Abstract
Background and purpose The relation between radiotherapy (RT) dose to the brain and morphological changes in healthy tissue has seen recent increased interest. There already is evidence for changes in the cerebral cortex and white matter, as well as selected subcortical grey matter (GM) structures. We studied this relation in all deep GM structures, to help understand the aetiology of post-RT neurocognitive symptoms.
Materials and methods We selected 31 patients treated with RT for glioma. Pre-RT and post-RT 3D T1 MRIs were automatically segmented, and the changes in volume of the following structures were assessed: amygdala, nucleus accumbens, caudate nucleus, hippocampus, globus pallidus, putamen, and thalamus. The volumetric changes were related to the mean RT dose received by each structure. Hippocampal volumes were entered into a population-based nomogram to estimate hippocampal age.
Results A significant relation between RT dose and volume loss was seen in all examined structures, except the caudate nucleus. The volume loss rates ranged from 0.16-1.37 %/Gy, corresponding to 4.9-41.2% per 30 Gy. Hippocampal age, as derived from the nomogram, was seen to increase by a median of 11 years.
Conclusion Almost all subcortical GM structures are susceptible to radiation-induced volume loss, with more volume loss being observed with increasing dose. Volume loss of these structures is associated with neurological deterioration, including cognitive decline, in neurodegenerative diseases. To support a causal relationship between radiation-induced deep GM loss and neurocognitive functioning in glioma patients, future studies are needed that directly correlate volumetrics to clinical outcomes.
Competing Interest Statement
The authors have declared no competing interest.
Funding Statement
No funding to declare
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
The need for informed consent for this retrospective study was waived by our institutional review board (#18/274).
All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.
Yes
Data Availability
No data is available
Abbreviations
- CAT12
- Computational Anatomy Toolbox 12
- CT
- computed tomography
- FWER
- Family-wise error rate
- GM
- Grey matter
- MRI
- Magnetic resonance imaging
- PALM
- Permutation analysis of linear models
- PTV
- Planning target volume
- RT
- Radiotherapy
- SPM
- Statistical Parametric Mapping
- TFE
- turbo fast echo
- WBRT
- Whole-brain radiotherapy