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As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spreads, the 19 

susceptible subpopulation declines causing the rate at which new infections occur 20 

to slow down. Variation in individual susceptibility or exposure to infection 21 

exacerbates this effect. Individuals that are more susceptible or more exposed 22 

tend to be infected and removed from the susceptible subpopulation earlier. This 23 

selective depletion of susceptibles intensifies the deceleration in incidence. 24 

Eventually, susceptible numbers become low enough to prevent epidemic growth 25 

or, in other words, the herd immunity threshold is reached. Here we fit 26 

epidemiological models with inbuilt distributions of susceptibility or exposure to 27 

SARS-CoV-2 outbreaks to estimate basic reproduction numbers (𝑹𝟎) alongside 28 

coefficients of individual variation (CV) and the effects of containment strategies. 29 

Herd immunity thresholds are then calculated as 𝟏 − (𝟏 𝑹𝟎⁄ )𝟏 #𝟏$𝑪𝑽𝟐'⁄  or 𝟏 −30 

(𝟏 𝑹𝟎⁄ )𝟏 #𝟏$𝟐𝑪𝑽𝟐'⁄ , depending on whether variation is on susceptibility or 31 

exposure. Our inferences result in herd immunity thresholds around 10-20%, 32 

considerably lower than the minimum coverage needed to interrupt transmission 33 

by random vaccination, which for 𝑹𝟎 higher than 2.5 is estimated above 60%. 34 

We emphasize that the classical formula, 𝟏 − 𝟏 𝑹𝟎⁄ , remains applicable to 35 

describe herd immunity thresholds for random vaccination, but not for 36 

immunity induced by infection which is naturally selective. These findings have 37 

profound consequences for the governance of the current pandemic given that 38 

some populations may be close to achieving herd immunity despite being under 39 

more or less strict social distancing measures. 40 

Scientists throughout the world have engaged with governments, health agencies, and 41 

with each other, to address the ongoing pandemic of coronavirus disease (COVID-42 

19). Mathematical models have been central to important decisions concerning 43 
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contact tracing, quarantine, and social distancing, to mitigate or suppress the initial 44 

pandemic spread1. Successful suppression, however, may leave populations at risk to 45 

resurgent waves due to insufficient acquisition of immunity. Models have thus also 46 

addressed longer term SARS-CoV-2 transmission scenarios and the requirements for 47 

continued adequate response2. This is especially timely as countries relax lockdown 48 

measures that have been in place over recent months with varying levels of success in 49 

tackling national outbreaks. 50 

Here we demonstrate that individual variation in susceptibility or exposure 51 

(connectivity) accelerates the acquisition of immunity in populations. More 52 

susceptible and more connected individuals have a higher propensity to be infected 53 

and thus are likely to become immune earlier. Due to this selective immunization by 54 

natural infection, heterogeneous populations require less infections to cross their herd 55 

immunity threshold (HIT) than suggested by models that do not fully account for 56 

variation. We integrate continuous distributions of susceptibility or connectivity in 57 

otherwise basic epidemic models for COVID-19 which account for realistic 58 

intervention effects and show that as coefficients of variation (CV) increase from 0 to 59 

5, HIT declines from over 60%3,4 to less than 10%. We then fit these models to series 60 

of daily new cases to estimate CV alongside basic reproduction numbers (𝑅*) and 61 

derive the corresponding HITs. 62 

Effects of individual variation on SARS-CoV-2 transmission 63 

SARS-CoV-2 is transmitted primarily by respiratory droplets and modelled as a 64 

susceptible-exposed-infectious-recovered (SEIR) process.  65 

Variation in susceptibility to infection 66 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160762doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160762
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 4	

Individual variation in susceptibility is integrated as a continuously distributed factor 67 

that multiplies the force of infection upon individuals5 as 68 

�̇�(𝑥) = −𝜆(𝑥)𝑥𝑆(𝑥),	                                                                                                  (1) 69 

�̇�(𝑥) = 𝜆(𝑥)𝑥[𝑆(𝑥) + 𝜎𝑅(𝑥)] − 𝛿𝐸(𝑥),	                                                                   (2) 70 

𝐼̇(𝑥) = 𝛿𝐸(𝑥) − 𝛾𝐼(𝑥),                                                                                               (3) 71 

�̇�(𝑥) = (1 − 𝜙)𝛾𝐼(𝑥) − 𝜎𝜆(𝑥)𝑥𝑅(𝑥),                                                                       (4) 72 

where 𝑆(𝑥) is the number of individuals with susceptibility 𝑥, 𝐸(𝑥) and 𝐼(𝑥) are the 73 

numbers of individuals who originally had susceptibility 𝑥 and became exposed and 74 

infectious, while 𝑅(𝑥) counts those who have recovered and have their susceptibility 75 

reduced to a reinfection factor 𝜎 due to acquired immunity. 𝛿 is the rate of 76 

progression from exposed to infectious, 𝛾 is the rate of recovery or death, 𝜙 is the 77 

proportion of individuals who die as a result of infection and 𝜆(𝑥) =78 

(𝛽 𝑁⁄ ) ∫[𝜌𝐸(𝑦) + 𝐼(𝑦)] 𝑑𝑦 is the average force of infection upon susceptible 79 

individuals in a population of size 𝑁 and transmission coefficient 𝛽. Standardizing so 80 

that susceptibility distributions have mean ?∫𝑥𝑔(𝑥)	𝑑𝑥 = 1, given a probability 81 

density function 𝑔(𝑥), the basic reproduction number is 82 

𝑅* = 𝛽 A
𝜌
𝛿 +

1
𝛾B,																																																																																																																							(5) 83 

where 𝜌 is a factor measuring the infectivity of individuals in compartment E in 84 

relation to those in 𝐼. The coefficient of variation in individual susceptibility 𝐶𝑉 =85 

?∫(𝑥 − 1)+𝑔(𝑥)	𝑑𝑥 is explored as a parameter. Non-pharmaceutical interventions 86 

(NPIs) designed to control transmission typically reduce 𝛽 and hence 𝑅*. We denote 87 

the resulting controlled reproduction number by 𝑅,. The effective reproduction 88 
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number 𝑅-.. is another useful indicator obtained by multiplying 𝑅, by the 89 

susceptibility of the population, in this case written as 𝑅-..(𝑡) = 𝑅,(𝑡) ∫ 𝑥𝑆(𝑥, 𝑡)	𝑑𝑥 90 

to emphasize its time dependence. 91 

Figure 1 depicts model trajectories fitted to suppressed epidemics (orange) in 4 92 

European countries (Belgium, England, Portugal and Spain) assuming gamma 93 

distributed susceptibility and no reinfection (𝜎 = 0). We estimate: 𝑅* rounding 5 94 

(Belgium), 2.9 (England), 4.3 (Portugal) and 4.1 (Spain); individual susceptibility CV 95 

reaching 3.9 (Belgium), 1.9 (England), 4.3 (Portugal) and 3.2 (Spain); and overall 96 

intervention efficacy at maximum (typically during lockdown) being 60% (Belgium), 97 

48% (England), 69% (Portugal) and 63% (Spain). Another estimated parameter is the 98 

day when NPIs begin to affect transmission, after which we assume a linear 99 

intensification from baseline over 21 days, remaining at maximum intensity for 30 100 

days and linearly lifting back to baseline over a period of 120 days (although we have 101 

confirmed that the results do not change significantly if measures are lifted over 102 

slightly longer time frames, such as 150 or 180 days). Denoting by 𝑑(𝑡) the 103 

proportional reduction in average risk of infection due to interventions, in this case we 104 

obtain 𝑅,(𝑡) = [1 − 𝑑(𝑡)]𝑅* which is depicted for each country, alongside 𝑅-..(𝑡), 105 

underneath the respective epidemic trajectories. Overlaid on the 𝑅, plots are mobility 106 

data from Google6, showing excellent agreement with our independently chosen 107 

framework and estimate for the time 𝑅-.. starts declining. To assess the potential for 108 

case numbers to overshoot if NPIs had not been applied, we rerun the model with 109 

𝑑(𝑡) = 0 and obtain the unmitigated epidemics (black). Further details and sensitivity 110 

analyses are described in Methods. 111 

Variation in connectivity 112 
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In a directly transmitted infectious disease, such as COVID-19, variation in exposure 113 

to infection is primarily governed by patterns of connectivity among individuals. We 114 

incorporate this in the system (Equations 1-4) assuming that individuals mix at 115 

random (but see Methods for more general formulations that enable other mixing 116 

patterns). Under random mixing and heterogeneous connectivity, the force of 117 

infection7 is written as 𝜆(𝑥) = (𝛽 𝑁⁄ )(∫ 𝑦[𝜌𝐸(𝑦) + 𝐼(𝑦)] 𝑑𝑦 ∫𝑦𝑔(𝑦) 𝑑𝑦⁄ ), the basic 118 

reproduction number is 119 

𝑅* = (1 + 𝐶𝑉+)𝛽 A
𝜌
𝛿 +

1
𝛾B,																																																																																																				(6) 120 

𝑅,(𝑡) is as above and 𝑅-..(𝑡) is derived by a more general expression given in 121 

Methods. Applying this model to the same epidemics as before we estimate: 𝑅* 122 

rounding 7.1 (Belgium), 3.8 (England), 7.9 (Portugal) and 6.6 (Spain); individual 123 

susceptibility CV reaching 2.9 (Belgium), 1.6 (England), 4.0 (Portugal) and 2.7 124 

(Spain); and intervention efficacy during lockdown being 73% (Belgium), 58% 125 

(England), 80% (Portugal) and 72% (Spain).  126 

Comparing the two models, variation in connectivity systematically leads to estimates 127 

that are higher for 𝑅*, lower for CV, and higher for the efficacy of non-128 

pharmaceutical interventions. Nevertheless, the percentage of the population required 129 

to be immune to curb the epidemic and prevent future waves when interventions are 130 

lifted appears remarkably conserved across models: 9.6 vs 11% (Belgium); 20 vs 21% 131 

(England); 7.3 vs 6.0% (Portugal); and 12 vs 11% (Spain). This property is further 132 

explored below. 133 

Herd immunity thresholds and their conserveness across models 134 
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Individual variation in risk of acquiring infection is under selection by the force of 135 

infection, whether individual differences are due to biological susceptibility, 136 

exposure, or both. The most susceptible or exposed individuals are selectively 137 

removed from the susceptible pool as they become infected and eventually recover 138 

(some die), resulting in decelerated epidemic growth and accelerated induction of 139 

immunity in the population. In essence, the herd immunity threshold defines the 140 

percentage of the population that needs to be immune to reverse epidemic growth and 141 

prevent future waves. When individual susceptibility or connectivity is gamma-142 

distributed and mixing is random, HIT curves can be derived analytically8 from the 143 

model systems (Equations 1-4, with the respective forces of infections). In the case of 144 

variation in susceptibility to infection we obtain 145 

𝐻𝐼𝑇 = 1 − K
1 − 𝜎𝑅*
(1 − 𝜎)𝑅*

L
/

/$01"
,																																																																																													(7) 146 

while variable connectivity results in  147 

𝐻𝐼𝑇 = 1 − K
1 − 𝜎𝑅*
(1 − 𝜎)𝑅*

L
/

/$+01"
.																																																																																												(8) 148 

In more complex cases HIT curves can be approximated numerically. Figure 3 shows 149 

the expected downward trends in HIT and the sizes of the respective unmitigated 150 

epidemics for SARS-CoV-2 without reinfection (𝜎 = 0) as the coefficients of 151 

variation are increased (gamma distribution shapes adopted here are illustrated in 152 

Extended Data Figure 1; for robustness of the trends to other distributions see Gomes 153 

et al9). Values of 𝑅* and CV estimated for our study countries are overlaid to mark 154 

the respective HIT and final epidemic sizes. While herd immunity is expected to 155 

require 60-80% of a homogeneous population to have been infected, at the cost of 156 
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infecting almost the entire population if left unmitigated, given an 𝑅* between 2.5 and 157 

5, these percentages drop to the range 10-20% or lower when CV is roughly between 158 

2 and 5.  159 

When acquired immunity is not 100% effective (𝜎 > 0) HITs are relatively higher 160 

(Extended Data Figure 2). However, there is an upper bound for how much it is 161 

reasonable to increase 𝜎 before the system enters a qualitatively different regime. 162 

Above 𝜎 = 1 𝑅*⁄   – the reinfection threshold10,11– infection becomes stably endemic 163 

and the HIT concept no longer applies. Respiratory viruses are typically associated 164 

with epidemic dynamics below the reinfection threshold, characterized by seasonal 165 

epidemics intertwined with periods of undetection.  166 

Individual variation in exposure, in contrast with susceptibility, accrues from complex 167 

patterns of human behaviour which have been simplified in our model. To explore the 168 

scope of our results we generalise our models (Methods) by relaxing some key 169 

assumptions. First, we enable mixing to be assortative in the sense that individuals 170 

contact predominantly with those of similar connectivity. Formally, an individual 171 

with connectivity 𝑥, rather than being exposed uniformly to individuals of all 172 

connectivities 𝑦, has contact preferences described by a normal distribution on the 173 

difference 𝑦 − 𝑥. We find this modification to have negligible effect on HIT 174 

(Extended Data Figure 3). Second, we allow connectivity distributions to change in 175 

shape (not only scale) when subject to social distancing. In particular we modify the 176 

model so that CV reduces in proportion to the intensity of social distancing (Extended 177 

Data Figure 4) and replicate the fittings to epidemics in our study countries (Extended 178 

Data Figure 5). We find a general tendency for this model to estimate higher values 179 

for 𝑅* and CV while HIT remains again remarkably robust to the change in model 180 
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assumptions. 181 

Herd immunity thresholds and seroprevalenve at sub-national levels 182 

As countries are conducting immunological surveys to assess the extent of exposure 183 

to SARS-CoV-2 in populations it is of practical importance to understand how HIT 184 

may vary across regions. We have redesigned our analyses to address this question. 185 

Series of daily new cases were stratified by region. Fitting the models simultaneously 186 

to the multiple series enabled the estimation of local parameters (𝑅* and CV) while 187 

the effects of NPIs were estimated at country level. Extended Data Figures 6-9 show 188 

how the modelled epidemics fit the regional data and include an additional metric to 189 

describe the cumulative infected percentage. These model projections are comparable 190 

to data from seroprevalence studies such as Spain12. We emphasise that 191 

seroprevalence estimates generally lie slightly below our cumulative infection curves 192 

(Extended Data Figure 9) consistently with recent findings that a substantial fraction 193 

of infected individual does not exhibit detectable antibodies13. In addition to their 194 

practical utility these results begin to unpack some of the variation in HIT within 195 

countries: Belgium (9.4-11%), England (16-26%), Portugal (7.1-9.9%) and Spain 196 

(7.5-21%).  197 

Discussion  198 

The concept of herd immunity was developed in the context of vaccination 199 

programs14,15. Defining the percentage of the population that must be immune to 200 

cause infection incidences to decline, HITs constitute useful targets for vaccination 201 

coverage. In idealized scenarios of vaccines delivered at random and individuals 202 

mixing at random, HITs are given by a simple formula (1 − 1 𝑅*⁄ ) which, in the case 203 

of SARS-CoV-2, suggests that 60-80% of randomly chosen subjects of the population 204 
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would need be immunized to halt spread considering estimates of 𝑅* between 2.5 and 205 

5. This formula does not apply to infection-induced immunity because natural 206 

infection does not occur at random. Individuals who are more susceptible or more 207 

exposed are more prone to be infected and become immune, providing greater 208 

community protection than random vaccination16. In our model, the HIT declines 209 

sharply when coefficients of variation increase from 0 to 2 and remains below 20% 210 

for more variable populations. The magnitude of the decline depends on what 211 

property is heterogeneous and how it is distributed among individuals, but the 212 

downward trend is robust as long as susceptibility or exposure to infection are 213 

variable (Figure 3 and Extended Data Figures 3) and acquired immunity is efficacious 214 

enough to keep transmission below the reinfection threshold (Extended Data Figure 215 

2).  216 

Several candidate vaccines against SARS-CoV-2 are showing promising safety and 217 

immunogenicity in early-phase clinical trials17,18, although it is not yet known how 218 

this will translate into effective protection. We note that the reinfection threshold10,11 219 

informs not only the requirements on naturally acquired immunity but, similarly, it 220 

sets a target for how efficacious a vaccine needs to be in order to effectively interrupt 221 

transmission. Specifically, given an estimated value of 𝑅* we should aim for a 222 

vaccine efficacy of 1 − 1 𝑅*⁄  (60% or 80% if 𝑅* is 2.5 or 5, respectively). A vaccine 223 

whose efficacy is insufficient to bring the system below the reinfection threshold will 224 

not interrupt transmission.  225 

Heterogeneity in the transmission of respiratory infections has traditionally focused 226 

on variation in exposure summarized into age-structured contact matrices. Besides 227 

overlooking differences in susceptibility given exposure, the aggregation of 228 
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individuals into age groups reduces coefficients of variation. We calculated CV for 229 

the landmark POLYMOD matrices19,20 and obtained values between 0.3 and 0.5. 230 

Recent studies of COVID-19 integrated contact matrices with age-specific 231 

susceptibility to infection (structured in three levels)21 or with social activity (three 232 

levels also)22 which, again, resulted in coefficients of variation less than unity. We 233 

show that models with coefficients of variation of this magnitude would appear to 234 

differ only moderately from homogeneous approximations when compared with our 235 

estimates, which are consistently above 1 in England and above 2 in Belgium, 236 

Portugal and Spain. In contrast with reductionistic procedures that aim to reconstruct 237 

variation from correlate markers left on individuals (such as antibody or reactive T 238 

cells for susceptibility, or contact frequencies for exposure), we have embarked on a 239 

holistic approach designed to infer the whole extent of individual variation from the 240 

imprint it leaves on epidemic trajectories. Our estimates are therefore expected to be 241 

higher and should ultimately be confronted with more direct measurements as these 242 

become available. Adam at et23 conducted a contact tracing study in Hong Kong and 243 

estimated a coefficient of variation of 2.5 for the number of secondary infections 244 

caused by individuals, attributing 80% of transmission to 20% of cases. This 245 

statistical dispersion has been interpreted as reflecting a common pattern of contact 246 

heterogeneity which has been corroborated by studies that specifically measure 247 

mobility24. According to our inferences, 20% of individuals may be responsible for 248 

47-94% infections depending on model and country. In parallel, there is accumulating 249 

evidence of individual variation in the immune system¢s ability to control SARS-250 

CoV-2 infection following exposure25,26. While our inferences serve their purpose of 251 

improving accuracy in model predictions, diverse studies such as these are necessary 252 

for developing interventions targeting individuals who may be at higher risk of being 253 
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infected and propagating infection in the community. 254 

Country-level estimates of 𝑅* reported here are in the range 3-5 when individual 255 

variation in susceptibility is factored and 4-8 when accounting for variation in 256 

connectivity. The homogeneous version of our models would have estimated 𝑅* 257 

between 2.4 and 3.3, in line with other studies27. Estimates for England suggest lower 258 

baseline 𝑅* and lower CV in comparison with the other study countries (Belgium, 259 

Portugal and Spain). The net effect is a slightly higher HIT in England which 260 

nevertheless we estimate around 20%. The lowest HIT, at less than 10%, is estimated 261 

in Portugal, with higher 𝑅* and higher CV. NPIs reveal less impact under variable 262 

susceptibility (48-69%), followed by variable connectivity (58-80%), and finally 263 

appear to inflate and agree with Flaxman et al27 when homogeneity assumptions are 264 

made (65-89%), although this does not affect the HIT which relates to pre-pandemic 265 

societies. 266 

More informative than reading these numbers, however, is to look at simulated 267 

projections for daily new cases over future months (Figures 1 and 2). In all four 268 

countries considered here we foresee HIT being achieved between July and October 269 

and the COVID-19 epidemic being mostly resolved by the end of 2020. Looking 270 

back, we conclude that NPIs had a crucial role in halting the growth of the initial 271 

wave between February and April. Although the most extreme lockdown strategies 272 

may not be sustainable for longer than a month or two, they proved effective at 273 

preventing overshoot, keeping cases within health system capacities, and may have 274 

done so without impairing the development of herd immunity. 275 

 276 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160762doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160762
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 13	

1. Ferguson, N. M., et al. Impact of non-pharmaceutical interventions (NPIs) to reduce 277 

COVID-19 mortality and healthcare demand (Imperial College COVID-19 Response 278 

Team, 2020). 10.25561/77482. 279 

2. Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H. & Lipsitch, M. Projecting the 280 

transmission dynamics of SARS-CoV-2 through the postpandemic period. Science 368, 281 

860-868 (2020). 282 

3. Wu, J. T., Leung, K. & Leung, G. M. Nowcasting are forecasting the potential domestic 283 

and international spread of the 2019-nCov outbreak originating in Wuhan, China: a 284 

modelling study. Lancet 395, 689-697 (2020). 285 

4. Kwok, K. O., Lai, F., Wei, W. I., Wong, S. Y. S. & Tang, J. Herd immunity – estimating 286 

the level required to halt the COVID-19 epidemics in affected countries. J. Infect. 80, 287 

e32-e33 (2020). 288 

5. Diekmann, O., Heesterbeek, J. A. P. & Metz, J. A. J. On the definition and computation 289 

of the basic reproduction ratio 𝑅! in models for infectious diseases in heterogeneous 290 

populations. J. Math. Biol. 28, 365-382 (1990). 291 

6. Google, COVID-19 Community Mobility Reports (2020). 292 

7. Pastor-Satorras, R. & Vespignani, A. Epidemic dynamics and endemic states in 293 

complex networks. Phys. Rev. E 63, 066117 (2001). 294 

8. Gomes, M. G. M. & Montalbán, A. A SEIR model with variable susceptibility or 295 

exposure to infection. arXiv (2020). 296 

9. Gomes, M. G. M., et al. Individual variation in susceptibility or exposure to SARS-CoV-297 

2 lowers the herd immunity threshold. medRvix 10.1101/2020.04.27.20081893 (2020). 298 

10. Gomes, M. G. M., White, L. J. & Medley, G. F. Infection, reinfection, and vaccination 299 

under suboptimal immune protection: Epidemiological perspectives. J. Theor. Biol. 228, 300 

539-549 (2004). 301 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160762doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160762
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 14	

11. Gomes, M. G. M., Gjini, E., Lopes, J. S., Souto-Maior, C. & Rebelo, C. A theoretical 302 

framework to identify invariant thresholds in infectious disease epidemiology. J. Theor. 303 

Biol. 395, 97-102 (2016). 304 

12. Pollán, M., et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, 305 

population-based seroepidemiological study. Lancet 10.1016/s0140-6736(20)31483-5 306 

(2020). 307 

13. Sekine, T., et al. Robust T cell immunity in convalescent individuals with asymptomatic 308 

or mild COVID-19. medRvix 10.1101/2020.06.29.174888 (2020). 309 

14. Gonçalves, G. Herd immunity: recent uses in vaccine assessment. Expert Rev. Vaccines 310 

7, 1493-1506 (2008). 311 

15. Fine, P., Eames, K. & Heymann, D. L. “Herd immunity”: a rough guide, Clin. Infect. 312 

Dis. 52, 911-916 (2011). 313 

16. Ferrari, M. J., Bansal, S., Meyers, L. A. & Bjornstad, O. N. Network frailty and the 314 

geometry of herd immunity. Proc. R. Soc. B 273, 2743-2748 (2006). 315 

17. Folegatti, P. M., et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine 316 

against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised 317 

controlled trial. Lancet 10.1016/S0140-6736(20)31604-4 (2020). 318 

18. Zhu, F.-C., et al. Immunogenicity and safety of a recombinant adenovirus type-5-319 

vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, 320 

double-blind, placebo-controlled, phase 2 trial. Lancet 10.1016/S0140-6736(20)31611-1 321 

(2020). 322 

19. Mossong, J., et al. Social contacts and mixing patterns relevant to the spread of 323 

infectious diseases. PLOS Med. 5, e74 (2008). 324 

20. Prem, K., Cook, A. R. & Jit, M. Projecting social contact matrices in 152 countries using 325 

contact surveys and demographic data. PLOS Comput. Biol. 13, e1005697 (2017). 326 

21. Zhang, J., et al. Changes in contact patterns shape the dynamics of the COVID-19 327 

outbreak in China. Science 368, 1481-1486 (2020). 328 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160762doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160762
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 15	

22. Britton, T., Ball, F. & Trapman, P. A mathematical model reveals the influence of 329 

population heterogeneity on herd immunity to SARS-CoV-2. Science 330 

10.1126/science.abc6810 (2020). 331 

23. Adam, D., et al. Clustering and superspreading potential of severe acute respiratory 332 

syndrome coronavirus 2 (SARS-CoV-2) infections in Hong Kong. 10.21203/rs.3.rs-333 

29548/v1 334 

24. Eubank, S., et al. Modelling disease outbreaks in realistic urban social networks. Nature 335 

429, 180-184 (2004). 336 

25. Grifoni, A., et al. Targets of T cell responses to SARS-CoV-2 coronavirus in humans 337 

with COVID-19 disease and unexposed individuals. Cell 181, 1489-1501.e15 (2020). 338 

26. Le Bert, N., et al. SARS-CoV-2-specific T cell immunity in cases of COVID-19 and 339 

SARS, and uninfected controls. Nature 10.1038/s41586-020-2550-z (2020). 340 

27. Flaxman, S., et al. Estimating the effects of non-pharmaceutical interventions on 341 

COVID-19 in Europe. Nature 10.1038/s41586-020-2405-7 (2020). 342 

	  343 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160762doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160762
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

 344 

 345 

Fig. 1| SARS-CoV-2 transmission with individual variation in susceptibility to 346 
infection. Suppressed wave and subsequent dynamics in Belgium, England, Portugal 347 
and Spain (orange). Estimated epidemic in the absence of interventions revealing 348 
overshoot (black). Blue bars are daily new cases. Basic (𝑅*) and effective (𝑅-.. =349 
{∫ 𝜆(𝑥)𝑥[𝑆(𝑥) + 𝜎𝑅(𝑥)]	𝑑𝑥 ∫ 𝜌𝐸(𝑥) + 𝐼(𝑥)	𝑑𝑥⁄ }{𝜌 𝛿⁄ + 1 𝛾⁄ }) reproduction 350 
numbers are displayed on shallow panels underneath the main plots. Blue shades 351 
represent social distancing (intensity reflected in 𝑅* trends and shade density). 352 
Susceptibility factors implemented as gamma distributions. Consensus parameter 353 
values (Methods): 𝛿 = 1/4 per day; 𝛾 = 1/4 per day; and 𝜌 = 0.5. Fraction of 354 
infected individuals identified as positive (reporting fraction): 0.06 (Belgium); 0.024 355 
(England); 0.09 (Portugal); 0.06 (Spain). Basic reproduction number, coefficients of 356 
variation and social distancing parameters estimated by Bayesian inference as 357 
described in Methods (estimates in Extended Data Table 1). Curves represent mean 358 
model predictions from 102 posterior samples. Orange shades represent 95% credible 359 
intervals. Vertical lines represent the expected time when herd immunity threshold 360 
will be achieved. Circles depict independent mobility data Google6 not used in our 361 
parameter estimation. 362 
  363 
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 364 

 365 

Fig. 2| SARS-CoV-2 transmission with individual variation in exposure to 366 
infection. Suppressed wave and subsequent dynamics in Belgium, England, Portugal 367 
and Spain (orange). Estimated epidemic in the absence of interventions revealing 368 
overshoot (black). Blue bars are daily new cases. Basic (𝑅*) and effective (𝑅-.. =369 
{∫ 𝜆(𝑥)𝑥[𝑆(𝑥) + 𝜎𝑅(𝑥)]	𝑑𝑥 ∫ 𝜌𝐸(𝑥) + 𝐼(𝑥)	𝑑𝑥⁄ }{𝜌 𝛿⁄ + 1 𝛾⁄ }) reproduction 370 
numbers are displayed on shallow panels underneath the main plots. Blue shades 371 
represent social distancing (intensity reflected in 𝑅* trends and shade density). 372 
Exposure factors implemented as gamma distributions. Consensus parameter values 373 
(Methods): 𝛿 = 1/4 per day; 𝛾 = 1/4 per day; and 𝜌 = 0.5. Fraction of infected 374 
individuals identified as positive (reporting fraction): 0.06 (Belgium); 0.024 375 
(England); 0.09 (Portugal); 0.06 (Spain). Basic reproduction number, coefficients of 376 
variation and social distancing parameters estimated by Bayesian inference as 377 
described in Methods (estimates in Extended Data Table 2). Curves represent mean 378 
model predictions from 102 posterior samples. Orange shades represent 95% credible 379 
intervals. Vertical lines represent the expected time when herd immunity threshold 380 
will be achieved. Circles depict independent mobility data Google6 not used in our 381 
parameter estimation. 382 
  383 
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 384 

 385 
 386 

 387 
Fig. 3| Herd immunity threshold with gamma-distributed susceptibility or 388 
exposure to infection. Curves generated with the SEIR model (Equation 1-4) 389 
assuming values of 𝑅* estimated for the study countries (Extended Data Tables 1 and 390 
2) assuming gamma-distributed: susceptibility (top); connectivity (bottom). Herd 391 
immunity thresholds (solid curves) are calculated according to the formula 1 −392 
(1 𝑅*⁄ )/ #/$01"'⁄  for heterogeneous susceptibility and 1 − (1 𝑅*⁄ )/ #/$+01"'⁄  for 393 
heterogeneous connectivity. Final sizes of the corresponding unmitigated epidemics 394 
are also shown (dashed).   395 
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METHODS 396 

Model structure and underlying assumptions 397 

The model presented here is a differential equation SEIR model, where susceptible 398 

individuals become exposed at a rate that depends on their susceptibility, the number 399 

of potentially infectious contacts they engage in, and the total number of infectious 400 

people in the population per time unit. Upon exposure, individuals enter an 401 

asymptomatic incubation phase, during which they slowly become infectious29-32. 402 

Thus, infectivity of exposed individuals is made to be 1/2 of that of infectious ones 403 

(𝜌 = 0.5). After a few days, individuals develop symptoms – on average 4 days after 404 

the exposure to the virus (𝛿 = 1/4) – and thus become fully infectious33-35. They 405 

recover, i.e., they are no longer infectious 4 days after that (𝛾 = 1/4), on average36.  406 

Efficacy of acquired immunity 407 

We conducted the core of our analysis under the assumption that no reinfection occurs 408 

after recovery due to acquired immunity (𝜎 = 0). To analyse the sensitivity of these 409 

results to leakage in immune response (𝜎 > 0) we calculated herd immunity 410 

thresholds (HIT) as a function of coefficients of variation (CV) for different values of 411 

𝜎. The results displayed in Extended Data Figure 2 confirm the expectation that as the 412 

efficacy of acquired immunity decreases (𝜎 increases) larger percentages of the 413 

population are infected before herd immunity is reached. Less intuitive is that there is 414 

an upper bound for how much it is reasonable to increase 𝜎 before the system enters a 415 

qualitatively different regime – the reinfection threshold10-11 (𝜎 = 1 𝑅*⁄ ) – above 416 

which infection becomes stably endemic and the notion of herd immunity threshold 417 
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no longer applies. Respiratory viruses are typically associated with epidemics 418 

dynamics below the reinfection threshold.  419 

Effective reproduction number 420 

The effective reproduction number (𝑅-.., also denoted by 𝑅- or 𝑅3 by other authors) 421 

is a time-dependent quantity which we calculate as the incidence of new infections 422 

divided by the total number of active infections (affected by 𝜌 for individuals in 𝐸) 423 

multiplied by the average duration of infection (also affected by 𝜌 for individuals in 424 

𝐸) 425 

𝑅-..(𝑡) =
∫ 𝜆(𝑥, 𝑡)𝑥[𝑆(𝑥, 𝑡) + 𝜎𝑅(𝑥, 𝑡)]	𝑑𝑥

∫𝜌𝐸(𝑥, 𝑡) + 𝐼(𝑥, 𝑡)	𝑑𝑥
	A
𝜌
𝛿 +

1
𝛾B.																																																		(9) 426 

Assortative mixing 427 

In the main text we assumed random mixing among individuals, but human 428 

connectivity patterns are assortative due societal structures and human behaviours. To 429 

explore the sensitivity of our results to deviations from random mixing, we develop 430 

an extended formalism that allows individuals to connect preferentially with those 431 

with similar connectivity, formally 𝜆(𝑥) =432 

(𝛽 𝑁⁄ )(∫𝑦	ℎ(𝑦 − 𝑥)[𝜌𝐸(𝑦) + 𝐼(𝑦)] 𝑑𝑦 ∫𝑦𝑔(𝑦) 𝑑𝑦⁄ ), where ℎ(𝑦 − 𝑥) is a normal 433 

distribution on the difference between connectivity factors (Extended Data Figure 3). 434 

Dynamic coefficients of variation 435 

The formulation of the variable connectivity model in the main text assumes that 436 

coefficients of variation are constant irrespective of interventions. Social distancing 437 

has been assumed to reduce connectivity of every individual by the same factor (from 438 
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𝑥 to [1 − 𝑑]𝑥) leaving the coefficient of variation unchanged. The possibility that CV 439 

might reduce with social distancing (𝑑), causing a drop in the intensity of selection, 440 

might affect our results. To study sensitivity to this type of CV dynamics, we 441 

formulate an extended model where connectivity is reformulated as (1 − 𝑑)[1 +442 

(1 − 𝑑)(𝑥 − 1)], and whose CV decreases with social distancing (Extended Data 443 

Figure 4). This does not change the way the model is written but special care is 444 

needed in analysis and interpretation to account for the new dynamics. The basic 445 

reproduction number, in particular, depends explicitly on a CV which is now 446 

dependent on social distancing 447 

𝑅* = [1 + 𝐶𝑉(𝑑)+]𝛽 A
𝜌
𝛿 +

1
𝛾B,																																																																																											(10) 448 

which is noticeable in the curvilinear shape of the controlled 𝑅* (𝑅,) trajectories 449 

(Extended Data Figure 5). 450 

Non-pharmaceutical interventions 451 

We implemented non-pharmaceutical interventions (NPI) as a gradual decrease in 452 

viral transmissibility in the population and thus a lowering of the controlled and 453 

effective reproduction numbers (𝑅, and 𝑅-..). Once containment measures are put in 454 

place in each country, we postulate it takes 21 days until the maximum effectiveness 455 

of social distancing measures is reached. In the simulations presented throughout we 456 

have held this condition (maximum “lockdown” efficacy) for 30 days, after which 457 

period, social distancing measures are progressively relaxed, slowly returning to pre-458 

pandemic conditions. Both the implementation and relaxing of the social distancing 459 

measures are imposed to be linear in this scheme.  460 
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Bayesian Inference  461 

The model laid out above is amenable to theoretical exploration as presented in the 462 

main manuscript and provides a perfect framework for inference. Fundamentally, to 463 

be able to reproduce the inception of any epidemic, we would need to estimate when 464 

local transmission started to occur (𝑡*), and the pace at which individuals infected 465 

each other in the very early stages of the epidemic (𝑅*). All countries, to different 466 

extents and at different timepoints of the epidemic, enforced some combination of 467 

social distancing measures. To fully understand the interplay between herd immunity 468 

and the impact of NPIs, we then set out to estimate the time at which social distancing 469 

measures started to have an impact on daily incidence (𝑡*4), what their maximum 470 

effectiveness (𝑑567) is, the basic reproduction number (𝑅*) and what the underlying 471 

variance in heterogeneity is for both susceptibility to infection and number of 472 

infectious contacts. 473 

In order to preserve identifiability, we made two simplifying assumptions: (i) the 474 

fraction of infectious individuals reported as COVID-19 cases (reporting fraction) is 475 

constant throughout the study period and is comparable between countries 476 

proportionally to the number of tests performed per person; (ii) local transmission 477 

starts (𝑡*) when countries/regions report 1 case per 5 million population in one day.  478 

To calculate the reporting rates, we used the Spanish national serological survey12 as a 479 

reference and divided the total number of reported cases up to May 11th by the 480 

estimated number of people that had been exposed to the virus. This gives us a 481 

reporting rate for Spain around 6%. Unfortunately, there are no other national 482 

serological surveys that could inform the proportion of the population infected in 483 

other countries, so we had to extrapolate the reporting rate for those. Assuming the 484 
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reporting rate is highly dependent on the testing effort employed in each country, 485 

reflected in the number of tests per individual, we estimate the reporting rate by 486 

scaling the reporting rate recorded in Spain according to the ratio of PCR tests per 487 

person in other countries relative to the Spanish reference of 0.9 tests per thousand 488 

people (https://ourworldindata.org/coronavirus-testing). This produced estimated case 489 

reporting rates (ratio of reported cases to infections) of 9% for Portugal, 6% for 490 

Belgium (and Spain) and 2.4% for England. 491 

Whist national case and mortality data is easily available for most countries, more 492 

spatially resolute data is difficult to find in the public domain. Thus, we restricted our 493 

analysis to countries for which disaggregated regional case data was easily available. 494 

We collected the data at two time points. First, we compiled all available data from 495 

the day the countries started reporting COVID-19 cases to the initial collection date 496 

(May 20th) and later collated available data from May 21st to July 10th.   497 

Parameter estimation was performed with the software Matlab, using PESTO 498 

(Parameter EStimation Toolbox)37, and assuming the reported case data can be 499 

accurately described by a Poisson process. We first fixed the beginning of local 500 

transmission (parameter 𝑡*) in each data series as the day in which reported cases 501 

surpassed 1 in 5 million individuals. Next, we optimized the model for the set of 502 

parameters 𝜃 = {𝑅*, 𝐶𝑉, 𝑡*4 , 𝑑567} by maximizing the logarithm of the likelihood 503 

(𝐿𝐿) (Equation 11) of observing the daily reported number of cases in each country 504 

𝐷 = {(𝑘, 𝑦]8)}89*: : 505 

 𝐿𝐿(𝜃|𝐷) = −_𝑦(𝑘, 𝜃)
:

89/

+ `_𝑦](𝑘)
:

89/

	ln	(𝑦(𝑘, 𝜃))c − 𝑙𝑛 `f𝑦](𝑘)!
:

89/

c (11) 
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in which 𝑦(𝑘, 𝜃) is the simulated model output number of COVID-19 cases at day 𝑘 506 

(with respect to 𝑡*), and 𝑛 is the total number of days included in the analysis for each 507 

country.  508 

When fitting the model to disaggregated data, we follow the procedure outlined above 509 

and estimate region-specific 𝑅* and 𝐶𝑉, with common 𝑡*4 and 𝑑567. To ensure that 510 

the estimated maximum is a global maximum, we performed 50 multi-starts 511 

optimizations, and selected the combination of parameters resulting in the maximal 512 

Loglikelihood as a starting point for 102 Markov Chain Monte-Carlo iterations. From 513 

the resulting posterior distributions, we extract the median estimates for each 514 

parameter and the respective 95% credible intervals for the set of parameters 𝜃 =515 

{𝑅*, 𝐶𝑉, 𝑡*4 , 𝑑567}. We used uniformly distributed priors with ranges {1-9, 0.0025-516 

8,1-60, 0-0.7}. 517 

This fitting procedure was applied to 4 countries (Belgium, England, Portugal and 518 

Spain) for both the national and disaggregated case data series and repeated for each 519 

of the 4 model variants considered here (homogeneous, heterogeneous susceptibility, 520 

heterogeneous connectivity with constant CV, and heterogeneous connectivity with 521 

CV reducing in proportion to social distancing). In the fitting procedures using sub-522 

national data, we assumed regions had the same start date for interventions that 523 

mitigate transmission (𝑡*4), and that these measures produced the same maximum 524 

impact on transmission (𝑑567) everywhere. Thus, the only region-specific parameters 525 

to be estimated are {𝑅*; , 𝐶𝑉;}. Parameter estimates obtained from each of the model 526 

variants are displayed in Extended Data Table 1 (heterogeneity in susceptibility), 527 

Extended Data Table 2 (heterogeneity in connectivity with constant CV), Extended 528 

Data Table 3 (heterogeneity in connectivity with dynamic CV) and Extended Data 529 
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Table 4 (homogeneous model), are comparable to those obtained in other studies27,38-530 

43. Finally, we apply the Akaike information criterion (AIC) for each estimation 531 

procedure to inform on the quality of each model’s fit to the datasets of reported cases 532 

(Extended Data Table 5). In all cases, heterogeneous models are preferred over the 533 

homogeneous approximation. Homogeneous models systematically fail to fit the 534 

maintenance of low numbers of cases after the relaxation of social distancing 535 

measures in many countries and regions (images not shown). The three heterogeneous 536 

models are roughly equally well supported by the data used in this study. Further 537 

research should complement this with discriminatory data types and hybrid models to 538 

enable the integration of different forms of individual variation. 539 

Data availability 540 

Datasets are publicly available at the respective national ministry of health websites 541 

(44-48). 542 
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 603 

 604 

Extended Data Fig. 1| Distributions used for variable susceptibility and 605 
connectivity. Gamma distribution probability density functions with mean 1 and 606 
various coefficients of variation: h𝑥/ 01"</⁄ 𝑒<7 01"⁄ j hΓ(1 𝐶𝑉+⁄ )𝐶𝑉#+ 01"⁄ 'jl , where Γ 607 
is the Gamma function. For numerical implementations we discretized gamma 608 
distributions into 𝑁 bins, calculated the susceptibility or connectivity factor as well as 609 
the fraction of the population in each bin, and derived the associated 4𝑁-dimensional 610 
systems of ordinary differential equations. 611 
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 613 

 614 

 615 

Extended Data Fig. 2| Herd immunity threshold and epidemic final size with 616 
reinfection. Curves in the main panels generated with the SEIR model (Equation 1-4) 617 
assuming 𝑅* = 3 and gamma-distributed susceptibility (top) or connectivity (bottom). 618 
Efficacy of acquired immunity is captured by a reinfection parameter 𝜎, potentially 619 
ranging between 𝜎 = 0 (100% efficacy) and 𝜎 = 1 (0 efficacy). This illustration 620 
depicts final sizes of unmitigated epidemics and associated HIT curves for 6 values of 621 
𝜎: 𝜎 = 0 (black); 𝜎 = 0.1 (green); 𝜎 = 0.2 (blue);	𝜎 = 0.3 (magenta); 𝜎 = 1 3⁄  (red); 622 
and 𝜎 = 0.4 (orange);. Above 𝜎 = 1 𝑅*⁄  (reinfection threshold (Gomes et al 2004; 623 
2016)) the infection becomes stably endemic and there is no herd immunity threshold. 624 
Representative epidemics of the regime 𝜎 ≤ 1 𝑅*⁄  are shown on the right while the 625 
regime 𝜎 > 1 𝑅*⁄  is illustrated on top. All depicted dynamics are based on the 626 
rightmost CVs represented on the main panel. 627 
  628 
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 629 

 630 

Extended Data Fig. 3| Herd immunity threshold and epidemic final size with 631 
gamma-distributed exposure to infection and assortative mixing. Curves in 632 
central panel generated with the SEIR model (Equation 1-4) assuming 𝑅* = 3 and 633 
gamma-distributed connectivity. Assortative mixing is implemented by imposing a 634 
normal distribution for contact preferences such that individuals contact preferentially 635 
with those with the similar contact degree (left). This illustration used normal 636 
distributions with standard deviation 𝑆𝐷 = 50 (green); 𝑆𝐷 = 10 (blue); and	𝑆𝐷 = 2 637 
(magenta). More assortative mixing leads to more skewed epidemics. Herd immunity 638 
thresholds were calculated numerically as the percentage of the population no longer 639 
susceptible when new outbreaks are effectively prevented (approximately when the 640 
exposed fraction crosses the peak in the absence of mitigation). Final sizes of the 641 
corresponding unmitigated epidemics are also shown. Representative epidemics are 642 
depicted on the right based on the rightmost CVs represented on the main panel (with 643 
vertical lines marking the point when herd immunity is achieved).  644 
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 646 

 647 

Extended Data Fig. 4| Connectivity distributions with reducing coefficient of 648 
variation in proportion to social distancing. Individual variation in connectivity is 649 
originally implemented as a gamma distribution of mean 1 parameterised by the 650 
coefficient of variation (CV) (black). Social distancing is initially implemented as a 651 
reduction in connectivity by the same factor to every individual, from 𝑥 to (1 − 𝑑)𝑥 652 
(top panels). Sensitivity of the results to the possibility that CV might reduce with 653 
social distancing with replicated the analyses with a model connectivity is 654 
reformulated as (1 − 𝑑)[1 + (1 − 𝑑)(𝑥 − 1)] (bottom panels).  655 
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 657 

 658 

Extended Data Fig. 5| SARS-CoV-2 transmission with individual variation in 659 
exposure reduced by social distancing. Suppressed wave and subsequent dynamics 660 
in Belgium, England, Portugal and Spain. Blue bars are daily new cases. Basic (𝑅*) 661 
and effective (𝑅-.. = {∫ 𝜆(𝑥)𝑥[𝑆(𝑥) + 𝜎𝑅(𝑥)]	𝑑𝑥 ∫𝜌𝐸(𝑥) + 𝐼(𝑥)	𝑑𝑥⁄ }{𝜌 𝛿⁄ +662 
1 𝛾⁄ }) reproduction numbers are displayed on shallow panels underneath the main 663 
plots. Blue shades represent social distancing (intensity reflected in 𝑅* trends and 664 
shade density). Exposure factors implemented as gamma distributions. Consensus 665 
parameter values (Methods): 𝛿 = 1/4 per day; 𝛾 = 1/4 per day; and 𝜌 = 0.5. 666 
Fraction of infected individuals identified as positive (reporting fraction): 0.06 667 
(Belgium); 0.024 (England); 0.09 (Portugal); 0.06 (Spain). Basic reproduction 668 
number, coefficients of variation and social distancing parameters estimated by 669 
Bayesian inference as described in Methods (estimates in Extended Data Table 3). 670 
Curves represent mean model predictions from 102 posterior samples. Orange shades 671 
represent 95% credible intervals. Vertical lines represent the expected time when herd 672 
immunity threshold will be achieved. Circles depict independent mobility data 673 
(Google 2020) not used in our parameter estimation. 674 
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 676 

  

  

Extended Data Fig. 6| SARS-CoV-2 transmission at subnational levels in Belgium. 677 
Suppressed wave and subsequent dynamics in Flanders and the rest of Belgium, with 678 
individual variation in susceptibility (left) or exposure (right). Blue bars are daily new 679 
cases. Shades represent social distancing (intensity reflected in shade density). 680 
Susceptibility or exposure factors implemented as gamma distributions. Consensus 681 
parameter values (Methods): 𝛿 = 1/4 per day; 𝛾 = 1/4 per day; and 𝜌 = 0.5. 682 
Fraction of infected individuals identified as positive (reporting fraction): 0.06. Basic 683 
reproduction number, coefficients of variation and social distancing parameters 684 
estimated by Bayesian inference as described in Methods (estimates in Extended Data 685 
Table 1 and 2). Curves represent mean model predictions from 102 posterior samples. 686 
Orange shades represent 95% credible intervals. Red curves represent cumulative 687 
infected percentages. 688 
  689 
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 690 

  

  

  

  

Extended Data Fig. 7| SARS-CoV-2 transmission at subnational levels in England. 691 
Suppressed wave and subsequent dynamics in London, Northwest, Southeast and the 692 
rest of England, with individual variation in susceptibility (left) or exposure (right). 693 
Blue bars are daily new cases. Shades represent social distancing (intensity reflected 694 
in shade density). Susceptibility or exposure factors implemented as gamma 695 
distributions. Consensus parameter values (Methods): 𝛿 = 1/4 per day; 𝛾 = 1/4 per 696 
day; and 𝜌 = 0.5. Fraction of infected individuals identified as positive (reporting 697 
fraction): 0.024. Basic reproduction number, coefficients of variation and social 698 
distancing parameters estimated by Bayesian inference as described in 699 
Methods(estimates in Extended Data Table 1 and 2). Curves represent mean model 700 
predictions from 102 posterior samples. Orange shades represent 95% credible 701 
intervals. Red curves represent cumulative infected percentages. 702 
  703 
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 704 

  

  

Extended Data Fig. 8| SARS-CoV-2 transmission at subnational levels in Portugal. 705 
Suppressed wave and subsequent dynamics in the North and Centre regions versus the 706 
rest of Portugal, with individual variation in susceptibility (left) or exposure (right). 707 
Blue bars are daily new cases. Shades represent social distancing (intensity reflected 708 
in shade density). Susceptibility or exposure factors implemented as gamma 709 
distributions. Consensus parameter values (Methods): 𝛿 = 1/4 per day; 𝛾 = 1/4 per 710 
day; and 𝜌 = 0.5. Fraction of infected individuals identified as positive (reporting 711 
fraction): 0.09. Basic reproduction number, coefficients of variation and social 712 
distancing parameters estimated by Bayesian inference as described in Methods 713 
(estimates in Extended Data Table 1 and 2). Curves represent mean model predictions 714 
from 102 posterior samples. Orange shades represent 95% credible intervals. Red 715 
curves represent cumulative infected percentages. 716 
  717 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160762doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160762
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 37	

 718 

  

  

  

Extended Data Fig. 9| SARS-CoV-2 transmission at subnational levels in Spain. 719 
Suppressed wave and subsequent dynamics in Madrid, Catalunya and the rest of 720 
Spain, with individual variation in susceptibility (left) or exposure (right). Blue bars 721 
are daily new cases. Shades represent social distancing (intensity reflected in shade 722 
density). Susceptibility or exposure factors implemented as gamma distributions. 723 
Consensus parameter values (Methods): 𝛿 = 1/4 per day; 𝛾 = 1/4 per day; and 𝜌 =724 
0.5. Fraction of infected individuals identified as positive (reporting fraction): 0.06. 725 
Basic reproduction number, coefficients of variation and social distancing parameters 726 
estimated by Bayesian inference as described in Methods (estimates in Extended Data 727 
Table 1 and 2). Curves represent mean model predictions from 102 posterior samples. 728 
Orange shades represent 95% credible intervals. Red curves represent cumulative 729 
infected percentages and vertical red segments mark seroprevalences (95% CI) 730 
according to a recent study12. 731 
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Extended Data Table 1| Estimated parameters for heterogeneous susceptibility 733 
model. Estimates generated from model fit to the national datasets are in the grey 734 
shaded rows. The remaining rows provide the region-specific estimates. Best 735 
parameter estimates are presented as a bold median bounded by the lower and upper 736 
ends for the 95% credible interval. 737 
 738 

 739 
 740 
  741 

Country/Region  R0   CV   𝑑567   𝑡*4   
Belgium 4.99 5.03 5.06 3.87 3.88 3.91 0.40 0.40 0.41 1.00 1.01 1.12 
Flanders 4.96 5.00 5.02 3.89 3.91 3.93 0.41  0.41  0.41  1.00  1.02  1.15  

Rest 4.97 5.01 5.03 3.87 3.89 3.91 
Portugal 4.23 4.26 4.31 4.22 4.26 4.30 0.30 0.31 0.31 7.37 7.71 7.91 

North/Centre 3.54 3.58 3.61 3.72 3.76 3.79 0.34  0.35  0.35  7.51  7.73  8.00  
Rest 4.27 4.32 4.36 3.69 3.72 3.74 

Spain 4.08 4.10 4.11 3.20 3.21 3.22 0.37 0.37 0.37 16.02 16.13 16.23 
Madrid 4.38 4.39 4.39 2.37 2.37 2.38 0.37  0.37  0.37  16.40  16.41  16.44  

Catalunya 4.20 4.21 4.21 2.49 2.50 2.50 
Rest 3.96 3.97 3.97 3.80 3.81 3.82 

England 2.93 2.94 2.95 1.94 1.94 1.95 0.52 0.52 0.52 40.56 40.69 40.80 
London 2.95 2.96 2.96 2.24 2.24 2.24 0.52  0.53  0.53  41.35  41.51  41.64  

NorthWest 3.03 3.04 3.05 1.66 1.67 1.68 
SouthEast 2.80 2.81 2.82 2.07 2.07 2.07 

Rest 2.88 2.88 2.89 1.64 1.64 1.65 
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Extended Data Table 2| Estimated parameters for heterogeneous connectivity 742 
model (constant CV). Estimates generated from model fit to the national datasets are 743 
in the grey shaded rows. The remaining rows provide the region-specific estimates. 744 
Best parameter estimates are presented as a bold median bounded by the lower and 745 
upper ends for the 95% credible interval. 746 
 747 

 748 
 749 
 750 
  751 

Country/Region  R0   CV   𝑑567   𝑡*4   
Belgium 7.12 7.14 7.17 2.86 2.87 2.88 0.27 0.27 0.27 1.00 1.01 1.04 
Flanders 7.09 7.11 7.13 2.86 2.87 2.89 0.27  0.27  0.28  1.00  1.01  1.03  

Rest 7.11 7.13 7.15 2.86 2.87 2.89 
Portugal 7.76 7.94 8.14 4.01 4.04 4.09 0.19 0.20 0.20 2.67 2.98 3.27 

North/Centre 5.06 5.08 5.09 3.24 3.24 3.24 0.25  0.25  0.25  7.21  7.22  7.24  
Rest 5.68 5.69 5.69 2.79 2.81 2.83 

Spain 6.59 6.60 6.60 2.73 2.73 2.73 0.28 0.28 0.28 10.00 10.01 10.02 
Madrid 7.81 7.83 8.82 1.98 1.99 2.06 0.24  0.26  0.26  5.38  7.02  7.06  

Catalunya 8.00 8.02 9.00 2.33 2.34 2.43 
Rest 7.97 7.99 8.96 3.58 3.59 3.72 

England 3.81 3.82 3.83 1.55 1.55 1.55 0.42 0.42 0.42 36.45 36.52 36.61 
London 3.70 3.70 3.71 1.69 1.69 1.70 0.43  0.43  0.43  37.50 37.52 37.55 

NorthWest 3.83 3.83 3.84 1.32 1.32 1.32 
SouthEast 3.58 3.59 3.59 1.66 1.67 1.68 

Rest 3.60 3.60 3.61 1.30 1.31 1.31 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 24, 2020. ; https://doi.org/10.1101/2020.07.23.20160762doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.23.20160762
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 40	

Extended Data Table 3| Estimated parameters for heterogeneous connectivity 752 
model (dynamic CV). Estimates generated from model fit to the national datasets are 753 
in the grey shaded rows. The remaining rows provide the region-specific estimates. 754 
Best parameter estimates are presented as a bold median bounded by the lower and 755 
upper ends for the 95% credible interval. 756 
 757 

 758 
 759 
  760 

Country/Region  R0   CV   𝑑567   𝑡*4   
Belgium 8.79 8.84 8.88 3.98 4.00 4.02 0.56 0.56 0.56 1.00 1.01 1.05 
Flanders 8.78 8.82 8.86 3.98 4.00 4.02 0.56  0.56  0.56  1.00  1.01  1.04  

Rest 8.82 8.86 8.89 3.98 4.00 4.02 
Portugal 9.86 9.92 9.95 5.73 5.77 5.80 0.50 0.50 0.50 3.00 3.01 3.07 

North/Centre 6.65 6.72 6.80 3.75 3.78 3.81 0.56  0.57  0.57  5.84  6.02  6.19  
Rest 5.98 6.05 6.13 4.09 4.14 4.19 

Spain 5.97 6.09 6.10 3.04 3.09 3.10 0.56 0.56 0.56 14.46 14.50 14.89 
Madrid 6.19 6.20 6.21 2.43 2.43 2.44 0.57  0.57  0.57  13.80  13.81  13.83  

Catalunya 6.30 6.32 6.33 2.61 2.62 2.62 
Rest 6.34 6.35 6.36 3.80 3.81 3.82 

England 4.01 4.05 4.09 1.90 1.92 1.93 0.66 0.66 0.66 36.79 37.03 37.29 
London 3.78 3.79 3.80 1.99 2.00 2.01 0.67 0.67 0.67 39.06 39.20 39.28 

NorthWest 3.91 3.92 3.94 1.64 1.65 1.66 
SouthEast 3.67 3.69 3.70 1.89 1.89 1.90 

Rest 3.64 3.65 3.66 1.58 1.58 1.59 
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Extended Data Table 4| Estimated parameters for the homogenous model. 761 
Estimates generated from model fit to the national datasets are in the grey shaded 762 
rows. The remaining rows provide the region-specific estimates. Best parameter 763 
estimates are presented as a bold median bounded by the lower and upper ends for the 764 
95% credible interval. 765 
 766 
Country/Region  R0   𝑑567   𝑡*4   

Belgium 3.298 3.301 3.310 0.208 0.209 0.210 16.299 16.354 16.357 
Flanders 3.235 3.239 3.308 

0.208 0.212 0.213 16.324 17.039 17.064 
Rest 3.235 3.238 3.307 

Portugal 2.900 2.910 2.914 0.242 0.243 0.244 20.551 20.622 20.693 
North/Centre 3.542 3.578 3.608 

0.343 0.345 0.348 7.514 7.725 7.999 
Rest 4.274 4.321 4.361 

Spain 3.028 3.031 3.034 0.149 0.150 0.150 28.329 28.360 28.393 
Madrid 4.113 4.116 4.120 

0.111 0.111 0.112 20.000 20.000 20.000 Catalunya 4.208 4.214 4.218 
Rest 3.735 3.751 3.752 

England 2.434 2.435 2.437 0.355 0.355 0.356 55.047 55.070 55.074 
London 2.307 2.308 2.310 

0.359 0.360 0.360 54.577 54.578 54.578 
NorthWest 2.602 2.603 2.604 
SouthEast 2.368 2.370 2.371 

Rest 2.502 2.503 2.504 
 767 
 768 
  769 
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Extended Data Table 5| Model selection criteria. Displays the maximum 770 
Loglikelihood obtained for each combination of model and data partitioning for each 771 
country, as well as the Akaike information criterion. Models are labelled by a sort 772 
name as follows: homog (homogenous); hetsus (heterogeneity in susceptibility); 773 
hetcon (heterogeneity in connectivity with constant CV); hetdyn (heterogeneity in 774 
connectivity with dynamic CV). 775 
 776 

Country Model LL AIC 
Aggregate Data 

 homog 2.25E+05 -4.50E+05 
Portugal	 hetsus	 2.30E+05 -4.59E+05 

	 hetcon	 2.30E+05 -4.60E+05 
	 hetdyn	 2.30E+05 -4.59E+05 
	 homog	 1.77E+06 -3.54E+06 

Spain	 hetsus	 1.79E+06 -3.59E+06 
	 hetcon	 1.79E+06 -3.58E+06 
	 hetdyn	 1.79E+06 -3.58E+06 
	 homog	 1.67E+06 -3.33E+06 

England	 hetsus	 1.68E+06 -3.36E+06 
	 hetcon	 1.68E+06 -3.36E+06 
	 hetdyn	 1.68E+06 -3.36E+06 
	 homog	 3.30E+05 -6.60E+05 

Belgium	 hetsus	 3.33E+05 -6.66E+05 
	 hetcon	 3.33E+05 -6.65E+05 
	 hetdyn	 3.33E+05 -6.66E+05 

Regional Data 
 homog	 3.36E+05 -6.73E+05 

Portugal	 hetsus	 3.55E+05 -7.11E+05 
	 hetcon	 3.55E+05 -7.10E+05 
	 hetdyn	 3.55E+05 -7.11E+05 
	 homog	 1.87E+06 -3.75E+06 

Spain	 hetsus	 1.96E+06 -3.91E+06 
	 hetcon	 1.96E+06 -3.91E+06 
	 hetdyn	 1.47E+06 -2.95E+06 
	 homog	 2.59E+06 -5.18E+06 

England	 hetsus	 2.63E+06 -5.25E+06 
	 hetcon	 2.62E+06 -5.25E+06 
	 hetdyn	 2.62E+06 -5.25E+06 
	 homog	 3.74E+05 -7.48E+05 

Belgium	 hetsus	 3.78E+05 -7.56E+05 
	 hetcon	 3.78E+05 -7.55E+05 
	 hetdyn	 3.78E+05 -7.55E+05 

 777 
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