, 1: female) No time window restrictions
Ethnicity (Hispanic) NA (binary) No time window restrictions
Ethnicity (non-Hispanic) NA (binary) No time window restrictions
Ethnicity (Other) NA (binary) No time window restrictions
Insurance (Medicaid) NA (binary) No time window restrictions
Insurance (Medicare) NA (binary) No time window restrictions
Insurance (Other) NA (binary) No time window restrictions
Insurance (Other public) NA (binary) No time window restrictions
Insurance (Private) NA (binary) No time window restrictions
Insurance (Selfpay) NA (binary) No time window restrictions
Race (African American) NA (binary) No time window restrictions
Race (Asian) NA (binary) No time window restrictions
Race (Caucasian) NA (binary) No time window restrictions
Race (Multi-racial) NA (binary) No time window restrictions
Race (Other) NA (binary) No time window restrictions
Acute features Acute bronchitis NA (binary) 1CD-10: J20.*, J40 and ICD-9: 466.0, 490
Anorexia NA (binary) ICD-10: R63.0, R63.8 and ICD-9: 783.0, 783.9
Body temperature °C LOINC: 8310-5
C-reactive protein mg/L LOINC: 1988-5
C-reactive protein (high sensitivity method) mg/L LOINC: 30522-7
Confusion NA (binary) ICD-10: R41.0, R41.82 and ICD-9: 780.97
Cough NA (binary) ICD-10: ROS and ICD-9: 786.2
Diarrhea NA (binary) ICD-10: R19.7 and ICD-9: 787.91
Fatigue NA (binary) ICD-10: R53.1, R53.81, R53.83 and ICD-9: 780.79
Fever NA (binary) ICD-10: R50.9 and ICD-9: 780.60
Headache NA (binary) ICD-10: R51 and ICD-9: 784.0
Hemoptysis NA (binary) ICD-10: R04.2 and ICD-9: 786.30
Hospitalization (inpatient) NA (binary) Considered if reported admission—discharge period overlapping
with extraction time window
Lactate dehydrogenase (L>P) U/L LOINC: 14804-9
Lactate dehydrogenase (P>L) uU/L LOINC: 14805-6
Lymphocytes (#/100 leukocytes in blood) % LOINC: 26478-8
Lymphocytes (#/blood volume) 103/;1L LOINC: 26474-7
Myalgia NA (binary) ICD-10: M79.1, M79.10, M79.11, M79.12, M79.18 and ICD-9
729.1
Neutrophils (#/100 leukocytes in blood) % LOINC: 26511-6
Neutrophils (#/blood volume) 103/;1L LOINC: 26499-4
Oxygen saturation % LOINC: 59408-5
Pneumonia NA (binary) ICD-10: J12.*,J13,J14,J15.%,J16.*,J17, J18.* and ICD-9: 480.%,
481, 482.%, 483.%, 484.*, 485, 486, 487.0, 488.01, 488.11, 488.81
Rhinorrhea NA (binary) ICD-10: J34.89 and ICD-9: 478.19
Shortness of breath NA (binary) ICD-10: R06.02 and ICD-9: 786.05
Sore throat NA (binary) ICD-10: J02.9 and ICD-9: 462
Sputum NA (binary) ICD-10: R09.3 and ICD-9: 786.4
Systolic blood pressure mmHg LOINC: 8480-6
Vomiting NA (binary) ICD-10: R11.10 and ICD-9: 536.2, 787.03
Chronic features Active smoking NA (binary) Based on reported habit
Asthma NA (binary) ICD-10: J45.% and ICD-9: 493.*
BMI kg/m? LOINC: 39156-5, or computed from weight (29463-7) and height
(8302-2)
Cardiovascular disease NA (binary) ICD-10: 120.%, 121.%, 125.%, 148.%, 150.*, 163.*, 165.%, 167.*, 173.*
and ICD-9: 410.%, 412.%, 413.%, 414.%, 427 %, 428 %, 429.% 433.%,
434.% 437 % 443 *
Chronic kidney disease NA (binary) ICD-10: E10.21, E10.22, E10.29, E11.21, E11.22, E11.29, 112.0,
112.9, 113.0, 113.10, 113.11, 113.2, NO4.*, NOS5.*, NO8, N18.*,
N19, N25.9 and ICD-9: 250.40, 250.41, 250.42, 250.43, 403.%,
404.*,581.81, 581.9, 583.89, 585.%, 588.9
Chronic obstructive pulmonary disease NA (binary) ICD-10: J44.* and ICD-9: 491.%, 493.2*
Diabetes NA (binary) ICD-10: E10.*, E11.*, E13.* and ICD-9: 250.*
Hypertension NA (binary) ICD-10: 110, I15.* and ICD-9: 401.%, 405.*
Immunodeficiency NA (binary) ICD-10: B20, D80.*, D81.*, D82.*, D83.*, D84.*, D86.*, D89.*
and ICD-9: 042, 279.*
Nicotine dependence NA (binary) ICD-10: F17.* and ICD-9: 305.1
Obesity NA (binary) ICD-10: E66.0%, E66.1, E66.2, E66.8, E66.9 and ICD-9: 278.00,
278.01, 278.03
Paralytic syndromes NA (binary) ICD-10: G80.*, G81.*%, G82.*, G83.* and ICD-9: 342.*, 343.%,
344
Weight kg LOINC: 29463-7

* symbolizes a wildcard for ICD subcategory codes.
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Figure 2. Diagram of number of subjects. Cohort selection and
number of patients not entering versus entering critical state based
on the definitions outlined in the according sections. To train and
evaluate the model, the dataset was split using stratification of the
prediction target. This procedure was repeated 100 times based on
random seeds to get a distribution of model performance.

for these states are: LA (4.5%), OH (24.3%), DC (1.0%), FL
(5.2%), and MD (4.3%).

Descriptive statistics after zero-imputation of the binary
features and before feature reduction are reported in Table 4.
Based on these results, the following features were removed
due to a too high proportion of missing data: C-reactive pro-
tein, C-reactive protein (high sensitivity method), Lactate
dehydrogenase (L>P), Lactate dehydrogenase (P>L), Lym-
phocytes (/100 leukocytes in blood), Lymphocytes (/blood
volume), Neutrophils (/100 leukocytes in blood), Neutrophils
(/blood volume), and Oxygen saturation. Rank correlations
across features after removing features based on the thresh-
old for missing data is shown in the heatmap in Figure 4.
The following feature combinations showed a strong rank
correlation: {Race (African American), Race (Caucasian)}
and {BMI, Weight}, from which the following features were
removed due to higher proportion of missing data or higher

Alaska

Hawaii

Figure 3. Distribution of cohort patients in the US. The color
shade indicates the total number of COVID-19 patients for each
3-digit ZIP code of the US being recorded within the Explorys
network.

mean: Race (Caucasian) and BMI.

3.2 Performance

The performance and calibration of the model was evalu-
ated on the 4031 patients of the test set for each train-test split
seed. The ROC AUC and PR AUC across different seeds were
0.863 [0.857, 0.866] and 0.539 [0.526, 0.550], respectively.
Figure 5 shows their distributions, together with the ROC
curve and the precision recall curve. The confusion matrix
for the identified optimal classification threshold is shown
in Figure 6. The sensitivity of the model for this optimal
threshold was 0.796 [0.775, 0.821] and the specificity 0.784
[0.769, 0.805]. The calibration of the model is shown in
Figure 7.

3.3 Model interpretability

Figure 8 shows the results of the model interpretability
analysis based on Tree SHAP. Pneumonia and older age are
by far the principal predictors for critical state. The main
features contributing to a higher probability of critical state
in case of high feature values or presence are (in decreasing
order of global feature importance): pneumonia, older age,
hospitalization (inpatient), weight, shortness of breath, dia-
betes, race (African American), and cardiovascular disease.
The main features leading to lower probability of critical state
in are female gender and cough. Note that for binary features
“max” feature values correspond to 1 (e.g., presence of the
feature). In the case of gender, 1 corresponds to female (see
Table 3).

4 Discussion

In this work, a prognostic model was created based on
real-world data from 16121 patients to predict at COVID-19
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Table 4

Descriptive statistics of the features. The descriptive statistics are based on the full dataset after zero-imputation of the binary features but
before feature reduction. The percentages 25%, 50%, and 75% refer to the first (Q1), second (median), and third quartiles (Q3). Note that for
binary features the Mean column represents the proportion of positive entries. Note that as part of Explorys’ de-identification process the
feature Age has a ceiling effect at 90 years, and the age of all patients born in the last 365 days is reported as zero. For gender, 1 corresponds

to female.

Feature Count Missing Mean Std Min 25% 50% 75% Max
Active smoking 20152 0.0% 0.139 0.346 0 0 0 0 1
Acute bronchitis 20152 0.0% 0.0191 0.137 0 0 0 0 1
Age 20152 0.0% 51.9 19.2 0 37 53 66 90
Anorexia 20152 0.0% 0.00963 0.0976 0 0 0 0 1
Asthma 20152 0.0% 0.14 0.347 0 0 0 0 1
BMI 15682 22.2% 31.3 8.36 2.08 25.6 30 35.8 93
Body temperature 3616 82.1% 37.1 0.65 29.5 36.7 37 37.3 40.2
C-reactive protein 394 98.0% 535 58.9 0.5 10.4 34.1 75.8 412
C-reactive protein (high sensitivity method) 155 99.2% 65.3 63.7 0.58 124 474 105 347
Cardiovascular disease 20152 0.0% 0.266 0.442 0 0 0 1 1
Chronic kidney disease 20152 0.0% 0.117 0.322 0 0 0 0 1
Chronic obstructive pulmonary disease 20152 0.0% 0.074 0.262 0 0 0 0 1
Confusion 20152 0.0% 0.0165 0.127 0 0 0 0 1
Cough 20152 0.0% 0.255 0.436 0 0 0 1 1
Diabetes 20152 0.0% 0.221 0.415 0 0 0 0 1
Diarrhea 20152 0.0% 0.0397 0.195 0 0 0 0 1
Ethnicity (Hispanic) 20152 0.0% 0.0674 0.251 0 0 0 0 1
Ethnicity (non-Hispanic) 20152 0.0% 0.39 0.488 0 0 0 1 1
Ethnicity (other) 20152 0.0% 0.416 0.493 0 0 0 1 1
Fatigue 20152 0.0% 0.0619 0.241 0 0 0 0 1
Fever 20152 0.0% 0.181 0.385 0 0 0 0 1
Gender 20152 0.0% 0.576 0.494 0 0 | 1 1
Headache 20152 0.0% 0.03 0.171 0 0 0 0 1
Hemoptysis 20152 0.0% 0.00169 0.041 0 0 0 0 1
Hospitalization (inpatient) 20152 0.0% 0.0984 0.298 0 0 0 0 1
Hypertension 20152 0.0% 0.442 0.497 0 0 0 1 1
Immunodeficiency 20152 0.0% 0.0307 0.172 0 0 0 0 1
Insurance (Medicaid) 20152 0.0% 0.00129 0.0359 0 0 0 0 1
Insurance (Medicare) 20152 0.0% 0.00372 0.0609 0 0 0 0 1
Insurance (other public) 20152 0.0% 0.0301 0.171 0 0 0 0 1
Insurance (other) 20152 0.0% 0.0274 0.163 0 0 0 0 1
Insurance (private) 20152 0.0% 0.0134 0.115 0 0 0 0 1
Insurance (selfpay) 20152 0.0% 0.00571 0.0753 0 0 0 0 1
Lactate dehydrogenase (L>P) 3 100.0% 262 69.7 186 232 277 300 323
Lactate dehydrogenase (P>L) 170 99.2% 394 322 149 256 336 425 3.56e + 03
Lymphocytes (/100 leukocytes in blood) 1818 91.0% 23.4 11.9 0 14.7 21.9 30.4 95
Lymphocytes (/blood volume) 1808 91.0% 1.44 0.802 0.05 0.9 1.3 1.8 11
Myalgia 20152 0.0% 0.00164 0.0404 0 0 0 0 1
Neutrophils (/100 leukocytes in blood) 903 95.5% 64 16.8 0.2 56.5 66 75.5 95
Neutrophils (/blood volume) 623 96.9% 4.83 3.51 0.25 2.71 4 5.84 40.2
Nicotine dependence 20152 0.0% 0.114 0.318 0 0 0 0 1
Obesity 20152 0.0% 0.279 0.448 0 0 0 1 1
Oxygen saturation 638 96.8% 97.1 2.52 71 96 98 99 100
Paralytic syndromes 20152 0.0% 0.0175 0.131 0 0 0 0 1
Pneumonia 20152 0.0% 0.162 0.369 0 0 0 0 1
Race (African American) 20152 0.0% 0.418 0.493 0 0 0 1 1
Race (Asian) 20152 0.0% 0.0127 0.112 0 0 0 0 1
Race (Caucasian) 20152 0.0% 0.456 0.498 0 0 0 1 1
Race (multi-racial) 20152 0.0% 0.0161 0.126 0 0 0 0 1
Race (other) 20152 0.0% 0.0673 0.251 0 0 0 0 1
Rhinorrhea 20152 0.0% 0.0115 0.106 0 0 0 0 1
Shortness of breath 20152 0.0% 0.162 0.368 0 0 0 0 1
Sore throat 20152 0.0% 0.0229 0.15 0 0 0 0 1
Sputum 20152 0.0% 0.000198 0.0141 0 0 0 0 1
Vomitting 20152 0.0% 0.00695 0.0831 0 0 0 0 1
Weight 15851 21.3% 88.8 26.7 2.46 71.6 86.1 104 221

diagnosis, whether patients will enter a critical state within the
next 28 days or not. In addition to demographic, clinical, and
laboratory data, hospitalization and insurance types were used
as predictors. Our results based on new 4031 patients unseen
during training showed high predictive performance (sensi-
tivity of 0.796 and specificity of 0.0784) and well-calibrated
output probabilities. Furthermore, the interpretability analysis

identified pneumonia, older age, hospitalization (inpatient),
weight, shortness of breath, diabetes, race (African American),
and cardiovascular disease as main predictive features risk
factors and female gender and cough as risk reducing factors.
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Figure 4. Feature concurvity. Kendall’s 7 was used to evaluate correlation between each feature combination.

4.1 Validity of the COVID-19 dataset

More than 20000 US patients diagnosed with COVID-
19 met the inclusion criteria. To the best of our knowledge,
it is the largest cohort used in a retrospective analysis for
predictive modeling to date based on real-world data. As
highlighted in Figure 3, close to half of the cases were re-
ported in Louisiana and one fourth in Ohio. This comes from
the fact that the Explorys database has major contributors in
the East cost of the United States. Therefore, our cohort may
not be fully representative of the entire US population.

The definitions used for severe state or critical state vary
across different sources (e.g., intubation prior to ICU admis-
sion, discharge to hospice, or death (Vaid et al., 2020), moder-

ate to severe respiratory failure (Ferrari et al., 2020), oxygen
requirement greater than 10 L/min or death (Haimovich et al.,
2020)), or are not described in detail. Based the definition
by the WHO (2020) including sepsis, septic shock, and respi-
ratory failure (e.g., ARDS), the proportion of patients enter-
ing critical state (15.7%) in our study is within the range of
prevalence (12.6% to 23.5%) reported in a review covering
21 studies (Hu et al., 2020).

Similarly, case fatality rates vary across US states and coun-
tries, as they directly depend on factors such as the number of
tested people, demographics, socioeconomics, or healthcare
system capacities. The death rate for the entire US is esti-
mated to be 4.3% (Johns Hopkins University (JHU), 2020)
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Figure 5. Model performance. Left: Receiver operating charac-
teristic (ROC) curve and corresponding normalized violin plot of
the distribution of the ROC area under the curve (AUC). Right:
Precision recall (PR) curve and corresponding distribution of the
PR AUC. The top plots show median and interquartile range of the
performance (blue) and the chance level (no predictive value) as a
reference (dashed gray line).
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Figure 6. Confusion matrix. Confusion matrix for the predictions
of the test set. True refers to entering critical state, and False refers
to not entering critical state. The shades of the confusion matrix
correspond to the median percentage of the actual labels (i.e., shade
of the top left cell and the bottom right cell represent the median
specificity and the median sensitivity, respectively).

(status July 9, 2020), while for Louisiana and in particular
in New Orleans it is higher and around 4.6% (Louisiana De-
partment of Health, 2020) and 6.5% (Johns Hopkins Uni-
versity (JHU), 2020), respectively. In the present work, the
reported proportion of people assumed to be deceased be-
cause of COVID-19 is 5.0%. These minor difference may be

0.0 0.2 0.4 0.6 0.8 1.0
Mean predicted value

Figure 7. Model calibration. Median and interquartile range (blue)
of the fraction of actual positives (labeled as critical state) for the
binned mean predicted values (i.e., probabilities). The reference
diagonal represents perfect calibration (dashed gray line).

justified in part by the fact that in these sources the outcome
(i.e., potential death) of recently confirmed cases is yet un-
known when computing the case fatality rate, hence leading
to underestimation. As our analysis enforces at least 7 weeks
of data after diagnosis date increasing changes of knowing
the patients’ outcomes, we are able to reduce this underesti-
mation. Nevertheless, death rates based on Explorys should
be cautiously interpreted, as death is not reliably reported.
Regarding demographics of our cohort, there are only mi-
nor dissimilarities to numbers reported by the Centers for
Disease Control and Prevention (CDC) or US states. The in-
terquartile of the age distribution of our cohort (37-66 years)
matches 33-63 years for COVID-19 cases across the entire
US (Stokes et al., 2020). The racial breakdown varies strongly
across different US states. Given that Louisiana (and in par-
ticular New Orleans) is a main contributor in the Explorys
network, this also explains the high proportion of African
Americans. Given that Caucasian and African American rep-
resent together 87.4% of the dataset, there is a strong negative
correlation between the two features, for which reason the
majority group (race (Caucasian)) was considered as base-
line and removed from the feature set. The proportion of
female cases (57.6%) is more pronounced compared to the
US-wide incidences of 406 (female) and 401 (male) cases
per 100000 persons also showing a marginally higher rate
for females than males, respectively (Stokes et al., 2020).
The higher count of COVID-19 cases among females (espe-
cially in African American) in the US state Georgia (Georgia
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Figure 8. Model interpretability. Left: Box plots (across different seeds) of the average absolute impact of features on the model output
magnitude (in log-odds) ordered by decreasing feature importance. Right: Illustration of the relation between feature values and impact (in
terms of magnitude and direction) on prediction output (all seeds pooled). Each dot represents an individual patient in the test set. The color
of each point corresponds to the normalized feature value (min-max normalization on test set). As an example for continuous features, older
patients tend to have a higher SHAP value). For binary features, the maximum feature value 1 corresponds to presence of the feature, and O to

absence of the feature. For gender, 1 corresponds to female.

Department of Public Health, 2020) having a similar racial
distribution to Louisiana might also support our larger pro-
portion of female cases, as African Americans cover almost
half of our dataset. Since the medical system captured by
Explorys is separate to the billing system, it can be expected
that information on insurance types is not widely available.
As a matter of fact, less than 10% of patients have a reported

insurance type. Nevertheless, it has been shown to be of value
(in particular knowing if the insurance is self-pay or not) for
predicting critical state.

The most common underlying comorbidities identified
through ICD codes in our cohort are hypertension, obesity,
cardiovascular disease, diabetes, and chronic lung disease
(includes asthma and chronic obstructive pulmonary disease).
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As this is in line with statistics from the CDC (Stokes et al.,
2020; Garg et al., 2020) as well as other studies conducted in
China (e.g., Zhou et al. (2020)) and the prevalence of such
features is not affected by any time window restrictions (i.e.,
the entire patient history was considered), it confirms the
validity of the Explorys data. In contrast, all quantitative
measurements identified through LOINC codes (e.g., body
temperature or C-reactive protein) are missing in more than
75% of the COVID-19 cases (except for BMI and weight), and
for most features it is even more than 95%. This observation
could partially be explained by the fact that the acute time
window only captures entries before the COVID-19 diagnosis,
that lab test results are often known only after the diagnosis
date, and that tests are mainly performed on hospitalized
patients or patients in a severe state. Moreover, some tests
might not be commonly performed in the hospitals within the
Explorys network or they might just not be reported. Due
to the high number of missing values, the majority of the
quantitative measurements were excluded for modeling. Even
though the lack of these features may compromise the perfor-
mance of the model, it simplifies the model and increases its
practical usability to do early predictions before extensively
performing lab tests.

Since the aim of the present work is to develop a model for
predictions at the time point of COVID-19 diagnosis, symp-
toms identified through ICD codes (e.g., fever or cough) are
only extracted from the 14 days previous to the COVID-19
diagnosis. As the COVID-19 diagnosis may be early or late
in the disease progression, there is the possibility to capture
either early or late symptoms depending on each case. How-
ever, due to the time window restriction, the prevalence of
reported symptoms tends to be lower compared to statistics
including reported symptoms during the entire course of the
disease (Stokes et al., 2020). Despite these lower numbers,
the most common symptoms in our cohort, namely cough,
fever, and shortness of breath, are confirmed by other reports
and studies (Chen et al., 2020; Stokes et al., 2020; Yang et al.,
2020).

Overall, the size and quality of the EHR dataset based on
the Explorys database demonstrates high value with regards to
demographics, chronic features, and acute symptoms in most
cases, but is less suitable for laboratory test results extracted
by LOINC codes. To avoid the unreliable use of quantitative
features with a significant proportion of missing values, such
features were removed for the prognostic modeling.

4.2 Performance

Although our dataset is based on fragmented real-world
data with a high proportion of missing data, our prognostic
model shows an excellent model performance in terms of
ROC AUC (0.863 [0.857, 0.866]) (Mandrekar, 2010) and
a substantial improvement of the PR AUC (0.539 [0.526,
0.550]) compared to chance level (0.157). Optimizing the

decision threshold by maximizing the Youden’s J statistic
lead to a sensitivity of 0.796 [0.775, 0.821] and a specificity
of 0.784 [0.769, 0.805]. Depending on the medical require-
ments for the prognostic model in terms of sensitivity and
specificity, the threshold could easily be adjusted for a real
application. As different types of datasets, inclusion/exclusion
criteria, features, and prediction target definitions were used
in other papers presenting the development of models predict-
ing COVID-19 critical state, (e.g., Haimovich et al. (2020);
Vaid et al. (2020), or see review by Wynants et al. (2020)),
it renders it difficult to do a direct performance comparison
(reported metrics were in the following ranges: ROC AUC
0.81-0.99, PR AUC 0.56-0.71, sensitivity 0.70-0.94, speci-
ficity 0.75-0.85). Furthermore, some publications do not
mention metrics (e.g., PR AUC, or sensitivity and specificity)
required to properly evaluate performance on an imbalanced
dataset, which is the case for this type of COVID-19 prognosis.
Unlike other papers (Ferrari et al., 2020; Haimovich et al.,
2020; Vaid et al., 2020) usually performing a cross-validation
or using a limited number of independent sets for the testing,
the present approach used random, stratified train-test splits
repeated 100 times to obtain a distribution of performance.
Such an approach has the advantage of providing a better un-
derstanding of the generalizability model and the robustness
of the performance estimate, as it is likely that a single test set
might underestimate or overestimate the real performance for
small testing sets. Even though our model was trained on data
coming from many hospitals compared to other work being
only based on a single or limited number of contributors, an
external validation should be performed to better assess its
generalizability.

Most publications on prognosis prediction models do not
report model calibration (Wynants et al., 2020), with the ex-
ception of a few (Haimovich et al., 2020; Xie et al., 2020). The
present model based on the Explorys dataset is well-calibrated,
showing only minor tendency to over-forecast probabilities
above 0.6. We hypothesize that this over-forecast comes from
the fact that treatment features were not included in the model.
Assuming that treatments reduce the probability of entering
critical state, taking a treatment will lead to an overestimated
probability by the model, as this information is not available
to the model. In any case, over-forecast accentuating cases
with relatively high probability is preferrable to under-forcast,
where patients with high probability of critical case may not
be identified.

Overall, our prognostic model shows excellent perfor-
mance and has the advantage to provide a calibrated risk
score instead of a binary classification that could potentially
help healthcare professionals take better decisions to improve
patients’ outcome when diagnosed to COVID-19.
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4.3 Model interpretability

It is not surprising to see pneumonia among the top features,
as pneumonia is a diagnosis defining moderate and severe
cases (WHO, 2020), which are precursor stages for critical
state due to COVID-19 disease. The results from a study with
1099 patients showed that patients with severe disease had
a higher incidence of physician-diagnosed pneumonia than
those with nonsevere disease (Guan et al., 2020).

Increased age (e.g., above 65 years) has been confirmed
by many studies to be an important risk factor for progress to
grade IV and V on the pneumonia severity index and mortal-
ity of COVID-19 patients (Du et al., 2020; Liu et al., 2020b;
Mehra et al., 2020). The developed model was also able to
endorse existing results showing that men are, despite similar
prevalence to women, more at risk for worse disease severity,
independent of age (Jin et al., 2020). Similarly, obesity has
been identified as a factor increasing probability of higher dis-
ease severity and lethality (Petrakis et al., 2020; Lighter et al.,
2020; Guan et al., 2020). While according to our interpretabil-
ity analysis the feature obesity shows marginal importance
in the output of the model, the feature weight is among the
top features leading to high risk (in case of high weight). It
can be assumed that the feature obesity with a prevalence of
29% in our dataset compared to age-adjusted prevalence of
obesity in the US is around 35% (Flegal et al., 2012) is under-
reported in the EHR data of our cohort. At an average US
male height of 175 cm (Fryar et al., 2018), the median weight
and median BMI in our dataset are very close to the threshold
from overweight to obesity (BMI of > 30 kg/m?). Hence it
can be concluded that approximatively 50% of our patients
are obese. In addition, the weight feature is a continuous
variable with only 21.3% missing entries, having thus more
information content and, as a result, shows higher predictive
importance. A more related feature to obesity would be BMI.
However, BMI was removed due to high correlation with
weight and a larger proportion of missing values.

In line with the literature, the following comorbidities were
also shown to drive high probabilities for critical state: di-
abetes (Guo et al., 2020b; Wang et al., 2020a; Yan et al.,
2020b), chronic kidney disease (Cheng et al., 2020; Emami
et al., 2020; Henry and Lippi, 2020), and cardiovasular dis-
eases (Bansal, 2020; Guo et al., 2020a; Mehra et al., 2020).
As a matter of fact, many elderly patients with these comor-
bidities use Angiotensin-converting enzyme (ACE) inhibitors
and angiotensin-receptor blockers (ARBs) which upregulate
the ACE-2 receptor (Zheng et al., 2020). Given that ACE-2
receptor has been proposed as a functional receptor for the cell
entry mechanism of coronaviruses, it has been hypothesized
that as a consequence this may lead to a higher prevalence
and elevated risk for a severe disease progression after SARS-
CoV-2 infection (Shahid et al., 2020).

Our model also revealed disparities in terms of probability
for critical state between races: The race Caucasian showed

a lower risk, while, as there is a strong negative correlation
between the race feature Caucasian and African American
(both together represent almost the entire cohort), the data
displays that African Americans have a higher risk. This fact
has been verified in several states, among others Louisiana
where around 70% of deaths have occurred among African
Americans, although they represent only one third of the
state’s population (Yancy, 2020). While a higher prevalence
of comorbidities such as hypertension, diabetes, obesity, and
cardiovascular disease among African Americans may be
one reason for these disproportion, also late lockdowns in
southern states or social determinants (e.g., living in poor
areas with high housing density, high crime rates, poor access
to healthy foods) may be strong contributors (Dyer, 2020;
Yancy, 2020). The importance of socioeconomic factors for
severe disease progression is also underlined by examining
the consequences of insurance types. The SHAP analysis
clearly showed that patients with self-pay healthcare tend to
have a higher probability to enter critical state, as they may
be reluctant to seek early medical care.

The two primary symptoms influencing the progression
of the disease based on the present analysis are shortness
of breath (dyspnoea) and cough, both prevalent symptoms
for COVID-19 (Yang et al., 2020). Interestingly, they have
opposite effects on the prediction probability of the model,
with shortness of breath increasing and cough decreasing the
probability for critical state. This can be explained by the
fact that cough is an early symptom during mild or moderate
disease, and shortness of breath develops in the late course
of illness. This concurs with statistical reports from China
showing higher prevalence of shortness of breath in severe
cases and a higher prevalence of cough in non-severe cases
and survivors (Zhao et al., 2020; Li et al., 2020; Zhou et al.,
2020). Hence, if cough is reported, this may indicate that
the disease in still in early stage and there is the chance that
it may not lead to a critical state, whereas if shortness of
breath is reported, chances for further disease progression
may be much higher. Fever may be at the same time an early
appearing symptom but has also been shown to be developed
later during hospitalization (Guan et al., 2020; Yang et al.,
2020). In addition, as reported by Zhou et al. (2020), fever has
the same prevalence in survivors and non-survivors. This may
also explain why it is more difficult to use it as a predictive
feature, unlike for example cough, despite being also among
the most prevalent symptoms (Chen et al., 2020). Nonspe-
cific neurological symptoms like headache and confusion are
less commonly reported (Chen et al., 2020). Nevertheless,
confusion showed to contribute to an increase in the model’s
output probability. While headaches may have many poten-
tial origins not necessarily related to COVID-19, confusion
may be a clearer precursor of neuroinvasion of SARS-CoV?2,
which has been suggested to potentially lead to respiratory
failure (Asadi-Pooya and Simani, 2020).
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Finally, the feature hospitalization (inpatient) also appears
among others in the top features in terms of feature impor-
tance. Less than 10% of patients were already hospitalized
(inpatient) in the 14 days before or at diagnosis date. The
SHAP analysis showed clearly that hospitalization before
COVID-19 diagnosis predicts progression towards a severe
or critical state.

Overall, the findings of this work are in line with results
from the vast number of studies reported in the literature and
the interpretability analysis provides evidence for the validity
of the prognostic prediction modeling.

4.4 Limitations

EHRs can be a powerful datasource to create evidence
based on real-world data, especially when combined with a
platform facilitating the structured extraction of data. How-
ever, there are trade-offs to be made when doing analyses
on EHR data in contrast to the analysis of clinical study
data (Kim et al., 2018). One major limitation is that patients
may get diagnoses, treatments, or laboratory measurement
results outside of the hospital network covered by Explorys,
resulting in incomplete patient histories with potentially high
proportion of missing data. For this reason, it was for exam-
ple preferred to rely on COVID-19 diagnoses based on ICD-
codes, instead of relying on LOINC codes for SARS-CoV-2
tests, to increase the probability of inclusion of patients being
treated within the Explorys network. This highly fragmented
data also requires imputation, as there is rarely a patient with
a complete data record, especially when the feature set is
large. The method of imputation may also introduce addi-
tional biases which are difficult to control. Moreover, features
with high proportions of missing data (in particular labora-
tory measurement results) were removed to reduce the bias.
Wherever imputation was still necessary, it was ensured that
the imputation was based purely on the train set to avoid addi-
tional information leakage. While the removal of potentially
important laboratory measurement results may compromise
the performance of the model, it also increases practical us-
ability of the model, as less laboratory tests are required to
create a prediction. Furthermore, to ensure data privacy and
prevent re-identification, patients’ age is truncated, and death
dates and related diagnoses and procedures are not available
in Explorys. As the latter is highly relevant for the present
modeling, several assumptions had to be taken. Nevertheless,
resulting death rates correspond well to official COVID-19-
related death rates in the US or relevant states.

An additional limitation and potential bias is linked to the
data extraction using time windows. Even though the window
lengths were motivated by medical reasoning, they are subject
to trade-offs which is not the case for clinical studies due to
precise protocols: extending the windows to capture enough
information spread over multiple visits and account for delays
in EHR entries, versus remaining recent enough and related

to COVID-19. Furthermore, the features used in this model
do not capture the time information for the individual samples
(e.g., how many days before COVID-19 diagnosis the ICD
code for fever entered into the system).

The model was based on US data from hospitals of the
Explory network and the cohort analysis showed that the high-
est data contribution came from only few states, respectively
counties. This resulted for example in a higher ratio of African
Americans compared to the US average, it is highly likely that
there are demographic and socioeconomic biases, in addition
to the fact that economically disadvantaged patients may seek
medical help too late. Also in terms of testing, diagnosing,
and treating, the data reflects the American healthcare system.

Despite these limitations, RWE can retrospectively gener-
ate insights on a scale which would not be feasibly with an
observational clinical study. Thus, it may be a starting point
for subsequent, more focused clinical studies. Furthermore,
approaches based on RWE might even have higher clinical
applicability due to their incorporation of statistical noise
while model training (Bachtiger et al., 2020).

5 Conclusions

The results of this work demonstrate that it is possible
to develop an explainable machine learning model based on
patient-level EHR data to predict at the time point of COVID-
19 diagnosis whether individual patients will progress into
critical state in the following four weeks. Without the neces-
sity of relying on multiple laboratory test results or imaging
such as CTs, this model holds promise of clinical utility due
to the simplicity of the relevant features and its adequate
sensitivity and specificity. Even though this prognostic model
for critical state has been trained and evaluated on the largest
cohort to date with over 20000 patients, it includes only cases
from certain regions within the US and may therefore be
biased towards sub-populations of the US and the American
healthcare system. To prove its generalizability before being
considered for clinical implementation, it should be validated
with other datasets. This model could be augmented with
treatment features (e.g., drugs or other interventions) after
diagnosis in order to predict whether the respective treatments
would lead to an improvement (i.e., reduction of the probabil-
ity of entering critical state). Such models will never replace
clinical trials to evaluate treatment effectiveness, but will help
to identify responder groups or inform the design of clinical
trials to eventually reduce burden on the healthcare system
and optimize personalized treatment.
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