1	Comparative Evaluation of 19 Reverse
2	Transcription Loop-Mediated Isothermal
3	Amplification Assays for Detection of
5	
4	SARS-COV-2
5	Yajuan Dong ^{a, b‡} , Xiuming Wu ^{c‡} , Shenwei Li ^d , Renfei Lu ^e , Zhenzhou Wan ^f ,
6	Jianru Qin ^b , Guoying Yu ^b , Xia Jin ^a , Chiyu Zhang ^{a, c*}
7	
8	a Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
9	b College of Life Sciences, Henan Normal University, Xinxiang 453007, China
10	c Pathogen Discovery and Evolution Unit, Institut Pasteur of Shanghai, Chinese Academy of
11	Sciences, Shanghai 200031, China
12	d Shanghai International Travel Healthcare Center, Shanghai 200335, China
13	e Clinical Laboratory, Nantong Third Hospital Affiliated to Nantong University, Nantong
14	226006, China;
15	f Medical Laboratory of Taizhou Fourth People's Hospital, Taizhou 225300, China;
16	
17	Running title: Evaluation of SARS-CoV-2 RT-LAMP assays.
18	
19	*Corresponding author.
20	Prof. Chiyu Zhang, PhD, Pathogen Discovery and Evolution Unit, Institut Pasteur of
21	Shanghai, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, China.
22	Tel: +86 21 5492 3051; E-mail address: <u>zhangcy1999@ips.ac.cn</u>
23	‡ Yajuan Dong and Xiuming Wu contributed equally to this work.
24	
25	

26 Abstract

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 has caused a global 27 pandemics. To facilitate the detection of SARS-CoV-2 infection, various RT-LAMP assays 28 29 using 19 sets of primers had been developed, but never been compared. We performed comparative evaluation of the 19 sets of primers using 4 RNA standards and 29 clinical 30 31 samples from COVID-19 patients. Six of 15 sets of primers were firstly identified to have faster amplification when tested with four RNA standards, and were further subjected to 32 33 parallel comparison with the remaining four primer sets using 29 clinical samples. Among these 10 primer sets, Set-4 had the highest positive detection rate of SARS-CoV-2 (82.8%), 34 followed by Set-10, Set-11, Set-13 and Set-14 (75.9%), and Set-14 showed the fastest 35 amplification speed (< 8.5 minutes), followed by Set-17 (< 12.5 minutes). Based on the 36 37 overall detection performance, Set-4, Set-10, Set-11, Set-13, Set-14 and Set-17 that target 38 Nsp3, S, S, E, N and N gene regions of SARS-CoV-2, respectively, are determined to be better than the other primer sets. Two RT-LAMP assays with the Set-14 primers in 39 40 combination with any one of four other primer sets (Set-4, Set-10, Set-11, and Set-13) are recommended to be used in the COVID-19 surveillance. 41

42

43 Keywords: COVID-19; SARS-CoV-2; LAMP; POCT; Clinical evaluation; Time threshold
44 (Tt).

46 Introduction

47 Coronavirus disease 2019 (COVID-19), caused by the newly discovered coronavirus 48 SARS-CoV-2^{1,2}, is rapidly spreading throughout the world, posing a huge challenge to global 49 public health security. As of 1 June, 2020, it has infected over 6 million people, and resulted in 50 at least 376,320 deaths globally. In the absence of effective antiviral drugs or efficacious 51 vaccines, early diagnosis of SARS-CoV-2 infection is essential for the containment of 52 COVID-19^{3,4}, without which it is impossible to timely implement intervention and quarantine 53 measures, and difficult to track contacts in order to limit virus spread.

Nucleic acid testing of various approaches are widely used as the primary tool for 54 diagnosing COVID-19^{3,4}. Among them, real-time quantitative PCR (RT-qPCR) methods 55 have been set as the gold standard for laboratory confirmation of SARS-CoV-2 infection 56 57 because of their proven track record as being the most robust technology in molecular diagnostics ⁴⁻⁶. However, the RT-qPCR assay relies on sophisticated facilities with reliable 58 supply of electricity and well-trained personnel in large general hospitals and health care 59 60 facilities, or government labs (such as CDC), and it is relatively time-consuming (about 1.5-2 hrs). These limit its capacity in point-of-care settings. Moreover, visiting a clinical setting for 61 62 testing increases the risk of spreading the virus. Therefore, an alternative, fast, simple, and sensitive point-of-care testing (POCT) is highly needed to facilitate the detection of 63 SARS-CoV-2 infection in resource-limited settings ^{3,7}. 64

Loop-mediated isothermal amplification (LAMP) is a promising POCT method with high sensitivity, specificity, and rapidity, and it is easy-to-use ⁸. To overcome the limitation of RT-qPCR assay, a number of RT-LAMP assays using at least 19 sets of different primers had been developed in the last few months for the detection of SARS-CoV-2 ⁹⁻¹⁹. Although these assays had proven sensitive and effective for the detection of SARS-CoV-2, how do they compare with each other have not been evaluated. In this study, we compared all 19 sets of

4

SARS-CoV-2-specific RT-LAMP primers using the mismatch-tolerant LAMP system that is
faster and more sensitive than the conventional ones ^{20,21} , and screened the high-efficiency
RT-LAMP assays for use in the detection of field samples.

74

75 **Results**

76 Strategy for the comparative evaluation

77 There were 19 sets of SARS-CoV-2 RT-LAMP primers available for the evaluation. 78 Among these primers, 2 sets were designed for binding to the Nsp3 (non-structural proteins), 5 for RdRp (RNA-dependent RNA polymerase), 2 for E (envelope protein) and 2 for N 79 (nucleocapsid protein) gene regions of SARS-CoV-2 (Fig. 1). These regions are highly 80 conserved among SARS-CoV-2 and SARS-CoV, but distinct from five other human 81 coronaviruses (MERS-CoV, OC43, 229E, NL63 and HKU1). Other 4 sets of primers were 82 dispersed throughout the genome of SARS-CoV-2. The primers binding to the same target 83 gene are adjacent to each other and cover genomic segments from 251 to 1954 bps. To 84 minimize the consumption of clinical samples, and economize experimental efforts, we 85 adopted a strategy that initiated by a preliminary evaluation of the primers binding to the four 86 87 major genomic regions using in vitro-transcribed RNA standard, and followed by a further evaluation of preliminarily selected primers together with four sets of other primers using 88 89 clinical RNA samples (Fig. 1).

90 **Preliminary evaluation of primer sets**

Using 3000 copies of *in vitro*-transcribed RNA standards of four gene segments of
SARS-CoV-2, we assessed the amplification performance of 15 sets of RT-LAMP primers.
Except for Set-3 that failed in amplification, all other primer sets generated amplification
curves with Time threshold (Tt) of 7.5-15.9 minutes and reached the plateau phase within 20

minutes (Fig. 2). In particular, six sets of the primers showed faster amplification with 10
minutes less Tt values than other primer sets (Fig. 2), implying higher amplification
sensitivity. The six sets (Set-2, Set-5, Set-13, Set-14, Set-17 and Set-18) of primers contain
three that bind to *N* gene and another three that bind to *Nsp*, *RdRp*, and *E* genes, respectively.
The six sets of primers were selected for further evaluation using clinical samples together
with other four primer sets that bind to other genomic regions of the virus.

101 Comparative evaluation of ten primer sets using clinical samples

102 A total of 29 RNA samples extracted from COVID-19 patients were used at 4-fold 103 dilutions. Except for one, all 29 RNA samples were detected as being SARS-CoV-2 positive 104 by at least one of the primer sets. Nine samples were detected as positive by all ten sets of 105 primers and almost all reactions (except for one with 49.5 minutes) had Tt values of less than 106 15.1 minutes, indicating a high viral load. The primer Set-4 detected 24 positive samples, 107 showing the highest positive detection rate (82.8%), followed by Set-10, Set-11, Set-13 and 108 Set-17 that all detected 22 positive samples (75.9%) (Fig. 3A). Two primer sets, Set-1 and 109 Set-18, had the lowest positive detection rates of 44.8% and 62.1%, respectively, and thus 110 were excluded in the subsequent analyses. Comparison showed that the primer Set-14 had 111 the lowest mean Tt values of less than 8.4 minutes, followed by Set-10, Set-11 and Set-13 112 that had mean Tt values of 11.1-11.5 minutes (Fig. 3A). These four fast-amplification sets of primers also have small standard deviations (SD) of 1.7-2.9, indicating that the RT-LAMP 113 114 with these four primer sets are relatively more stable and faster than the other 15 sets. As 115 expected, the primer Set-14 is the most efficient one that generated the fastest (the lowest Tt 116 value) and the second fastest amplification in 14 and 7 samples, followed by Set-17 which is 117 the fastest in 6 samples and second best in 9 samples, demonstrating these two primer sets 118 had the best performance.

6

119	Because of their relatively high positive detection rate and lower Tt values, six primer sets
120	including Set-4, Set-10, Set-11, Set-13, Set-14 and Set-17 were subjected to further pairwise
121	comparison. The comparison showed that any two sets of these primers had high
122	concordance performance (87.8-97.6%) for 41 clinical RNA samples (including 29 positive
123	and 12 negative for SARS-CoV-2) (Fig. 3B). All the six primer sets had high amplification
124	efficiency with mean Tt values of less than 12 minutes (Fig. 3B). In particular, Set-14 had
125	faster amplification than the other five sets of primers (8.3-8.4 vs. 10.5-11.2 minutes).

126 Specificity evaluation of four optimal primer sets based on sequence alignment

The specificity of these primer sets had been reported in previous studies ⁹⁻¹⁹. In this 127 evaluation, all ten primer sets did not generate amplification for all 12 COVID-19 negative 128 129 RNA samples. To further examine the specificity of six recommended primer sets (Set-4, Set-10, Set-11, Set-13, Set-14 and Set-17) to other human coronaviruses, we performed 130 sequence alignment analyses. SARS-CoV-2 shared 79.5% genomic homology with 131 SARS-CoV^{1,2}, indicating a relatively high sequence identity; but it was largely distinct from 132 MERS-CoV and other four human coronaviruses (Supplementary Fig. S1). In particular, 133 134 several primers of Set-4, Set-10 and Set-17 correspond to gaps or insertions of the genomes of MERS-CoV and other four common human coronaviruses OC43, 229E, NL63 and HKU1. 135 136 These results implied that these six sets of primers were unable to bind to the genomes of MERS-CoV and four common human coronaviruses, therefore more specific for 137 138 SARS-CoV-2. However, because of high sequence identity and the use of mismatch-tolerant RT-LAMP system that allows the presence of few mismatched bases between primers and 139 templates, the SARS-CoV-2 RT-LAMP assays may generate a cross-amplification of 140 SARS-CoV. 141

142 Discussion

7

143 SARS-CoV-2 transmission mainly occurs in the early and progressive stages of 144 COVID-19 disease during which the patients and virus carriers have higher viral load than that in recovery stage ²²⁻²⁴, and are generally more infectious. To contain the spread of the 145 virus, early diagnosis is essential^{3,4}. It helps to trigger timely intervention (e.g. quarantine, 146 147 lockdown, and contact tracing), and facilitates to optimize clinical management. It is clear that 148 serological assays are not suitable for this purpose, because detectable antibodies always 149 appear several days after infection. Therefore, viral RNA testing is the primary method for 150 early diagnostics of COVID-19. Despite being the most robust diagnostic tests, 151 RT-qPCR-based assays are more centralized in core facilities, and they are not amenable for 152 large-scale monitoring for asymptomatic and pre-symptomatic virus carriers in point-of-care 153 settings (e.g. community and home). Therefore, community- and/or home-based nucleic acid 154 assays that allow individuals to test in the community, at home, or other point-of-care sites 155 without having to visit hospitals are convenient tools for the detection of SARS-CoV-2 infection by the general public 3,7 . 156

RT-LAMP assays are such needed tools ^{8,20,21}. In fact, various LAMP assays have been 157 developed that included at least 19 sets of primers targeting different genomic regions of 158 159 SARS-CoV-2, with reported high sensitivity of detection ranging from 0.625 to 1200 copies per 25 µL reaction ⁹⁻¹⁹. However, these primers are never formally evaluated with clinical 160 161 samples. The sensitivity and performance of a RT-LAMP assay are mainly determined by 162 the primers set, because other components of the reaction system are optimized and stable. 163 Therefore, assessing the optimal RT-LAMP primer sets for the detection of SARS-CoV-2 164 infection are important for the selection of best assay format to use for large field screening 165 of COVID-19 patients.

Recently, the reaction system of RT-LAMP was further optimized to have higher sensitivity and faster amplification speed, even allowing the presence of few mismatched

8

168	bases between primer and templates in a mismatch-tolerant version ^{20,21} . Using this new
169	version, we assessed 19 sets of SARS-CoV-2 RT-LAMP primers. Six sets of primers with
170	faster amplification speed were firstly selected from 15 sets of primers using 4 RNA
171	standards, and then tested with other 4 primer sets using 41 clinical samples. Eight sets of
172	primers showed either comparable or better performance than the other 2 sets of primers
173	(Set-1 and Set-18) as determined by positive detection rate (>69.0%). Of the 8 sets of primers,
174	six were further selected based on high positive detection rate and/or overall faster
175	amplification speed (with mean Tt of less than 13 minutes). The six primer sets are Set-4,
176	Set-10, Set-11, Set-13, Set-14 and Set-17 that correspond to Nsp3, S, S, E, N, and N genes of
177	SARS-CoV-2, respectively.
178	Among these primer sets, the N gene-based RT-LAMP assays (Set-14 and Set-17) had the
179	fastest amplification speed, followed by <i>S</i> and <i>E</i> gene-based assay (Set-10, Set-11 and Set-13).
180	This result suggested that the N gene-based RT-LAMP assay is more sensitive in detecting
181	SARS-CoV-2 than that based on other genes, consisting with results of RT-qPCR assays ⁵ .
182	Interestingly, previous studies showed that the sensitivities of Set-4 and Set-11 were more

than 100 copies per 25 μ L reaction ^{12,14}, not much higher than our assay. In this study, both 183 primer sets generated comparable performance with highly sensitive primers Set-13 and 184 Set-14 (less than 3 copies per 25 µL reaction)^{16,17}. In addition, two of our previous reported 185 primers, Set-8 and Set-18, exhibited high sensitivities of 3-20 copies per 25 µL reaction and 186 good performance in the detection of clinical samples under the mismatch-tolerant reaction 187 condition ^{9,10}, but they did not show better performance than other nine primer sets in this 188 189 study. A reason might be that the use of the mismatch-tolerant reaction system generally improved the amplification efficiency of the primers reported by other groups²⁰. 190

The analyzed primer sets showed high specificity in that they did not amplify any
 SARS-CoV-2 negative clinical samples. Sequence alignment analyses further supported that

9

the six sets of optimal primers had good specificity to SARS-CoV-2, albeit they might
generate non-specific amplification for SARS-CoV due to a high degree of sequence identity.
However, given the lethal nature of both SARS-CoV-2 and SARS-CoV ²⁵, a non-specific
positive result for SARS-CoV might also be of clinical importance.

197 Two nucleic acid assays targeting different genes are suggested to be used in the detection of SARS-CoV-2 to avoid potential false-negative results ⁵. Based on comparable 198 performances, any two of the six optimal primer sets (Set-4, Set-10, Set-11, Set-13, Set-14 199 200 and Set-17) are recommend to be used in the detection of SARS-CoV-2. However, 201 simultaneous use of Set-10 and Set-11, or Set-14 and Set-17 should be avoided because the 202 former two sets target S gene and the latter two sets target N gene. In addition, because of its 203 very fast amplification speed, Set-14 is strongly encouraged to be preferentially selected for 204 the diagnosis of COVID-19 patients. Apart from the six recommend primer sets, other primers 205 such as Set-2 and Set-5 also had good performance, and can also be used in the monitoring of 206 COVID-19 infections.

Another advantage of our version of the RT-LAMP assay is that the results are easily visualized with a pH-sensitive indicator dye (e.g. cresol red and neutral red) ²⁶. Moreover, a combination of a nucleic acid extraction-free protocol and a master RT-LAMP mix containing all reagents (enzymes, primers, magnesium, nucleotides, dye and additives), except for the template, enables the development of a simple kit that can be used at home, or a community-based diagnosis center for the detection of COVID-19 infection ^{3,27}.

In summary, we evaluated and selected six optimal primer sets from 19 sets of SARS-CoV-2 RT-LAMP primers through a comparative evaluation with clinical RNA samples from COVID-19 patients. Two RT-LAMP assays with the Set-14 primers and any one of the other four primer sets (Set-4, Set-10, Set-11 and Set-13) are strongly recommended to be used in the COVID-19 surveillance to facilitate the early finding of

10

218	asymptomatic and pre-symptomatic virus carriers in clinical and point-of-care settings, and
219	the monitoring of environmental samples in the field.

220

221 Materials and Methods

222 Ethics Statement

- The study was approved by Nantong Third Hospital Ethics Committee (E2020002: 3
- February 2020). All experiments were performed in accordance with relevant guidelines and
- regulations. Written informed consents were obtained from each of the involved patients.

226 **Preparation of RNA standard**

To prepare RNA standard, four SARS-CoV-2 genomic segments (2720-3620 nt, 13403-15502 nt, 25901-26700 nt and 28274-29533 nt in Wuhan-Hu-1, GenBank: MN908947.3) were amplified from previously confirmed positive RNA sample with T7-promoter-containing primers (Supplementary Table S1). RNA standard was generated by *in vitro* transcription, and quantitated by Qubit® 4.0 Fluorometer (Thermo Fisher Scientific, USA). Copy number of RNA standard was estimated using the formula: RNA copies/ml = [RNA concentration (g/µL)/(nt transcript length × 340)] × 6.022 × 10²³.

234 RNA samples of COVID-19 patients

A total of 29 RNA samples were obtained from COVID-19 patients described in our previous studies ^{9,10}. In brief, RNA was extracted from 300 μ L throat swabs of COVID-19 patients using RNA extraction Kit (Liferiver, Shanghai) and eluted in 90 μ L nuclease-free water. After screening and confirmation tests, the remaining RNA samples were stored at –80 °C. When used for RT-LAMP assays, the stored SARS-CoV-2 positive RNA samples as

confirmed by RT-qPCR assay were thawed and 4-fold diluted. In addition, 12 SARS-CoV-2
negative clinical RNA samples were used as controls.

242 RT-LAMP Assay

243 To assess the performance of 19 sets of RT-LAMP primers in the detection of 244 SARS-CoV-2, an optimized mismatch-tolerant RT-LAMP method that has higher sensitivity 245 and faster amplification speed than the conventional ones was used. A 25 µL RT-LAMP 246 reaction mixture was prepared with 1x isothermal amplification buffer, 6 mM MgSO4, 1.4 mM 247 dNTPs, 8 units of WarmStart Bst 2.0 DNA polymerase, 7.5 units of WarmStartR RT, 0.15 unit 248 of Q5 High-Fidelity DNA Polymerase, 0.2 μ M each of primers of F3 and B3, 1.6 μ M each of 249 primers of FIP and BIP, 0.4 µM each of loop primer LF and/or LB, and 0.4 mM SYTO 9 (Life 250 technologies, Carlsbad, CA, United States). The enzymes were all purchased from New 251 England Biolabs (Beverly, MA, United States). In general, 3 µL of RNA standard or samples 252 were added into each RT-LAMP reaction. The reaction was run at $63 \square$ for 50 minutes with 253 real-time monitoring by the LightCycler 96 real-time PCR System (Roche Diagnostics, 254 Mannheim, Germany).

255

256 Reference

257 1 Zhu, N. et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N Engl J 258 Med 382, 727-733, doi:10.1056/NEJMoa2001017 (2020). 259 2 Zhou, P. et al. A pneumonia outbreak associated with a new coronavirus of probable bat 260 origin. Nature 579, 270-273, doi:10.1038/s41586-020-2012-7 (2020). 261 3 Udugama, B. et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano 14, 262 3822-3835, doi:10.1021/acsnano.0c02624 (2020). 263 4 Lo, Y. M. D. & Chiu, R. W. K. Racing Towards the Development of Diagnostics for a Novel 264 Coronavirus (2019-nCoV). Clin Chem 66, 503-504, doi:10.1093/clinchem/hvaa038 (2020). 265 5 Chu, D. K. W. et al. Molecular Diagnosis of a Novel Coronavirus (2019-nCoV) Causing an 266 Outbreak of Pneumonia. Clin Chem 66, 549-555, doi:10.1093/clinchem/hvaa029 (2020). 267 6 Li, Y. et al. A mismatch-tolerant RT-quantitative PCR: application to broad-spectrum 268 detection of respiratory syncytial virus. Biotechniques 66, 225-230, doi:10.2144/btn-2018-0184 269 (2019).

270	7	Nguyen, T., Duong Bang, D. & Wolff, A. 2019 Novel Coronavirus Disease (COVID-19):
271 272		Paving the Road for Rapid Detection and Point-of-Care Diagnostics. <i>Micromachines (Basel)</i> 11 , doi:10.3390/mi11030306 (2020).
273	8	Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res 28, E63,
274		doi:10.1093/nar/28.12.e63 (2000).
275	9	Lu, R. et al. Development of a Novel Reverse Transcription Loop-Mediated Isothermal
276		Amplification Method for Rapid Detection of SARS-CoV-2. Virol Sin,
277		doi:10.1007/s12250-020-00218-1 (2020).
278	10	Lu, R. et al. A Novel Reverse Transcription Loop-Mediated Isothermal Amplification Method
279		for Rapid Detection of SARS-CoV-2. Int J Mol Sci 21 , doi:10.3390/ijms21082826 (2020).
280	11	Yu, L. et al. Rapid detection of COVID-19 coronavirus using a reverse transcriptional
281		loop-mediated isothermal amplification (RT-LAMP) diagnostic platform. Clin Chem,
282		doi:10.1093/clinchem/hvaa102 (2020).
283	12	Yan, C. et al. Rapid and visual detection of 2019 novel coronavirus (SARS-CoV-2) by a reverse
284		transcription loop-mediated isothermal amplification assay. Clin Microbiol Infect,
285		doi:10.1016/j.cmi.2020.04.001 (2020).
286	13	Mohamed, ET., Haim H., B. & Jinzhao, S. A Single and Two-Stage, Closed-Tube, Molecular Test
287		for the 2019 Novel Coronavirus (COVID-19) at Home, Clinic, and Points of Entry. (2020).
288	14	Park, G. S. et al. Development of Reverse Transcription Loop-Mediated Isothermal
289		Amplification Assays Targeting SARS-CoV-2. J Mol Diagn, doi:10.1016/j.jmoldx.2020.03.006
290		(2020).
291	15	Broughton, J. P. et al. Rapid Detection of 2019 Novel Coronavirus SARS-CoV-2 Using a
292		CRISPR-based DETECTR Lateral Flow Assay. <i>medRxiv</i> , 2020.2003.2006.20032334,
293		doi:10.1101/2020.03.06.20032334 (2020).
294 295	16	Yang, W. <i>et al.</i> Rapid Detection of SARS-CoV-2 Using Reverse transcription RT-LAMP method. <i>med Rxiv</i> , 2020.2003.2002.20030130, doi:10.1101/2020.03.02.20030130 (2020).
296	17	Jiang, M. et al. Development and validation of a rapid single-step reverse transcriptase
297		loop-mediated isothermal amplification (RT-LAMP) system potentially to be used for
298		reliable and high-throughput screening of COVID-19. medRxiv, 2020.2003.2015.20036376,
299		doi:10.1101/2020.03.15.20036376 (2020).
300	18	Zhang, Y. et al. Rapid Molecular Detection of SARS-CoV-2 (COVID-19) Virus RNA Using
301		Colorimetric LAMP. <i>med Rxiv</i> , 2020.2002.2026.20028373, doi:10.1101/2020.02.26.20028373
302		(2020).
303	19	Lamb, L. E., Bartolone, S. N., Ward, E. & Chancellor, M. B. Rapid Detection of Novel
304		Coronavirus (COVID-19) by Reverse Transcription-Loop-Mediated Isothermal Amplification.
305		<i>med Rxiv</i> , 2020.2002.2019.20025155, doi:10.1101/2020.02.19.20025155 (2020).
306	20	Zhou, Y. et al. A Mismatch-Tolerant Reverse Transcription Loop-Mediated Isothermal
307		Amplification Method and Its Application on Simultaneous Detection of All Four Serotype of
308	0.1	Dengue Viruses. Front Microbiol 10, 1056, doi:10.3389/tmicb.2019.01056 (2019).
309	21	Li, Y. et al. A Mismatch-tolerant KI-LAMP Method for Molecular Diagnosis of Highly
310	22	variable Viruses. Bio-protocol 9, e3415, doi:10.21769/BioProtoc.3415 (2019).
311 212	22	opline about of print, doi:10.1001/jama.2020.2786 (2020)
312 313	1 2	Zou L at al SARS CoV 2 Vival Load in Upper Decrimentary Speciments of Infects 4 Definition N
313	23	Zou, L. et al. SAKS-Cov-2 viral Load in Opper Respiratory Specimens of Infected Patients. N

13

314		Engl J Med 382 , 1177-1179, doi:10.1056/NEJMc2001737 (2020).
315	24	Yu, F. et al. Quantitative Detection and Viral Load Analysis of SARS-CoV-2 in Infected
316		Patients. Clin Infect Dis, Online ahead of print, doi:10.1093/cid/ciaa345 (2020).
317	25	Wu, Z. & McGoogan, J. M. Characteristics of and Important Lessons From the Coronavirus
318		Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the
319		Chinese Center for Disease Control and Prevention. JAMA, doi:10.1001/jama.2020.2648
320		(2020).
321	26	Tanner, N. A., Zhang, Y. & Evans, T. C., Jr. Visual detection of isothermal nucleic acid
322		amplification using pH-sensitive dyes. Biotechniques 58, 59-68, doi:10.2144/000114253 (2015).
323	27	Nie, K. et al. Evaluation of a direct reverse transcription loop-mediated isothermal
324		amplification method without RNA extraction for the detection of human enterovirus 71
325		subgenotype C4 in nasopharyngeal swab specimens. PLoS One 7, e52486,
326		doi:10.1371/journal.pone.0052486 (2012).

327

328 Acknowledgments

- 329 We thank the grants from the National Science and Technology Major Project of China
- 330 (2019YFC1200603, 2017ZX10103009-002 and 2018ZX10711001) for financial support.

331 Author Contributions

- 332 C.Z. conceived and designed the study, wrote the manuscript, and supervised the project. Y.D.
- and X.W. performed the experiments. S.L, R.L and Z.W collected and screened clinical
- samples. C.Z., X.W., Y.D., and J.Q. analyzed the data. C.Z., G. Y. and X. J. interpreted the
- results. X.J. contributed to critical revision of the manuscript.
- 336

337 Authors' Disclosures or Potential Conflicts of Interest

- 338 The authors report no conflicts of interest in this work.
- 339

340 Figure Legends

- 341 Figure 1. Genome location and evaluation strategy of 19 sets of SARS-CoV-2
- **RT-LAMP primers.** The location of each primer set was detailed in Table 1. SD: standard
 deviation.
- 344 Figure 2. Comparison of performance of 15 RT-LAMP assays using RNA standards.
- 345 The curves of non-template control (NTC) are not shown. * The Tt values of the Set-8 were
- obtained by another repeated comparative experiments with Set-5and Set-9, both of which
- showed a consistent trend, but slightly lower Tt values than those shown here.
- 348 Figure 3. Comparison of performance of 10 selected RT-LAMP primer sets using 41
- 349 clinical RNA samples. A. Positive rates and Tt values of 10 selected RT-LAMP assays. B.
- 350 Paired comparison of Tt values of the primers Set-4, Set-10, Set-11, Set-13, Set-14 and
- 351 Set-17.
- 352

Primer	Primer	Primer sequence (5'-3')	Target	Genomic	Sensitivity	Refs
sets	name		gene	location (nt)	(LOD)	
S1	F3	CTGCACCTCATGGTCATGTT	orf1ab	498-711	1200	(18)
	B3	AGCTCGTCGCCTAAGTCAA			copies/25	
	FIP	GAGGGACAAGGACACCAAGTGTATGGTTGAGCTGGTAGCAGA			μL reaction	
	BIP	CCAGTGGCTTACCGCAAGGTTTTAGATCGGCGCCGTAAC				
	LF	CCGTACTGAATGCCTTCGAGT				
	LB	TTCGTAAGAACGGTAATAAAGGAGC				
S2	F3	TCCAGATGAGGATGAAGAAGA	orf1ab	3043-3331	1.02 fg/25	(19)
	B3	AGTCTGAACAACTGGTGTAAG			μL	
	FIP	AGAGCAGCAGAAGTGGCACAGGTGATTGTGAAGAAGAAGAAG			reaction	
	BIP	TCAACCTGAAGAAGAGCAAGAACTGATTGTCCTCACTGCC				
	LF	CTCATATTGAGTTGATGGCTCA				
	LB	ACAAACTGTTGGTCAACAAGAC				
S3	F3	GGAATTTGGTGCCACTTC	orf1ab	3145-3345	100	(14)
	B3	СТАТТСАСТТСААТАӨТСТӨААСА			copies/15	
	FIP	CTTGTTGACCAACAGTTTGTTGACTTCAACCTGAAGAAGAGCAA			reaction	
	BIP	CGGCAGTGAGGACAATCAGACACTGGTGTAAGTTCCATCTC				
	LF	ΑΤCΑΤCΑΤCΤΑΑCCΑΑΤCΤΤCΤΤC				
	LB	TCAAACAATTGTTGAGGTTCAACC				
S4	F3	ТGCAACTAATAAAGCCACG	orf1ab	6253-6446	100	(14)
	B3	CGTCTTTCTGTATGGTAGGATT	(Nsp3)		copies/15	
	FIP	ТСТБАСТТСАБТАСАТСАААСБААТАААТАССТББТБТАТАСБТТБТС			μL reaction	
	BIP	GACGCGCAGGGAATGGATAATTCCACTACTTCTTCAGAGACT				
	LF	TGTTTCAACTGGTTTTGTGCTCCA				
	LB	TCTTGCCTGCGAAGATCTAAAAC				
S5	F3	TGCTTCAGTCAGCTGATG	orf1ab	13434-13636	7	(13)
	B3	ТТАААТТӨТСАТСТТСӨТССТТ			copies/10	
	FIP	TCAGTACTAGTGCCTGTGCCCACAATCGTTTTTAAACGGGT			µ reaction	
	BIP	TCGTATACAGGGCTTTTGACATCTA TCTTGGAAGCGACAACAA				
	LF	CTGCACTTACACCGCAA				
	LB	GTAGCTGGTTTTGCTAAATTCC				
S6	F3	GGTATGATTTTGTAGAAAACCCA	orf1ab	13925-14140	20	(12)
	B3	CAACAGGAACTCCACTACC			copies/25	
	FIP	GGCATCACAGAATTGTACTGTTTTTGCGTATACGCCAACTTAGG			reaction	
	BIP	AATGCTGGTATTGTTGGTGTACTGAGGTTTGTATGAAATCACCGAA				
	LF	AACAAAGCTTGGCGTACACGTTCA				
S7	F3	GTTACGATGGTGGCTGTA	orf1ab	14885-15081	5	(16)
	B3	GGCATACTTAAGATTCATTTGAG			copies/25	
	FIP	AGCCTTACCCCATTTATTAAATGGAGCTAACCAAGTCATCGTCAA			بر reaction	
	BIP	AATGAGTTATGAGGATCAAGATGCATTATAGTAGGGATGACATTACGT				
	LF	AAACCAGCTGATTTGTCTAGGTTG				

1	6

						_
S8	F3	AAACGTAATGTCATCCCTACT	orf1ab	15034-15274	3	(9)
	В3	GGTTTTCTACATCACTATAAACAGT	(RdRp)		copies/25	
	FIP	ACAGATAGAGACACCAGCTACGCTCAAATGAATCTTAAGTATGCCA			μL reaction	
	BIP	ATAGCCGCCACTAGAGGAGCCCAACCACCATAGAATTTGC				
	LF	GTGCGAGCTCTATTCTTTGCACTA				
S9	F3	CCACTAGAGGAGCTACTGTA	orf1ab	15182-15387	10	(11)
	В3	TGACAAGCTACAACACGT			copies/20	
	FIP	AGGTGAGGGTTTTCTACATCACTATATTGGAACAAGCAAATTCTATGG			µ reaction	
	BIP	ATGGGTTGGGATTATCCTAAATGTGTGCGAGCAAGAACAAGTG				
	LF	CAGTTTTTAACATGTTGTGCCAACC				
	LB	TAGAGCCATGCCTAACATGCT				
S10	F3	CTGACAAAGTTTTCAGATCCTCAG	S	21678-21886	NA	(14)
	В3	AGTACCAAAAATCCAGCCTCTT				
	FIP	TCCCAGAGACATGTATAGCATGGAATCAACTCAGGACTTGTTCTTACC				
	BIP	TGGTACTAAGAGGTTTGATAACCCTGTTAGACTTCTCAGTGGAAGCA				
	LF	CCAAGTAACATTGGAAAAGAAA				
	LB	GTCCTACCATTTAATGATGGTGTTT				
S11	F3	ТСТАТТӨССАТАСССАСАА	S	23693-23937	200	(12
	В3	GGTGTTTTGTAAATTTGTTTGAC			copies/25	
	FIP	CATTCAGTTGAATCACCACAAATGTGTGTTACCACAGAAATTCTACC			reaction	
	BIP	GTTGCAATATGGCAGTTTTTGTACATTGGGTGTTTTTGTCTTGTT				
	LF	ACTGATGTCTTGGTCATAGACACT				
	LB	TAAACCGTGCTTTAACTGGAATAGC				
S12	F3	CCGACGACGACTACTAGC	E	26191-26424	20	(15
	В3	AGAGTAAACGTAAAAAAGAAGGTT			copies/10	
	FIP	CTAGCCATCCTTACTGCGCTACTCACGTTAACAATATTGCA			reaction	
	BIP	ACCTGTCTCTCCGAAACGAATTTGTAAGCACAAGCTGATG				
	LF	TCGATTGTGTGCGTACTGC				
	LB	TGAGTACATAAGTTCGTAC				
S13	F3	AGCTGATGAGTACGAACTT	E	26226-26441	2.5 copies	(16
	В3	TTCAGATTTTTAACACGAGAGT			/25 µL	
	FIP	ACCACGAAAGCAAGAAAAAGAAGTATTCGTTTCGGAAGAGACAG			reaction	
	BIP	TTGCTAGTTACACTAGCCATCCTTAGGTTTTACAAGACTCACGT				
	LB	CTGCGCTTCGATTGTGTGCGT				
S14	F3	CCAGAATGGAGAACGCAGTG	N	28354-28569	1	(17
	В3	CCGTCACCACGAATT			copies/25	
	FIP	AGCGGTGAACCAAGACGCAGGGCGCGATCAAAACAACG			reaction	
	BIP	AATTCCCTCGAGGACAAGGCGAGCTCTTCGGTAGTAGCCAA				
	LF	TTATTGGGTAAACCTTGGGGC				
	LB	TTCCAATTAACACCAATAGCAGTCC				
S15	F3	ТӨӨСТАСТАССӨААӨАӨСТ	N	28525-28741	120	(18
	B3	TGCAGCATTGTTAGCAGGAT			copies/25	
	FIP	TCTGGCCCAGTTCCTAGGTAGTCCAGACGAATTCGTGGTGG			µد reaction	
	BIP	AGACGGCATCATATGGGTTGCACGGGTGCCAATGTGATCT				

	LF	GGACTGAGATCTTTCATTTTACCGT				
	LB	ACTGAGGGAGCCTTGAATACA				
S16	F3	AGATCACATTGGCACCCG	N	28702-28914	0.625	(16)
	B3	CCATTGCCAGCCATTCTAGC			copies/25	
	FIP	TGCTCCCTTCTGCGTAGAAGCCAATGCTGCAATCGTGCTAC			reaction	
	BIP	GGCGGCAGTCAAGCCTCTTCCCTACTGCTGCCTGGAGTT				
	LF	GCAATGTTGTTCCTTGAGGAAGTT				
	LB	CGTAGTCGCAACAGTTAAGAAATTC				
S17	F3	GCCAAAAGGCTTCTACGCA	N	28774-28971	NA	(14)
	BЗ	TTGCTCTCAAGCTGGTTCAA				
	FIP	TCCCCTACTGCTGCCTGGAGGCAGTCAAGCCTCTTCTCG				
	BIP	TCTCCTGCTAGAATGGCTGGCATCTGTCAAGCAGCAGCAAAG				
	LF	TGTTGCGACTACGTGATGAGGA				
	LB	ATGGCGGTGATGCTGCTCT				
S18	F3	GCCAAAAGGCTTCTACGCA	N	28774-28971	20 copies	(10)
	B3	TTGCTCTCAAGCTGGTTCAA			/25 µL	
	FIP	TCCCCTACTGCTGCCTGGAGCAGTCAAGCCTCTTCTCGTT			(118.6	
	BIP	TCTCCTGCTAGAATGGCTGGCATCTGTCAAGCAGCAGCAAAG			copies/25	
	LB	TGGCGGTGATGCTGCTCTT			μL roaction)	
S19	F3	AACACAAGCTTTCGGCAG	N	29083-29311	20	(15)
	B3	GAAATTTGGATCTTTGTCATCC			copies/10	
	FIP	CGCATTGGCATGGAAGTCACTTTGATGGCACCTGTGTAG			µL reaction	
	BIP	TGCGGCCAATGTTTGTAATCAGCCAAGGAAATTTTGGGGAC				
	LF	TTCCTTGTCTGATTAGTTC				
	LB	ACCTTCGGGAACGTGGTT				

Notes: F3/B3: outer primers; FIP/BIP: forward and backward internal primers; LF/LB:

355 forward and backward loop primers.

19

363 364

Figure 2. Comparison of performance of 15 RT-LAMP assays using RNA standards.

The curves of non-template control (NTC) are not shown. * The Tt values of the Set-8 were obtained by another repeated comparative experiments with Set-5and Set-9, both of which

showed a consistent trend, but slightly lower Tt values than those shown here.

-	
	ĸ

Primer set	Set-4	Set-10	Set-4	Set-11	Set-4	Set-13	Set-4	Set-14	Set-4	Set-17
Mean Tt (mins)	10.8	11.1	10.8	11.3	10.9	11.5	10.7	8.3	11.5	12.0
Paired positive number	21		21		22		20		21	
Concordance rate	90.2%		90.2%		95.1%		87.8%		90.2%	
Primer set	Set-10	Set-11	Set-10	Set-13	Set-10	Set-14	Set-10	Set-17	Set-11	Set-13
Mean Tt (mins)	11.1	11.3	11.1	11.4	11.1	8.4	11.1	10.7	11.3	11.4
Paired positive number	21		21		21		21		21	
Concordance rate	95.1%		95.1%		97.6%		95.1%		95.1%	
Primer set	Set-11	Set-14	Set-11	Set-17	Set-13	Set-14	Set-14	Set-17		
Mean Tt (mins)	11.2	8.3	11.2	10.1	11.1	8.3	8.3	10.5		
Paired positive number	20		20		20		20			
Concordance rate	92.7%		90.2%		92.7%		92.7%			

370

371

Figure 3. Comparison of performance of 10 selected RT-LAMP primer sets using 41

373 clinical RNA samples. A. Positive rates and Tt values of 10 selected RT-LAMP assays. B.

Paired comparison of Tt values of the primers Set-4, Set-10, Set-11, Set-13, Set-14 and

375 Set-17.