A machine learning aided global diagnostic and comparative tool to assess effect of quarantine control in Covid-19 spread
View ORCID ProfileRaj Dandekar, Chris Rackauckas, George Barbastathis
doi: https://doi.org/10.1101/2020.07.23.20160697
Raj Dandekar
1Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
Chris Rackauckas
2Department of Applied Mathematics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
George Barbastathis
3Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4Singapore-MIT Alliance for Research and Technology (SMART) Centre, Singapore 138602
Article usage
Posted July 24, 2020.
A machine learning aided global diagnostic and comparative tool to assess effect of quarantine control in Covid-19 spread
Raj Dandekar, Chris Rackauckas, George Barbastathis
medRxiv 2020.07.23.20160697; doi: https://doi.org/10.1101/2020.07.23.20160697
Subject Area
Subject Areas
- Addiction Medicine (394)
- Allergy and Immunology (706)
- Anesthesia (197)
- Cardiovascular Medicine (2890)
- Dermatology (248)
- Emergency Medicine (433)
- Epidemiology (12635)
- Forensic Medicine (10)
- Gastroenterology (814)
- Genetic and Genomic Medicine (4498)
- Geriatric Medicine (411)
- Health Economics (718)
- Health Informatics (2877)
- Health Policy (1060)
- Hematology (381)
- HIV/AIDS (913)
- Medical Education (419)
- Medical Ethics (115)
- Nephrology (466)
- Neurology (4265)
- Nursing (228)
- Nutrition (626)
- Oncology (2236)
- Ophthalmology (637)
- Orthopedics (256)
- Otolaryngology (323)
- Pain Medicine (272)
- Palliative Medicine (83)
- Pathology (491)
- Pediatrics (1183)
- Primary Care Research (490)
- Public and Global Health (6846)
- Radiology and Imaging (1505)
- Respiratory Medicine (910)
- Rheumatology (431)
- Sports Medicine (378)
- Surgery (476)
- Toxicology (60)
- Transplantation (206)
- Urology (176)