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Abstract: This paper assesses the age specificity of the infection fatality rate (IFR) for  
COVID-19 using seroprevalence results from eight national studies (Belgium, England, 
Hungary, Italy, Netherlands, Portugal, Spain, and Sweden), fifteen seroprevalence studies of 
specific locations in Europe and the United States, and three countries (Iceland, New Zealand, 
and Republic of Korea) that have engaged in comprehensive tracking and tracing of COVID-19 
infections. The estimated IFR is close to zero for younger adults but rises exponentially with age, 
reaching about 0.3% for ages 50-59, 1.3% for ages 60-69, 4% for ages 70-79, 10% for ages  
80-89. Our findings indicate that COVID-19 is not just dangerous for the elderly and infirm  
but also for healthy middle-aged adults. Consequently, the overall IFR for a given location is 
intrinsically linked to the age-specific pattern of infections, and hence protecting vulnerable age 
groups could substantially reduce the incidence of mortality. 
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Assessing the Age Specificity of Infection Fatality Rates for COVID-19: 
Systematic Review, Meta-Analysis, and Public Policy Implications 
Andrew T. Levin, Gideon Meyerowitz-Katz, Nana Owusu-Boaitey,  
Kensington B. Cochran, and Seamus P. Walsh 
14 August 2020 
Objective: Determine age-specific infection fatality rates for COVID-19 to inform  
public health policies and communications that help protect vulnerable age groups.  

Methods:  Studies of COVID-19 prevalence were collected by conducting an online search of 
published articles, preprints, and government reports. A total of 74 studies were reviewed in 
depth and screened. Studies of 26 locations satisfied the inclusion criteria and were included in 
the meta-analysis. Age-specific IFRs were computed using the prevalence data in conjunction 
with reported fatalities four weeks after the midpoint date of the study, reflecting typical lags in 
fatalities and reporting. Meta-regression procedures in Stata were used to analyze IFR by age. 
The meta-regression results were compared with age-specific IFRs computed from four other 
studies -- an “out-of-sample” exercise commonly used in assessing validity of forecast models. 

Results: Our analysis finds a exponential relationship between age and IFR for COVID-19.  
The estimated age-specific IFRs are close to zero for children and younger adults but rise to 
about 0.3% for ages 50-59, 1.3% for ages 60-69, and 4% for ages 70-79, 15% for ages 80-89, 
and 25% for ages 90 and above. Nearly all of the age-specific IFRs included in the meta-analysis 
fall within the 95% prediction interval of the meta-regression. 

Discussion: These results indicate that COVID-19 is hazardous not only for the elderly but for 
middle-aged adults, for whom the infection fatality rate is more than 50 times greater than the 
annualized risk of a fatal automobile accident. Moreover, the overall IFR for COVID-19 should 
not be viewed as a fixed parameter but is intrinsically linked to the age-specific pattern of 
infections. Consequently, individual and collective efforts that minimize infections in older 
adults could substantially decrease total deaths.  
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Introduction 
As the COVID-19 pandemic has spread across the globe, some fundamental issues have 
remained unclear: How dangerous is COVID-19? And to whom? The answers to these questions 
have crucial implications in determining appropriate public health policies as well as informing 
prudent decision-making by individuals, families, and communities.  

The severity of an infectious disease can be gauged in terms of its infection fatality rate (IFR), 
that is, the ratio of deaths to the total number of infected individuals. The IFR is readily 
observable for certain viruses, such as Ebola, where nearly every case is associated with severe 
symptoms and the incidence of fatalities is extremely high; for such diseases, the IFR is 
practically identical to the case fatality rate (CFR), that is, the ratio of deaths to reported cases. 
By contrast, most people who are infected with SARS-Cov-2—the virus that causes COVID-
19—are asymptomatic or experience only mild symptoms such as headache or loss of taste and 
may be unlikely to receive a viral test or be included in official case reports. Consequently, 
reported cases tend to comprise a small fraction of the total number of infections, and hence the 
CFR is not an adequate metric for the true severity of the disease.  

As shown in Table 1, assessing the IFR for COVID-19 is analogous to finding a needle in a 
haystack, especially in a dense urban area such as New York City (NYC). The New York State 
Department of Health recently conducted a large-scale seroprevalence study and estimated the 
NYC infection rate at about 22%, that is, 1.6 million out of 8 million NYC residents.1  
As of mid-July, NYC had about 220,000 reported COVID-19 cases, almost exactly one-tenth  
of the total number of infections.2 About one-fourth of those reported cases were severe enough  
to require hospitalization, many of whom unfortunately succumbed to the disease. All told, 
fatalities represented about one-tenth of reported cases but only one-hundredth of all infections.  
 
While the NYC data indicate an IFR of about 1%, analysis of other locations has produced a 
wide array of IFR estimates, e.g., 0.6% in Geneva, 0.8% in Spain, 1.3% in Belgium, and 2.2% in 
Italy. Indeed, a recent meta-analysis noted the high degree of heterogeneity across aggregate 
estimates of IFR and concluded that research on age-stratified IFR is “urgently needed to inform 
policymaking.”3 

 Total as of July 15, 2020 Share of Infections 
NYC Residents 8 Million NA 
Estimated Infections 1.6 Million 100% 
Symptomatic Cases 1.1 Million 65% 
Reported Cases 220,000 12% 
Hospitalization 55,000 3% 
Fatalities  23,000 1% 

Table 1: COVID-19 Cases in New York City 
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In this paper, we consider the hypothesis that the observed variation in IFR across locations  
may primarily reflect the age specificity of COVID-19 infections and fatalities. In particular,  
the overall IFR for a given location can be expressed as follows: 

𝐼𝐼𝐼𝐼𝐼𝐼 = �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎 ∗  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎

𝑁𝑁

𝑎𝑎=1

 

using data for N distinct age groups, where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑎𝑎 denotes the share of age group a in  
the total population, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 denotes that age group’s COVID-19 infection rate, and 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 
denotes that age group’s infection fatality rate. Demographic information about the age structure 
for a given location is readily available from census data. Consequently, a crucial task is to use 
age-specific measures of prevalence to assess age-specific IFRs.  
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Figure 1: Study selection (PRISMA flow diagram) 

  

    
945 potentially eligible studies 
identified by searches of databases 
and government reports 

871 studies excluded  
   839 non-seroprevalence 
   17 non-OECD locations 
   15 focused on health care  
       workers or other groups 
 

74 reviewed in depth 

55 studies excluded 
      33 with no age-specific data 
      2 with accelerating outbreak  
          at midpoint date of testing 
      10 studies of blood donors 
      4 using active recruitment 
           of study participants 
      4 using specimens from patients  
         of hospitals & outpatient clinics 
      2 studies of schools (teachers,  
          pupils & families) 
       

15 seroprevalence studies   
      10 European locations 
      10 U.S. locations 
 

2 island/peninsula nations  
    with comprehensive 
    case reporting & tracing  

4 other studies  
   1 European location 
   1 U.S. location 
   1 municipality 
   1 cruise ship 

112 meta-regression observations  
   (infection fatality rate for each 
   age group in each location) 

18 observations used for  
    out-of-sample analysis   
    of meta-regression results 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted August 14, 2020. ; https://doi.org/10.1101/2020.07.23.20160895doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160895


4 
 

  

Methodology 

To perform the present meta-analysis, we collected published papers and preprints regarding the 
seroprevalence and/or infection fatality rate of COVID-19. To identify these studies, we 
systematically performed online searches in MedRxiv and Medline using the criterion ((“infection 
fatality rate” or “IFR” or “seroprevalence”) and (“COVID-19” or “SARS-Cov-2”)). We identified 
other studies listed in reports by government institutions such as the U.K. Parliament Office.4 
Finally, we confirmed the coverage of our search by referring to two recent meta-analysis studies 
of the overall IFR for COVID-19 and a recent meta-analysis of the ratio of measured 
seroprevalence to reported cases.3,5,6 Our search encompassed studies that were publicly 
disseminated prior to August 13. Data was extracted from studies by three authors and verified 
prior to inclusion.  

Before proceeding further, we restricted our meta-analysis to studies of advanced economies, 
based on current membership in the Organization for Economic Cooperation and Development 
(OECD).7 It should be emphasized that we applaud recent efforts to assess seroprevalence in a 
number of developing countries (including Brazil, Croatia, Ethiopia, and Iran), but we have 
excluded those studies in light of the distinct challenges associated with health care provision 
and reporting of fatalities in those locations. We also excluded studies that were focused on 
measuring seroprevalence in a narrow segment of the population such as health care workers  
or pregnant women.  

Our meta-analysis encompasses two distinct approaches for assessing prevalence: (1) extensive 
tracking and contact-tracing using live-virus testing and (2) seroprevalence studies that test for 
antibodies produced in response to the virus. Testing for the live virus is done by either a 
quantitative reverse-transcription polymerase chain reaction (qRT-PCR) molecular test for the 
viral nucleic acid sequence, or an antigen test for proteins specific to the virus. These tests detect 
the virus within a few days of disease onset. While live antigen tests provide data regarding the 
incidence of infections, comprehensive tracking and tracking programs have only been 
implemented in a small number of countries, notably the Republic of Korea (henceforth 
“Korea”), Iceland, and New Zealand.  

Most studies of COVID-19 prevalence have proceeded using serological analysis to determine 
what fraction of the population has developed either IgG or IgM antibodies to the virus. IgM 
antibodies develop earlier, but decrease over time, while IgG antibodies develop later and remain 
in high concentrations for several months. Antibodies are tested for using several methods. 
Enzyme-linked immunosorbent assays (ELISA) proceed by tagging antibody-antigen 
interactions with a reporter protein. Chemiluminescent immunoassays (CLA) work similarly by 
tagging the antigen-antibody interaction with a fluorescent protein. Lateral Flow Assays (LFA), 
also known as rapid diagnostic tests (RDT), produce a colored band upon antigen-antibody 
interaction.  

Recognizing that SARS-Cov-2 is both novel and hazardous, public regulatory agencies have 
issued “emergency use authorizations” (EUA) to facilitate the rapid deployment of live virus and 
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antibody tests based on the test characteristics reported by each manufacturer. Subsequent 
studies by independent laboratories have reassessed the characteristics of these test kits, in  
many cases finding markedly different results than those of the manufacturer. Such differences 
reflect (a) the extent to which test results may be affected by seemingly trivial differences in its 
implementation, and (b) the extent to which seriological properties may vary across different 
segments of the population. For example, a significant challenge in producing accurate tests is to 
distinguish COVID-19 antibodies from those associated with other coronaviruses (including the 
common cold). Consequently, the assessment of test characteristics may vary with seemingly 
innocuous factors such as the season of the year in which the blood samples were collected. 

The reliability of seroprevalence testing depends on three key factors: (1) the seroprevalence 
test’s sensitivity (odds the test detects the virus in an infected person); (2) the seroprevalence 
test’s specificity (odds the test returns a negative result for a uninfected person); and (3) the true 
disease prevalence in the sample. In a population where the actual prevalence is relatively low, 
the frequency of false-positive tests is crucial for determining the reliability of the test results.  

The sensitivity and specificity of COVID-19 antibody tests should not be treated as fixed 
parameters that are known with a high degree of certainty, as would generally be the case for 
medical tests of other diseases that have been authorized via standard regulatory procedures.  
In particular, the confidence interval for each seroprevalence estimate should reflect the degree 
of uncertainty about its sensitivity and specificity as well as the conventional uncertainty that 
reflects the size of the sample used in producing that estimate.8,9 Indeed, a recent systematic 
review and meta-analysis found very substantial divergences in sensitivity and specificity of 
COVID-19 serological tests.10 

Sampling Frame 

To an assess the prevalence of COVID-19 infections in the general population, a study should be 
specifically designed to utilize a random sample drawn from that population using standard 
survey procedures such as stratification and weighting by demographic and socioeconomic 
characteristics. To date, large-scale studies have followed this approach in assessing COVID-19 
prevalence in Belgium, Geneva, Indiana, New York, Spain, and Sweden. For example, Spain’s 
national seroprevalence study gathered specimens from a random sample of nearly 36,000 
individuals, providing detailed results at 5-year age intervals from ages 5-9 through ages 85-89 
as well as age categories for infants, small children, and elderly people ages 90 years and above.  

Commercial Lab Specimens 

An alternative approach is to measure seroprevalence using a “convenience sample” of blood 
specimens collected for some other purpose. In particular, a recent U.S. study analyzed residual 
sera from clinical blood samples that had been submitted to two commercial laboratories for 
routine testing; those samples were collected from about 16,000 patients in ten U.S. geographical 
locations over the period from March 23 to May 12, 2020. As noted in a companion editorial in 
the same medical journal, these data collection periods “overlapped with active stay-at-home 
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orders, when most medical appointments and elective admissions were deferred. Thus,  
the outpatient and inpatient populations included in the study are likely not representative  
of a typical prepandemic cohort; some of the discarded serum specimens from inpatients  
were likely obtained from patients hospitalized for COVID-19.”11  

That study illustrates several other limitations of convenience samples: (1) The seroprevalance 
results were adjusted using data provided by the commercial labs regarding patients’ gender,  
age group, and zip code, but could not be weighted by other demographic factors (such as race 
and ethnicity) or socioeconomic indicators. Such concerns about sample selection are 
underscored by the divergence between the seroprevalence estimates of two commercial labs for 
specimens from the New York City area, where the adjusted prevalence was 11.5% for Lab A 
and 5.7% for Lab B.12 (2) The sample sizes were not tailored to ensure precise estimates in some 
locations with relatively low prevalence. For example, the 95% confidence intervals for all four 
age groups in the Minneapolis metropolitan area and in the San Francisco Bay Area included a 
value of zero; that is, the estimated level of seroprevalence was indistinguishable from a true 
value of zero. Since IFR is computed as a ratio with prevalence in the denominator, confidence 
intervals for age-specific IFRs cannot be computed in these two locations. (3) The collection 
dates of specimens from each location reflected idiosyncratic factors rather than the timeframe 
over which the pandemic was contained in that location. Indeed, as discussed further below, the 
New York City (NYC) sample was collected in late March when the outbreak was intensifying, 
and the outbreak does not appear to have been fully contained in several of the other locations 
(Louisiana, Minneapolis, Missouri, and Philadelphia).  

Blood Donors 

Prior research has shown that blood donors tend to be much younger than the general population.  
For example, a pre-pandemic study of U.K. blood donors found a median age of 28 years for 
new donors and a median age of 45 years for repeat donors, with very few donors over age 65.13 
That limitation is particularly problematic in assessing IFRs for older age groups. The study also 
found that U.K. blood donors were more likely than the general population to be residents of 
urban areas, although that finding is likely linked to the age distribution of donors. 

Those findings raise the concern that assessing seroprevalence for a sample of blood donors 
could overstate the true prevalence of COVID-19 if such individuals tend to be more gregarious 
and less risk-averse than non-donors. Indeed, such concerns were specifically flagged by the 
authors of a recent seroprevalence study who noted that blood donors “might have a higher 
number of social interactions than other groups.”11  

These concerns can be directly investigated by comparing two distinct U.K. seroprevalence 
surveys: Public Health England (PHE) gauges seroprevalence using specimens from blood 
donors, and the U.K. Office for National Statistics (ONS) gauges seroprevalence using 
specimens submitted for routine testing. As of early June, PHE reported seroprevalence of 8.5%, 
whereas ONS reported a markedly lower seroprevalence of 5.4% with a 95% confidence interval 
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of 4.3% to 6.5%; that is, the seroprevalence of PHE blood donors was markedly higher than that 
of the ONS sample, perhaps by as much as a factor of 2.14,15 

Hospitals and Urgent Care Clinics 

As noted above, blood specimens provided for routine testing may overstate prevalence if a 
substantial fraction of those samples are taken from patients who have a live virus infection.  
But this sample selection issue is likely to be far more severe for hospitalized patients or those 
seeking urgent care at an outpatient clinic.  

For example, the New York Department of Health assessed seroprevalence in a representative 
sample by collecting specimens at sites adjacent to supermarkets and grocery stores during the 
final week of April; that study estimated the prevalence in New York City at 22.7% (CI: 21.5 to 
24%).16 By contrast, a subsequent seroprevalence study was conducted using 28,523 specimens 
collected from primary care providers and urgent care facilities in New York City and 
surrounding suburbs from May 5 to June 5 and found a raw prevalence rate of 44%.17 The entire 
area was in lockdown at that time, so it seems unlikely that prevalence rose by a factor of 2 
during May. Rather, the most plausible explanation is that a subtantial fraction of patients 
coming to urgent care clinics during that period were seeking medical attention for COVID-like 
symptoms and hence inflated the estimated prevalence. 

Samples with Direct Recruitment of Participants 

Some seroprevalence studies have involved direct recruitment of participants, raising the 
possibility that a substantial fraction of the sample may have volunteered for testing due to 
specific concerns about a previous or current COVID-19 infection and hence that the estimated 
prevalence could overstate the true prevalence in the general population.  

This possibility can be evaluated using detailed results from a seroprevalence study conducted  
in Luxembourg.18 The authors specifically noted “the need to recruit a representative sample of 
the Luxembourgish population over 18 years old within a short time frame in the context of the 
already existing confinement measures.” The study obtained positive IgG results for 35 out of 
1,807 participants (raw prevalence 2.1%). However, 15 of those 35 individuals indicated that 
they had (a) previously had a positive SARS-CoV-2 test, (b) were residing in a household with 
someone who had a confirmed positive test, or (c) had direct contact with someone else who was 
a confirmed or probable case. Of course, a truly random sample would also include such cases, 
but these results underscore the possibility that seroprevalence could be overstated by studies 
involving active recruitment, especially in a location with relatively low true prevalence. 

In light of these considerations, our meta-analysis excludes seroprevalence estimates from 
studies that relied on direct recruitment of participants as well as estimates from samples of 
blood donors or patients at hospitals and urgent care clinics. We also exclude studies that did  
not report age-specific prevalence results. See Appendix A for further details. 
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Measurement of Fatalities  

Accurately measuring total deaths is a non-trivial issue in assessing IFR due to time lags from 
onset of symptoms to death and from death to official reporting. Symptoms typically develop 
within 6 days after exposure, but may develop as early as 2 days or as late as 14 days.19,20 More 
than 95% of symptomatic COVID patients have positive antibody (IgG) tests within 17-19 days 
of symptom onset.21,22 The U.S. Center for Disease Control & Prevention estimates that the mean 
time interval from symptom onset to death is 15 days for ages 18-64 (interquartile range of about 
9 to 24 days) and 12 days for ages 65+ (IQR of 7 to 19 days), while the mean interval from date 
of death to the reporting of that person’s death is about 7 days (interquartile range of about 2 to 
19 days), and hence the upper bound of the 95% confidence interval between symptom onset and 
reporting of fatalities is about six weeks (41 days).23  

Figure 1 illustrates a scenario in which the pandemic ended two weeks prior to the date of a 
seroprevalence study. This figure shows the results of a stochastic simulation calibrated to reflect 
the estimated distribution for the time lags between symptom onset, death, and inclusion in 
official fatality reports. The histogram shows the frequency of deaths and reported fatalities 
associated with the infections that occurred on the last day prior to full containment; consistent 
with the confidence intervals of the U.S. CDC’s estimates, about 95% of cumulative fatalities are 
reported within roughly four weeks of the date of the seroprevalence study.  

These considerations underscore the pitfalls of constructing IFRs based on the death toll at the 
midpoint date of a seroprevalence study, which is the approach that has been taken in most 
previous studies (including both of the meta-analysis studies of the overall IFR for COVID-19).   

 
Figure 2: Time lags in the incidence and reporting of COVID-19 fatalities 
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In particular, as shown in Table 2, the cumulative fatalities at the time of a seroprevalence study 
can markedly understate the full death count as of four weeks later. Each of these studies was 
conducted in a location where the pandemic had been contained by the time that seroprevalence 
was measured, as evident from the fact that the fatality count leveled off over the subsequent 
month. 

Evidently, the precise timing of the count of cumulative fatalities is relatively innocuous  
in locations (such as Spain and Castiglione d’Adda) where the outbreak had been contained  
for more than a month prior to the date of the seroprevalence study. But for the other studies 
shown in Table 2, the outbreak had only recently been contained, and hence the death count 
continued rising markedly for several more weeks after the midpoint of the seroprevalence study.  

For each of those locations, matching seroprevalence to the death count at the midpoint date  
of the study would significantly underestimate the true level of the IFR. For example, in the  

Table 2:  

 Cumulative Fatalities Percent Change 

Location 
Study 

Midpoint 
4 Weeks 

Later 
5 Weeks 

Later 
Weeks  
0 to 4 

Weeks 
4 to 5 

Belgium 6,262 8,843 9,150 41 3 

Geneva 255 287 291 13 1 

Indiana 932 1,984 2,142 113 8 

New York 20,212 28,663 29,438 42 3 

Spain 26,834 27,136 28,324 1 4 

Sweden 2,586 3,831 3,940 48 3 

Connecticut 2,257 3,637 3,686 61 1 

Louisiana 477 2,012 2,286 322 14 

Minneapolis, MN 393 964 1093 145 13 

Missouri 218 562 661 158 18 

Philadelphia, PA 456 1509 1754 231 16 

San Francisco, CA 265 424 449 60 6 

Miami, FL 513 1,160 1,290 126 11 

Utah 41 96 98 134 2 

Seattle, WA 536 732 775 37 6 

Table 2: Timing of Reported Fatalities for Selected Seroprevalence Studies 
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case of New York state, computing the IFR using the 4-week fatality count is nearly 1.5 times 
higher than using the fatality count at the midpoint date of that study (which was conducted  
in late April).  

In light of these findings, we construct age-specific IFRs using the seroprevalence data in 
conjunction with cumulative fatalities four weeks after the midpoint date of each seroprevalence 
study. We have also conducted sensitivity analysis using cumulative fatalities five weeks after 
the midpoint date. When the change in cumulative fatalities is less than 10%, this choice has  
negligible impact on the estimates and confidence intervals of the age-specific IFRs, especially 
compared to the width of the confidence intervals for the seroprevalence estimates that reflect 
uncertainties about test characteristics as well as conventional sampling uncertainty. 

By contrast, matching prevalence estimates with subsequent fatalities is infeasible if the 
seroprevalence study takes place in the midst of an accelerating outbreak. In particular, if 
infections and fatalities continue rising exponentially over subsequent weeks, there is no precise 
way of determining what fraction of those deaths resulted from infections before vs. after the 
date of the seroprevalence study. Therefore, a key criterion for seroprevalence studies to be 
included in our meta-analysis is that the pandemic is well contained in advance of the study, as 
indicated by the stabilization of cumulative fatalities within the next several weeks after the 
midpoint date of the study. Of course, a seroprevalence study can provide valuable information 
even in the midst of an active outbreak, but such results are not well-suited for gauging IFRs. 

Meta-Regression Procedure 

To analyze IFR by age, we use meta-regression with random effects, using the meta regress 
procedure in Stata v16.24,25 Random-effects procedures allow for residual heterogeneity between 
studies and across age groups by assuming that these divergences are drawn from a Gaussian 
distribution. The procedure provides reasonable results even if the errors are not strictly normal 
but may be unsatisfactory if the sample includes large outliers or the distribution of groups is not 
unimodal. In analytical terms, this framework can be expressed as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙�𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖� = 𝛼𝛼 +   𝛽𝛽 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖   +   𝜖𝜖𝑖𝑖𝑖𝑖   +   𝑢𝑢𝑖𝑖𝑖𝑖 

      where  𝑢𝑢𝑖𝑖𝑖𝑖 ~ 𝑁𝑁(0, 𝜏𝜏2)  and  𝜖𝜖𝑖𝑖𝑖𝑖 ~ 𝑁𝑁�0,𝜎𝜎𝑖𝑖𝑖𝑖2�    

In this specification, 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖 is the estimated IFR in study i for age group j, 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 denotes  
the median age of that group, 𝜖𝜖𝑖𝑖𝑖𝑖 denotes the source of idiosyncratic variations for that  
particular location and age group, and 𝑢𝑢𝑖𝑖𝑖𝑖 denotes the random effects that characterize  
any systematic deviations in outcomes across locations and age groups. Under the maintained 
assumption that each idiosyncratic term 𝜖𝜖𝑖𝑖𝑖𝑖 has a normal distribution, the idiosyncratic variance 
is 𝜎𝜎𝑖𝑖𝑖𝑖2 = ((𝑈𝑈𝑖𝑖𝑖𝑖 − 𝐿𝐿𝑖𝑖𝑖𝑖)/3.96)2, where 𝑈𝑈𝑖𝑖𝑖𝑖 and 𝐿𝐿𝑖𝑖𝑖𝑖 denote the upper and lower bounds of the  
95% confidence interval for that study-age group. The random effects 𝑢𝑢𝑖𝑖𝑖𝑖 are assumed to be 
drawn from a homogeneous distribution with zero mean and variance 𝜏𝜏2. The null hypothesis  
of 𝜏𝜏2 = 0 characterizes the case in which there are no systematic deviations across studies or  
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age groups. If that null hypothesis is rejected, then the estimated value of 𝜏𝜏2 encapsulates the 
magnitude of those systematic deviations.  

Under our baseline specification, the infection fatality rate increases exponentially with age.1  
In particular, this meta-regression is specified in logarithmic terms, with the slope coefficient 𝛽𝛽 
encapsulating the impact of higher age on log(IFR). Consequently, the null hypothesis that IFR  
is unrelated to age can be evaluated by testing whether the value of 𝛽𝛽 is significantly different 
from zero. If that null hypothesis is rejected, then the estimated values of 𝛼𝛼 and 𝛽𝛽 characterize 
the estimated relationship between log(IFR) and age. Consequently, the predicted relationship 
between IFR and age can be expressed as follows: 

𝐼𝐼𝐼𝐼𝐼𝐼 =  𝑒𝑒𝛼𝛼 +  𝛽𝛽∗𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖 

The 95% confidence interval for this prediction can obtained using the delta method. In 
particular, let 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 denote the infection fatality rate for age a, and let 𝜎𝜎𝑐𝑐 denote the standard 
error of the meta-regression estimate of log(𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎). If 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 has a non-zero value, then the delta 
method indicates that its standard error equals 𝜎𝜎𝑐𝑐 / 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 , and this standard error is used to 
construct the confidence interval for 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 at each age a. Likewise, the prediction interval for 
log(𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎) is computed using a standard error of 𝜎𝜎𝑐𝑐 +  𝜏𝜏 that incorporates the systematic variation 
in the random effects across studies and age groups, and hence the corresponding prediction 
interval for 𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 is computed using a standard error of (𝜎𝜎𝑐𝑐 +  𝜏𝜏)/𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎 . 

In estimating this metaregression, we only use observations for age groups with a median age  
of 35 years or higher. COVID-19 fatality reports from numerous locations indicate that the age-
specific IFR is extraordinarily close to zero for children and young adults. For example, at the 
end of May Belgium had a cumulative total of 9,150 deaths, with not a single fatality for ages 0 
to 24 years.   

 
1 Bonanad et al. (2020) conducted a meta-analysis study of COVID-19 case fatality rates as a function of age using 
aggregate data from China, Italy, New York, Spain, and the U.K. and found a very strong exponential pattern of 
mortality: ages 40-49: 1.1%; ages 50-59: 3%; ages 60-69: 9.5%; ages 70-79 22.8%; ages 80+: 29.6%. Similarly, 
Doherty et al. (2020) investigated a large sample of U.K. hospitalized COVID-19 patients and identified an 
exponentially increasing mortality hazard rate as a function of patient age. 
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Location 
Population,  
millions 

Sample size, 
thousands Dates in 2020 

Age-specific prevalence  and 
95% confidence interval (%)  

Representative samples 
 Belgium26 11·590 16·532 April 20–26 0–24 yrs: 6·0 (4·2–8·6) 

25–44 yrs: 5·9 (4·2–8·3) 
45–64 yrs: 6·2 (4·7–8·3) 
65–74 yrs: 4·1 (2·3–7·2) 
75–84 yrs: 7·0 (4·2–11·7) 
85+ yrs: 13·2 (8·9–19·6) 

 England27 56·286 109·076 June 20–July 13 18–24 yrs: 7·9 (7·3–8·5) 
25–34 yrs: 7·8 (7·4–8·3) 
35-44 yrs: 6·1 (5·7–6·6) 
45-54 yrs: 6·4 (6·0–6·9) 
55–64 yrs: 5·9 (5·5–6·4) 
65–74 yrs: 3·2 (2·8–3·6) 
75+ yrs: 3·3 (2·9–3·8) 

 Hungary28 9·660 10·474 May 1–16 0-14 yrs: 0·6 (0·3–0·9) 
15-39 yrs: 0·6 (0·3–0·9) 
40–64 yrs: 0·7 (0·4–1·0) 
65+ yrs: 0·8 (0·4–1·3) 

 Iceland29 0·341 9·199 February 1–June 15 0–29 yrs: 0·4 (0·3–0·5) 
30–59 yrs: 1·1 (0·8–1·6) 
60–69 yrs: 0·5 (0·3–1·0) 
70–79 yrs: 0·3 (0·27–1·3) 
80+ yrs: 0·2 (0·1–2·5) 

 Italy30 60·345 64·660 July 6–27 0–19 yrs: 2·2 (1·7–2·8) 
20–29 yrs: 2·1 (1·7–2·4) 
30–49 yrs: 2·4 (2·1–2·8) 
50–59 yrs: 3·1 (2·7–3·5) 
60–69 yrs: 2·6 (2·1–2·9) 
70+ yrs: 2·5 (2·1–2·9) 

 Netherlands31,32 17·135 2·096 April 1–17 0–49 yrs: 3·5 (2·5–5·2) 
50–59 yrs: 4·3 (3·2–5·8) 
60–69 yrs: 3·5 (2·5–5·0) 
70–79 yrs: 3·0 (1·7–5·3) 
80+ yrs: 2·8 (0·9–7·3) 

 Portugal33 10·197 2·301 May 21–July 8 0–9 yrs: 2·1 (0·8–5·4) 
10–19 yrs: 2·1 (0·8–5·5) 
20–39 yrs: 0·7 (0·1–4·8) 
40–59 yrs: 2·4 (0·9–5·9) 
60+ yrs: 2·4 (1·1–4·9) 

 Spain34 46·755 51·958 May 18–June 1 0–29 yrs: 4·5 (3·4–6·1) 
30–39 yrs: 5·0 4·1–6·0) 
40–49 yrs: 5·3 (4·6–6·2) 
50–59 yrs: 5·2 (4·5–6·1) 
60–69 yrs: 5·0 (4·1–5·9) 
70–79 yrs: 4·6 (3·7–5·9) 
80+ yrs: 4·8 (3·5–6·7) 

 Sweden35 10·099 2·000 April 27–May 24 0–19 yrs: 5·7 (4·5–7·0) 
20–49 yrs: 6·5 (5·2–7·8) 
50–69 yrs: 4·8 (3·6–6·0) 
70+ yrs: 3·1 (2·1–4·1) 

 Geneva, Switzerland36 0·507 2·766 April 13–May 8 5–19 yrs: 9·2 (5·4–14·1)  
20–49 yrs: 13·1 (9·8–17·0) 
50–64 yrs: 10·5 (7·3–14·1) 
65+ yrs: 6·8 (3·8–10·5) 

 Atlanta, USA37 1·823 0·696 April 28–May 3 0–17 yrs: 0·0 (0·0–1·0) 
18–49 yrs: 3·3 (1·6–6·4) 
50–64 yrs: 4·9 (1·8–12·9) 
65+ yrs: 0·7 (0·1–4·5) 

(Table 3 continues on next page) 
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 Location 
Population,  

millions 
Sample size, 
thousands Dates in 2020 

Age-specific prevalence  and 
95% confidence interval (%)  

Representative samples (contd.) 
 Indiana, USA38 6·732 3·632 April 25–29 0–39 yrs: 3·1 (1·9–4·3) 

40–59 yrs: 3·1 (1·9–5·0) 
60+ yrs: 1·7 (1·0–2·4) 

 New York, USA16 19·454 15·101 April 23 0–19 yrs: 14·6 (13·1–16·1) 
20–39 yrs: 14·6 (13·1–16·1) 
40–49 yrs: 15·3 (13·7–17·0) 
50–59 yrs: 16·0 (14·6–17·5) 
60+ yrs: 12·1 (11·2–13·1) 

 Salt Lake City, USA39 2·194 6·527 May 4–June 10 0–44 yrs: 1·2 (0·4–2·5) 
45–64 yrs: 0·9 (0·2–2·1) 
65+ yrs: 0·6 (0·0–1·4) 

Convenience samples 
 Connecticut, USA12 3·565 1·431 April 26–May3 0–19 yrs: 0·8 (0·0–2·9) 

20–49 yrs: 6·1 (3·1–9·3) 
50–59 yrs: 8·1 (4·8–1·6) 
60+ yrs: 4·2 (2·3–6·0) 

 Louisiana, USA12 4·649 1·184 April 1–8 0–18 yrs: 2·8 (0·0–11·5) 
19–49 yrs: 7·4 (4·7–10·0) 
50–59 yrs: 8·3 (4·5–11·9) 

60+ yrs: 4·4 (1·5–8·0) 
 Miami, USA12 6·327 1·742 April 6–10 0–19 yrs: 2·4 (0·0–7·8) 

20–49 yrs: 0·9 (0·2–2·2) 
50–59 yrs: 2·0 (0·3–4·0) 
60+ yrs: 3·0 (1·7–4·5) 

 Minneapolis, USA12 3·894 0·860 April 30–May 12 0–18 yrs: 5·8 (0·0–14·3) 
19–49 yrs: 2·3 0·8–4·2) 
50–59 yrs: 0·7 (0·0–2·8) 
60+ yrs: 1·0 (0·0–3·2) 

 Missouri, USA12 6·137 1·882 April 20–26 0–19 yrs: 1·4 (0·0–4·1) 
20–49 yrs: 3·4 (1·4–5·5) 
50–59 yrs: 2·0 (0·5–3·8) 
60+ yrs: 3·2 (1·9–4·6) 

 Philadelphia, USA12 4·934 0·824 April 13–25 0–18 yrs: 2·2 (0·0–6·9) 
19–49 yrs: 5·9 (2·4–9·8) 
50–64 yrs: 0·8 (0·0–2·8) 
65+ yrs: 1·6 (0·3–3·5) 

 San Francisco, USA12 6·660 1·224 April 23–27 0–18 yrs: 1·7 (0·0–7·7) 
19–49 yrs: 1·1 (0·0–2·6) 
50–64 yrs: 0·7 (0·0–2·4) 
65+ yrs: 0·9 (0·2–2·5) 

 Seattle, USA12 4·326 3·264 March 23–April 1 0–19 yrs: 0·7 (0·0–2·5) 
20–39 yrs: 1·3 (0·7–2·3) 
40–59 yrs: 0·9 (0·3–1·9) 

60+ yrs:1·7 (0·9–2·7) 
Comprehensive tracing programs 
 New Zealand40 4·822 1·945 February 1–July 

9 
0–59 yrs: 0·1 (0·05–0·15) 

50–69 yrs: 0·07 (0·04–0·10) 
70–79 yrs: 0·04 (0·02–0·07) 
80+ yrs: 0·04 (0·02–0·06) 

 Republic of Korea41 51·269 13·106 February 1–May 
17 

0–29 yrs: 0·11 (0·05–0·17) 
30–39 yrs: 0·08 (0·04–0·12) 
40–49 yrs: 0·06 (0·03–0·09) 
50–59 yrs: 0·07 (0·03–0·10) 
60–69 yrs: 0·05 (0·03–0·08) 
70–79 yrs: 0·05 (0·03–0·07) 
80+ yrs:  0·06 (0·03–0·09) 

For locations with comprehensive tracing programs, sample size refers to the estimated total number of cases. 

Table 3: Characteristics of studies included in metaregression 
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Results  

After an initial screening of 944 studies, the full texts of 73 studies were reviewed, of which  
33 studies were excluded due to lack of age-specific data on COVID-19 prevalence or 
fatalities.15,42-73 Two seroprevalence studies of New York City were excluded because the 
outbreak was still accelerating at the time of each study.12,17 Studies of non-representative 
samples were excluded as follows: 10 studies of blood donors, 4 studies of patients of hospitals 
and outpatient clinics, 4 studies with active recruitment of participants, and 2 studies of 
elementary schools.18,74-87 Consequently, our meta-analysis focuses on synthesizing IFR data 
from 24 locations, which can be classified into four distinct groups: 

• Randomized Samples include national studies of Belgium, England, Hungary, Italy, 
Netherlands, Portugal, Spain, and Sweden and regional studies of Geneva, Switzerland 
and four U.S. locations (Atlanta, Indiana, New York, and Salt Lake City). Each of these 
studies used a sample frame that was broadly representative of the general public.  

• Comprehensive Tracking and Tracing Countries: Iceland, Korea, and New Zealand. 
Iceland researchers also conducted a large-scale seroprevalence study, which is used in 
computing age-specific IFRs for Iceland. That study also indicates that reported cases in 
Iceland substantially understated actual prevalence, especially for younger age groups; 
consequently, we make corresponding adjustments for Korea and Iceland. 

• Convenience Samples include eight U.S. locations of Connecticut, Louisiana, Miami, 
Minneapolis, Missouri, Philadelphia, San Francisco, and Seattle; seroprevalence rates for 
these locations were reported in a study conducted by researchers at the U.S. Center for 
Disease Control & Prevention using specimens from two commercial laboratories.12 
Consequently, these findings have significant risk of outcome bias associated with  
the sample data frame. Moreover, in four of these locations (Louisiana, Minneapolis, 
Missouri, and Philadelphia), cumulative fatalities were still mounting rapidly four weeks 
after the midpoint date of specimen collections, reflecting the extent to which the 
pandemic was not yet tightly contained. Consequently, some additional caution is 
warranted in interpreting age-specific IFRs from those four locations. 

• Other Studies: Prevalence and fatality data from the Diamond Princess cruise ship has 
been influential in informing subsequent studies of COVID-19. Castiglione d’Adda  
is the municipality that was the location of the first COVID-related fatality in Italy.  
Our metaregression includes a very large seroprevalence study of the English population, 
and hence another study conducted by U.K. Biobank is included in our meta-analysis  
but not in our metaregression to avoid pitfalls of nested or overlapping samples. 
Likewise, our metaregression includes a large study of a representative sample in  
Salt Lake City, and hence the seroprevalence results obtained from a convenience sample 
of Utah residents is included in our meta-analysis but not in the metaregression. 
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We obtain the following meta-regression results: 

𝑙𝑙𝑙𝑙𝑙𝑙�𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖�    =    −7.83      +    0.124 ∗ 𝑎𝑎𝑎𝑎𝑎𝑎
                           (0.30)           (0.005)   

 

where the standard error for each estimated coefficient is given in parentheses. These estimates 
are highly significant with t-statistics of -26.0 and 26.1, respectively, and p-values below 0.0005.  
The residual heterogeneity 𝜏𝜏2 = 0.275 (p-value < 0.0001), with I2 = 95.7, confirming that the 
random effects are essential for capturing unexplained variations across studies and age groups., 
The adjusted R2 is 92.3%.  

As noted above, the validity of this meta-regression rests on the condition that the data are 
consistent with a Gaussian distribution, i.e., there should be no clustering of observations or 
extreme outliers. The validity of those assumptions is evident in Figure 3. The solid red line 
depicts the estimated log-linear function, the dark shaded area denotes the 95% confidence 
interval for that estimated function, and the light shaded area denotes the 95% prediction interval 
that reflects the random variations across studies and age groups. The markers denote the  
age-specific IFRs from each study, which provide relatively balanced coverage spanning the 
entire age interval from 35 to 90 years. Moreover, nearly all of the observations fall within the  

 

 
Figure 3: The log-linear relationship between IFR and age 
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95% prediction interval. Two observations (both from the Geneva study) are at the lower edge of 
the prediction interval, while a few observations (all from convenience samples) lie at or above 
the upper edge of the prediction interval. This pattern broadly matches the incidence of moderate 
outliers that one would expect in a sample of 112 draws from a Gaussian distribution.2  

Figure 4 depicts the exponential relationship between age and the level of IFR in percent. 
Evidently, the SARS-CoV-2 virus poses a substantial mortality risk for middle-aged adults  
and even higher risks for elderly people: The IFR is close to zero for younger adults but rises  
to about 0.3% for ages 50-59, 1.2% for ages 60-69, about 4% for ages 70-79, 14% for ages 80-
89, and exceeds 25% for ages 90 and above. 

The age-specific IFRs from small-scale prevalence studies of the Diamond Princess cruise ship 
and the municipality of Castiglione d’Adda are broadly consistent with these meta-regression 
results. For example, 619 individuals on Diamond Princess had confirmed positive test results, 
and 14 of them died due to COVID-related causes; the IFR was 0.5% for ages 60-69, 2.9% for 
ages 70-79, and 7.9% for ages 80+, broadly consistent with the metaregression results of this 
study. Moreover, the metaregression predicts an IFR of 0.3% for ages 50-59 years, but Diamond 

 
2 We have also used the output of the Stata metareg procedure to confirm that the estimated random effects are 
consistent with a normal distribution. 

Figure 4: Benchmark analysis of the link between age and IFR 
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Princess had only 60 infected individuals in that age group, and hence the lack of fatalities within 
that particular age cohort is not inconsistent with the metaregression results.  

It should also be noted that the pathbreaking study of Ferguson et al. (2020) is broadly consistent 
with the metaregression results reported here. That study was completed at a very early stage of 
the COVID-19 pandemic, drawing on data from expatriation flights to estimate infection rates in 
Wuhan and then computing age-specific IFRs based on reported fatalities in Wuhan. The 
resulting IFR estimates exhibited an exponential link to age, with rates near zero for ages 0-39 
and far higher rates for older adults. 

As shown in Figure 5, the metaregression explains a large fraction of the variations in 
population-level IFRs across geographical locations. This relationship can be documented 
quantitatively as follows: 

𝑙𝑙𝑙𝑙𝑙𝑙(𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖)    =    0.932 ∗ 𝐼𝐼𝐼𝐼𝐼𝐼� 𝑖𝑖
                      (0.09)    

where 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 denotes the IFR for each location i, computed using the observed fatalities in 
conjunction with estimated prevalence, while 𝐼𝐼𝐼𝐼𝐼𝐼� 𝑖𝑖 denotes the predicted IFR for that location 
computed using the metaregression estimates for age-specific IFRs in conjunction with age-
specific prevalence. The regression has R2 = 0.88, indicating that nearly 90% of the variation in 
population IFR across geographical locations can be explained in terms of differences in the  
age structure of the population and the age-specific prevalence of COVID-19. 

 

   Figure 5: Variations in population IFR across geographical locations 
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Cohorts with median age of 35-54 years 

Cohorts with median age of 55-64 years 

 

(Figure 6 continues on next page) 
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Cohorts with median age of 65-74 years 

Cohorts with median age of 75 years and above 

FIgure 6: Forest plot of metaregression data 
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Discussion 
Our analysis indicates that COVID-19 poses a very low risk for children and younger adults  
but is hazardous for middle-aged adults and extremely dangerous for older adults. Table 4 
contextualize these risks by comparing the age-specific IFRs from our meta-regression analysis 
to the annualized risk of a fatal auto accident or other accidental injury. For a young adult, the 
fatality risk of a SARS-CoV-2 infection is roughly comparable to the risks associated with 
engaging in other everyday activities. By contrast, an 60-year-old adult who gets infected faces  
a fatality risk more than 50 times higher than the annual fatality risk of driving an automobile.  

Our analysis facilitates comparisons between the COVID-19 pandemic and the Spanish Flu 
pandemic of 1918-20. The U.S. CDC estimates that about 28% of the U.S. population was 
infected by the Spanish Flu and that the death toll was about 675,000. However, that disease was 
most dangerous for young adults, with an IFR of about 4% for people ages 20 to 40 years old but 
caused relatively few deaths among middle-aged and older adults—the age groups that are most 
vulnerable to COVID-19. 

Our meta-regression analysis confirms that COVID-19 is far more deadly than seasonal flu. The 
U.S. CDC estimates that during winter 2018-19 influenza was associated with about 50 million 
infections and 34,000 fatalities, that is, an overall IFR of about 0.07%. By comparison, recent 
seroprevalence data from U.S. public health laboratories indicates that more than 25 million 

Age Group 

COVID-19 
Infection  

Fatality Rate (%) 

Automobile Accident  
Annualized  

Fatality Rate (%) 

Other Accidental Injury 
 Annualized 

Fatality Rate (%) 

0 to 34 0.01 0.01 0.03 

35 to 44 0.04 0.01 0.04 

45 to 54 0.2 0.01 0.04 

55 to 64 0.7 0.01 0.04 

65 to 74 2.4 0.01 0.04 

75 to 84 8.9 0.02 0.09 

85+ 36.8 0.02 0.35 

Table 4: Age-specific fatality rates for COVID-19 vs. accidental injuries 
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people (that is, 8% of the U.S. population) had been infected with SARS-CoV-2 during the last 
ten days of July.88 Cumulative U.S. fatalities were close to 170,000 as of August 14 (three weeks 
after the midpoint date of the seroprevalence data). These figures indicate that the population 
IFR of COVID-19 is currently about 0.6%, roughly ten times more deadly than seasonal flu.23  

Nonetheless, the current level of the overall U.S. IFR should not be interpreted as a fixed 
parameter. Rather, our meta-analysis clearly underscores the rationale for public health measures 
and communications aimed at reducing the aggregate IFR by mitigating the incidence of new 
COVID-19 infections among middle-aged and older adults.89 To illustrate these considerations, 
Table 5 outlines three alternative scenarios for the U.S. trajectory of COVID-19 infections and 
fatalities. All three scenarios assume that the infection rate continues rising to a plateau of around 
20% (similar to the prevalence observed in New York City as of late spring). However, the age-
specific infection rates vary markedly across the three scenarios: 

• Scenario #1 assumes that age-specific prevalence will remain similar to the average 
pattern that has prevailed to date, as indicated by seroprevalence data from U.S. public 
health laboratories. 

• Scenario #2 assumes that the prevalence will eventually become uniform across all age 
groups, similar to the Spanish Flu pandemic and seasonal influenza. 

• Scenario #3 assumes that public health measures and communications will restrain  
the incidence of new infections among middle-aged and older adults while prevalence 
continues rising more rapidly among children and younger adults. 

To assess the implications of these three alternative assumptions, we use the age-specific IFRs 
from our meta-regression analysis to determine the death toll for each age group as follows:  

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷ℎ𝑠𝑠𝑎𝑎𝑎𝑎𝑎𝑎 = 𝑃𝑃𝑃𝑃𝑝𝑝𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑎𝑎𝑎𝑎𝑎𝑎  ×  𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎  ×  𝐼𝐼𝐼𝐼𝐼𝐼𝑎𝑎𝑎𝑎𝑎𝑎 

 Infection Rate by Age (percent) 
Deaths 

(thousands) 
IFR  

(percent) Scenario All 0-49 50-64 65+ 

Baseline 8.0 9.0 7.1 6.0 175,000 0.6 

Scenario #1: 
current pattern of age-

specific prevalence 
20 23 16 14 375,000 0.6 

Scenario #2: 
uniform prevalence 20 20 20 20 525,000 0.8 

Scenario #3: 
protection of 

vulnerable age groups 
20 26 10 6 235,000 0.3 

Table 5:  U.S. scenario analysis 
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Scenario #1 shows that, if the current age-specific infection pattern continues until 20% of the 
U.S. is infected, deaths will increase by a factor of 2 to around 375,000. The outcome is far 
worse in Scenario #2, where the virus spreads uniformly across age groups and causes nearly  
525,000 fatalities—nearly the same death toll as the Spanish Flu, though only one-third as large 
on a per capita basis. Finally, Scenario #3 is associated with a far lower proportion of older 
adults contracting the virus, and the total number of fatalities is held to about 235,000.  

Of course, if COVID-19 were allowed to become even more prevalent among the elderly, as in 
some geographical locations, the United States could end up with an even higher population IFR. 
Conversely, policy measures and communications that protect vulnerable age groups could halve 
the overall IFR to around 0.3% and prevent about 150,000 U.S. deaths relative to the baseline in 
which the virus continues spreading with roughly the same age-specific prevalence that has been 
observed to date. 

Directions for Further Research  

While age and fatality risk are closely related, differences in the age structure of the population 
and age-specific infection rates surely cannot explain all deviations in IFR across regions and 
populations. Consequently, the role of co-morbidities and other demographic and socioeconomic 
factors merits further research that carefully distinguishes between infection risk and IFR. 

A recent U.K. study has shown that COVID-19 mortality outcomes are strongly linked to 
comorbidities such as chronic pulmonary disease, diabetes, and obesity.90 However, that study 
specifically warns against drawing causal conclusions from those findings, which may reflect a 
higher incidence of COVID-19 rather than a higher IFR for individuals with those comorbidities. 
Indeed, a separate study of hospitalized U.K. COVID-19 patients found that patient age was far 
more important than any specific comorbidity in determining mortality risk.91 For example, the 
COVID-19 fatality risk for an obese 40-year-old hospital patient was found to be moderately 
higher than for a non-obese individual of the same cohort but only one-tenth the fatality risk  
for a non-obese 75-year-old hospital patient.  

The high prevalence of comorbidities among COVID-19 patients has been well documented but 
not compared systematically to the prevalence of such comorbidities in the general population. 
For example, one recent study of hospitalized COVID-19 patients in New York City (NYC) 
reported that 94% of those patients had at least one chronic health condition.92 Nevertheless, as 
discussed in Appendix E, that finding is not particularly surprising given the prevalence of 
comorbidities among middle-aged and elderly NYC residents. For example, nearly 30% of older 
NYC adults (ages 60+) are diabetic, while 23% have cardiovascular disease (including 
hypertension), and 8% have chronic pulmonary diseases—practically identical to the incidence 
of those comorbidities in the sample of hospitalized COVID-19 patients. Indeed, obesity was the 
only comorbidity that was much more prevalent among hospitalized COVID-19 patients than in 
the general population of older NYC adults. Nonetheless, obesity is also much more prevalent 
among lower-income groups who are more likely to live in high-density neighborhoods and 
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work in high-exposure jobs, and hence such data clearly cannot be used to distinguish prevalence 
vs. severity of COVID-19. 

Our meta-analysis has not directly considered the extent to which IFRs may vary with other 
demographic factors, including race and ethnicity. Fortunately, valuable insights can be garnered 
from other recent studies. In particular, one recent seroprevalence study of residents of two urban 
locations in Louisiana found no significant difference in IFRs between whites and Blacks.93  

Nonetheless, the incidence of COVID-19 mortality among people of color is extraordinarily high 
due to markedly different infection rates that reflect systematic racial and ethnic disparities in 
housing and employment. For example, a recent infection study of a San Francisco neighborhood 
found that 80% of positive cases were Latinx – far higher than the proportion of Latinx residents 
in that neighborhood.42 That study concluded as follows: “Risk factors for recent infection were 
Latinx ethnicity, inability to shelter-in-place and maintain income, frontline service work, 
unemployment, and household income less than $50,000 per year.” Other researchers have 
reached similar conclusions, attributing elevated infection rates among Blacks and Hispanics to 
dense housing of multi-generational families, increased employment in high-contact service jobs, 
high incidence of chronic health conditions, and lower quality of health care.94  

In summary, while the present study has investigated the effects of age on the IFR of COVID-19, 
further research needs to be done on how infection and fatality rates for this disease are affected 
by demographic and socioeconomic factors. 
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