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The genetic component of Alzheimer’s disease (AD) has been mainly assessed using Genome 

Wide Association Studies (GWAS), which do not capture the risk contributed by rare 

variants. Here, we compared the gene-based burden of rare damaging variants in exome 

sequencing data from 32,558 individuals —16,036 AD cases and 16,522 controls— in a two-stage 

analysis. Next to known genes TREM2, SORL1 and ABCA7, we observed a significant association 

of rare, predicted damaging variants in ATP8B4 and ABCA1 with AD risk, and a suggestive 

signal in ADAM10. Next to these genes, the rare variant burden in RIN3, CLU, ZCWPW1 and ACE 

highlighted these genes as potential driver genes in AD-GWAS loci. Rare damaging variants in these 

genes, and in particular loss-of-function variants, have a large effect on AD-risk, and they are enriched 

in early onset AD cases. The newly identified AD-associated genes provide additional evidence for a 

major role for APP-processing, Aβ-aggregation, lipid metabolism and microglial function in AD. 

AD is the leading cause of dementia and its impact will grow with increasing life expectancy1. Beyond 

autosomal dominant early onset AD (<1% of all AD cases, onset ≤65 years), the common complex form 

of AD has an estimated heritability of ~70%2. Using genome wide association studies (GWAS), 75 

mostly common genetic risk factors/loci have been associated with AD-risk in populations with 

European ancestry, but individually these common variants have low effect-sizes3. Using DNA-

sequencing strategies, rare (allele frequency <1%) damaging missense or loss-of-function (LOF) 

variants in the TREM2, SORL1 and ABCA7 genes were identified to also contribute to the heritability of 

AD, with substantially higher effect-sizes than individual GWAS-hits4-8. 

In order to detect additional genes for which rare variants associate with AD-risk, it is necessary to 

compare genetic sequencing data from thousands of AD cases and controls. In a large collaborative 

effort, we harmonized sequencing data from studies from Europe and the United States (Table S1) and 

applied a multi-stage gene burden analysis (Figure 1A). We observed site-specific technical biases, 

since data were generated at multiple centers, using heterogeneous methods. To account for these 
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batch effects, we designed and applied comprehensive quality control (QC) procedures (Online 

methods, Tables S2-S3).  

After sample QC, we first compared gene-based rare-variant burdens between 12,652 AD cases and 

8,693 controls (Stage-1 analysis, Table 1A). We detected 7,543,193 variants after sample- and variant-

QC (Table 1B) and annotated LOF variants with LOFTEE and missense variants with the REVEL score, 

and selected variants with MAF<1%. We defined four deleteriousness thresholds by incrementally 

including variants with lower levels of predicted deleteriousness: respectively LOF (n=57,543), 

LOF+REVEL≥75 (n=111,755), LOF+REVEL≥50 (n=211,665), and LOF+REVEL≥25 (n=409,733). Of the 

19,822 autosomal protein coding genes, we analyzed the 13,222 genes that had a cumulative minor 

allele count (cMAC) ≥10 for the lowest deleterious threshold LOF+REVEL≥25 (see Methods); 9,168 

genes for the LOF+REVEL≥50 threshold; 5,694 for the LOF+REVEL≥75 threshold and 3,120 genes for 

the LOF-only threshold (Figure 1B). For these different deleteriousness thresholds, this analysis has an 

estimated power of 41%, 22%, 11% and 4%, respectively to attain a signal with p<1e-6, assuming that 

the differential variant burden for a gene is associated with an odds ratio of 10.0 in EOAD and 3.33 in 

LOAD (Table S4). Therefore, this analysis only has the power to uncover genes for which the differential 

gene-burden is associated with a large effect size or large numbers of damaging variant carriers (Figure 

1B). In total, 31,204 tests were performed across 13,222 genes in Stage-1 (single genes were tested 

with up to four thresholds). Statistical inflation of test results was negligible (𝝀=1.046, Figure 1C). Of 

all burden tests performed, 13 tests, covering 6 genes indicated a suggestive differential variant burden 

between AD cases and controls (FDR<0.1): SORL1, TREM2, ABCA7, ATP8B4, ADAM10, and ABCA1 

(Table 2A).  

To confirm these signals, we applied an analysis model consistent with Stage-1 to an independent 

Stage-2 dataset, which after QC, comprised 3,384 cases and 7,829 controls (Table 1A). The effect was 

tested in the direction observed in Stage-1 (one-sided test). All genes selected in Stage-1 reached 

p<0.05 (Table 2A, Stage-2). Stage-2 effect-sizes of these genes correlated with those observed in Stage-
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1 (Pearson’s r on log-odds: 0.91). We then meta-analyzed Stage-1 + Stage-2 across the 13 tests using a 

fixed-effect inverse variance method and corrected for the 31,204 tests performed in Stage-1 (Holm-

Bonferroni) (Table 2A). This confirmed the AD-association of rare damaging variants in the SORL1, 

TREM2, ABCA7, ATP8B4 and ABCA1 genes. The association signal of the ADAM10 gene was not exome-

wide significant, presumably because prioritized variants in this gene are extremely few and rare, such 

that the signal can be confirmed only in larger datasets.  

Strikingly, most of these genes also map to GWAS loci (SORL1, TREM2, ABCA7, ABCA1 and ADAM10). 

This led us to perform a focused analysis on GWAS loci, aiming to identify potential driver genes. To 

maximize statistical power, we merged the full exomes from the Stage-1 and Stage-2 samples into one 

mega-sample (Table 1). We interrogated genes that were previously prioritized to drive the AD 

association in the 75 loci identified in the most recent GWAS3 (Table S5, Online Methods). In 67 genes, 

we observed sufficient prioritized variants (cMAC ≥10) to test the burden signal in at least one delete-

riousness category (a total of 187 tests). In addition to the genes mentioned above, our analysis indi-

cated a suggestive signal of increased AD risk in RIN3, CLU, ZCWPW1, and ACE (FDR<0.05) (Table 2B, 

Table S6); these signals will have to be confirmed in a larger dataset. Nevertheless, the AD associations 

in these genes persisted when focusing on the burden of only the very rare variants (MAF<0.1%), sug-

gesting that the rare variant burden is not in linkage with, and thus independent from the GWAS sen-

tinel variant. 

Together, the newly associated genes provide additional evidence for a central role for APP-processing, 

lipid metabolism, Aβ-aggregation and neuroinflammatory processes in AD pathophysiology. Like 

ABCA7, ATP8B4 is a phospholipid transporter. Rare variants in this gene have been associated with the 

risk of developing systemic sclerosis, an autoimmune disease9. In the brain, ATP8B4 is predominantly 

expressed in microglia. Interestingly, GWAS indicated a potential association of ATP8B4 with AD3, 

mainly through the rare missense variant that was most recurrent in our study (G395S).  Of note, the 

odds ratio point-estimate for ATP8B4 LOF variants was close to 1, allowing for the possibility that the 
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missense variants that drive the ATP8B4 association do not depend on a loss-of-function effect. ABCA1 

is also a phospholipid transporter; it lipidates APOE10 and poor ABCA1-dependent lipidation of APOE-

containing lipoprotein particles increases Aβ-deposition and fibrillogenesis11. In line with this, the rare 

N1800H loss-of-function variant in ABCA1 was previously associated with low plasma levels of ApoE 

and evidence suggested an association with increased risk of AD and cerebrovascular disease12. The α-

secretase ADAM10 plays a major role in non-amyloidogenic APP metabolism13. Evidence for the AD-

association of rare variants in ADAM10 has remained suggestive until now: two rare missense variants 

in ADAM10 were reported before to incompletely segregate with LOAD in a few families14  (these var-

iants did not associate with AD in our study, Table SG6) and a nonsense variant in the ADAM10 gene 

was found to segregate with AD but in a small pedigree15. Error! Bookmark not defined.RIN3 has been 

associated with endosomal dysfunction and APP trafficking/metabolism16,17. CLU (also known as APOJ) 

has been found to affect Aβ-aggregation and clearance18 and ACE is suggested to have a role in Aβ-

degradation19. Thus far, the role of the histone methylation reader ZCWPW1 remains unclear.  

To better comprehend how these genes associate with AD, we analyzed the characteristics of rare 

damaging variants that contributed to the burden using the mega-sample (Figure 2, Table 3) For 

damaging variants in most genes, we observed increased carrier frequencies in younger cases and 

larger effect sizes were associated with an earlier age at onset (p=0.0001) (Table S7). Yet the variants 

also contributed to an increased risk of late-onset AD (Figures 2A-B, Table 3). The largest effect-sizes 

were measured for LOF variants in SORL1, ADAM10, CLU and ZCWPW1, and carriers of such variants 

had the lowest median age at onset (Table 3), implying a key role for these genes in AD etiology. Mod-

erate variant-effect-sizes were observed for LOF variants in TREM2, ABCA1 and RIN3, while the small-

est variant-effects were observed in ABCA7, ATP8B4 and ACE (Figure 3, Table 3).  

Extremely rare variants contributed more to large effect sizes than less rare variants (p=0.03, Table 

S8). Indeed, for SORL1, the variants with the lowest variant frequencies had the largest effect-sizes 

(Figures 2C, Table S9), and damaging variants in ADAM10, CLU and ZCWPW1 were all extremely rare 
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(Figures 2D). Conversely, we observed that rare but recurrent variants contributed to the AD-associa-

tion of TREM2, ABCA7, ATP8B4 and RIN3 (Figure 2D). The effect-sizes of rare, coding variant-burdens 

were large compared to the effect-sizes of the GWAS sentinel SNPs (Table S5, S6). Up to 18% EOAD 

and 14% LOAD cases carried at least one predicted damaging variant in one of the 10 genes, compared 

to 9% of the controls (Table S10). The fractions of EOAD cases in our sample that could be attributed 

to a rare variant in a specific gene ranged between 0.1% to 2.4%: (~2%: SORL1, TREM2, ABCA7; ~1%:  

ATP8B4, ABCA1, RIN3; and <0.5% for the remaining genes), and for LOAD cases this ranged between 

0.0% to 1.3% (Table 3). 

We performed an age-matched sensitivity analysis to investigate possible effects from other age-re-

lated conditions, which supported a role in AD for all 10 identified genes (Figure S2). Since APOE status 

was used as selection criterion in several contributing datasets, burden tests were not adjusted for 

APOE-ε4 dosage; in a separate analysis we observed no interaction-effects between the rare-variant 

AD-association and APOE-ε4 dosage (Table S11, Online Methods). Also, the rare-variant burden-asso-

ciation was not confounded by somatic mutations due to age-related clonal hematopoiesis (Table S12).  

Together, we report ATP8B4 and ABCA1 as novel AD risk factors with exome-wide significance and we 

report suggestive evidence for the association of rare variants in the ADAM10 gene with AD risk. Fur-

thermore, we identified RIN3, CLU, ZCWPW1 and ACE as potential drivers in GWAS loci, illustrating 

how analyses of rare protein-modifying variants can solve this drawback of GWAS studies20. Larger 

datasets will be required to further confirm these signals. Given the association of LOF variants with 

increased AD-risk, we suggest that the GWAS risk alleles in the respective loci might also be associated 

with reduced activity of the gene, which will have to be evaluated in further experiments. We observed 

an increased burden of rare damaging genetic variants in individuals with an earlier age at onset. Nev-

ertheless, damaging variants (including APOE-ε4/ε4) were observed in only 30% of the EOAD cases 

(Table S10), suggesting that additional damaging variants remain to be discovered (Figure 1B). Further, 
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the effect of structural variants such as CNVs and repetitive sequences will need to be investigated in 

future analyses. 

The associated genes strengthen our current understanding of AD pathophysiology. When treatment 

options become available in the future, identification of damaging variants in these genes will be of 

interest to clinical practice.  

Online methods 

In-depth descriptions of all methods are described in the Supplemental Methods. 

Sample processing, genotype calling and quality control (QC) 

We collected the exome, WGS or exome-extract sequencing data of a total of 52,361 individuals, 

brought together by the Alzheimer Disease European Sequencing consortium (ADES), the Alzheimer’s 

Disease Sequencing Project (ADSP)21  and several independent study-cohorts (Table S1). Exome-

extract samples only contained the raw reads that cover the 10 genes identified in Stage-1. Across all 

cohorts, AD cases were defined according to NIAA criteria22  for possible or probable AD or according 

to NINCDS-ADRDA criteria23 depending on the date of diagnosis. When possible, supportive evidence 

for an AD pathophysiological process was sought (including CSF biomarkers) or the diagnosis was 

confirmed by neuropathological examination (Table S1). AD cases were annotated with the age at 

onset or age at diagnosis (2014 samples), otherwise, samples were classified as late onset AD (366 

samples). Controls were not diagnosed with AD. All contributing datasets were sequenced using a 

paired-end Illumina platform, different exome capture kits were used, and a subset of the sample 

was sequenced using whole genome sequencing (Table S2).  

A uniform pipeline was used to process both the Stage-1 and Stage-2 datasets. Raw sequencing data 

from all studies were processed relative to the GRCh37 reference genome, read alignments of possible 
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chimeric origin were filtered, and a GATK-based pipeline was used to call variants, while correcting for 

estimated sample contamination percentages. Samples were included in the datasets after they 

passed a stringent quality control pipeline: samples were removed when they had high missingness, 

high contamination, a discordant genetic sex annotation, non-European ancestry, high numbers of 

novel variants (w.r.t. to DBSNP v150), deviating heterozygous/homozygous or transition/transversion 

ratios. Further, we removed family members up to the 3rd degree, and individuals who carried a 

pathogenic variant in PSEN1, PSEN2, APP or in other genes causative for Mendelian dementia diseases 

(Stage-1 only), or when there was clinical information suggestive of non-AD dementia. Variants 

considered in the analysis also passed a stringent quality control pipeline: multi-allelic variants were 

split into bi-allelic variants, variants that were in complete linkage and near each other were merged. 

Further, we removed variants that had indications of an oxo-G artifact, were located in Short Tandem 

Repeat (STR) and/or Low Copy Repeat (LCR) regions, had a discordant balance between reads covering 

the reference and alternate allele, had a low depth for alternate alleles, deviated significantly from 

Hardy-Weinberg equilibrium, were considered false positive based on GATK VQSR, or were estimated 

to have a batch effect. Variants with >20% genotype missingness (read depth <6) and differential miss-

ingness between the EOAD, LOAD and control groups were removed. To account for uncertainties 

resulting from variable read coverage between samples, we analyzed variants according to genotype 

posterior likelihoods, i.e., the likelihood for being homozygous for the reference allele, heterozygous 

or homozygous for the alternate allele. To account for genotype uncertainty, the burden test was 

performed multiple times with independently sampled genotypes and the average p-value across 

these tests is reported. 

Variant prioritization and thresholds 

We selected variants in autosomal protein-coding genes that were part of the Ensembl basic set of 

protein coding transcripts (Gencode v19/v2924, see Supplement) and that were annotated by the 

Variant Effect Predictor (VEP) (version 94.542)25. Only protein coding missense and loss-of-function 
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(LOF) variants were considered (LOF: nonsense, splice acceptor/donor or frameshifts). Missense and 

LOF variants were required to have respectively a ‘moderate’ and ‘high’ VEP impact classification. 

Then, missense variants were prioritized using REVEL (Rare Exome Variant Ensemble Learner26, anno-

tation obtained from DBNSFP4.1a 27 and LOF variants were prioritized using LOFTEE (version 1.0.2)28. 

For the analysis we considered only missense variants with a REVEL score ≥ 25 (score range 0 – 100) 

and LOF variants annotated ‘high-confidence’ by LOFTEE. Variants were required to have at least one 

carrier (i.e. at least one one sample with a posterior dosage of >0.5), and a minor allele frequency 

(MAF) of <1%, both in the considered dataset and the gnomAD v2.1 populations (non-neuro set).  

Gene burden testing 

The burden analysis was based on four deleteriousness thresholds by incrementally including variants 

from categories with lower levels of predicted variant deleteriousness: respectively LOF, LOF + 

REVEL≥75, LOF + REVEL≥50, and LOF + REVEL≥25. This allowed us to identify the variant-threshold 

providing maximum evidence for a differential burden-signal. To infer any dependable signal for a spe-

cific deleterious threshold, a minimum of 10 damaging alleles appertaining to this deleteriousness 

threshold was required: i.e., a cumulative minor allele count (cMAC) ≥10. Multiple testing correction 

was performed across all performed tests (up to 4 per gene). Burden testing was implemented using 

ordinal logistic regression. This enabled the burden testing to particularly weight EOAD cases, as 

previous findings indicated that high-impact variants are enriched in early onset (EOAD) cases relative 

to late onset (LOAD) cases29. This implies that the burden of high-impact deleterious genetic variants 

is ordered according to: burdenEOAD > burdenLOAD > burdencontrol. Ordinal logistic regression enabled 

optimal identification of such signals, while also allowing the detection of EOAD-specific burdens 

(burdenEOAD > burdenLOAD ~ burdencontrol) and regular case-control signals (burdenEOAD ~ burdenLOAD > 

burdencontrol). For protective burden signals, the order of the signals is reversed, such that burdenEOAD 

< burdenLOAD < burdencontrol. We considered an additive model, while correcting for 6 population 

covariates, estimated after removal of population outliers. P-values were estimated using a likelihood-
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ratio test. Genes were selected for confirmation in Stage-2 if the False Discovery Rate for AD associa-

tion was <0.1 in Stage-1 (Benjamini-Hochberg procedure30). For the GWAS targeted analysis, a more 

stringent threshold was used (FDR<0.05) due to the absence of a separate confirmation stage. For the 

meta-analysis, genes were considered significantly associated with AD when the corrected P was <0.05 

after family-wise correction using the Holm-Bonferroni procedure31. Effect-sizes (odds ratios, ORs) of 

the ordinal logistic regression can be interpreted as weighted averages of the OR of being an AD case 

versus control, and the OR of being an early-onset AD case or not. To aid interpretation, we additionally 

estimated ‘standard’ case/control ORs across all samples, per age category (EOAD versus controls and 

LOAD versus controls), and for age-at-onset categories ≤65 (EOAD), (65-70], (70-80] and >80 using 

multinomial logistic regression, while correcting for 6 PCA covariates. 

GWAS driver gene identification 

For the 75 loci identified in the most recent GWAS3, genes were selected for burden testing based on 

earlier published gene prioritizations. First, gene prioritizations were obtained from Schwarzentruber 

et al.32  for 33 known loci. For 28 remaining loci, we obtained the Tier 1 prioritization from Bellenguez 

et al. 3, and for the loci without prioritization candidates (14 loci), we selected the nearest gene. In 

total, 81 protein-coding genes were selected (Table S5), of which 67 genes had sufficient damaging 

allele carriers to be tested for at least one variant selection threshold. Gene burden testing was 

performed as described above, and multiple testing correction to identify potential driver genes was 

performed using the Benjamini-Hochberg procedure, with a cutoff of 5%.  

Validation of variant selection  

We validated the REVEL variant impact prediction for missense and the LOFTEE impact prediction for 

LOF variants, for all variants with a MAF < 1%, for which there were at least 15 damaging allele carriers. 

For protein-modifying variants that were not in the most significant burden selection of a gene due to 
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a low predicted impact, we investigated whether they, nevertheless, showed a significant AD-

association (based on a case/control analysis using logistic regression). Vice versa, for variants that 

were in the burden selection, we investigated whether their effect-size was significantly reduced or 

oppositely directed from other missense or LOF variants in the burden selection (Fisher exact test). 

Individual variant-effects were analyzed in the Stage-1 dataset, followed by a confirmation analysis in 

the Stage-2 dataset. Multiple testing correction was performed per gene, with FDR<0.1 used as 

threshold for Stage-1 and Holm-Bonferroni (P<0.05) for Stage-2.  

Descriptive measures 

A variant-carrier was defined as an individual for whom the summed dosage of all the variants in the 

considered variant category is ≥0.5 (Supplementary methods). Carrier frequencies (CFs) were 

determined as #carriers / #total samples. Attributable fraction for cases in an age group was estimated 

as the probability of a case with an age-at-onset in age window i being exposed to a specific gene gene 

burden"𝐶𝐹!"#$,&$'$,(%, multiplied by an estimate of the attributable fraction among the exposed for 

these cases: &
)*!"#",%+,
)*!"#",%

' (with the odds ratio being an approximation of the relative risk)33,34. For large 

effect-sizes, this estimate approaches the difference in carrier frequency between cases and controls: 

"𝐶𝐹!"#$,&$'$,(% − "𝐶𝐹!-'./-0,&$'$%. 

Sensitivity analyses 

We determined if observed effects could be explained by age differences between cases and controls. 

We constructed an age-matched sample, dividing samples in strata based on age/age-at-onset, with 

each stratum covering 2.5 years. Case/control ratios in all strata were kept between 0.1 and 10 by 

down sampling respectively controls or cases. Subsequently, samples were weighted using the 

propensity weighting within strata method proposed by Posner and Ash35. Finally, a case-control 

logistic regression was performed both on the unweighted and weighted case-control labels, and 
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estimated odds ratios and confidence intervals were compared (Figure S2). Also, we determined if 

somatic mutations due to age-related clonal hematopoiesis could have confounded the results. We 

calculated for all heterozygous calls in the burden selection the balance between reference and alter-

nate reads, and compared these to reference values (Table S12). While APOE was not included as a 

confounder, we performed a separate APOE interaction analysis (Table S11), through a likelihood ratio 

test between a model: label	~	gene_burden_score	 + 	apoe_e4_dosage	and an interaction model: 

label	~	gene_burden_score	 + 	apoe_e4_dosage	 + 	apoe_e4_dosage	 ∗ 	gene_burden_score. This 

test was performed on a reduced dataset, from which datasets in which APOE status was used as se-

lection criterion were removed. 

Power analysis 

Power calculations were performed for ordinal logistic regression and Firth logistic regression (case-

control and EOAD vs. rest), Figure 1B and Table S4. Given odds ratios for EOAD and LOAD cases, and 

the cumulative minor allele count per gene, we sampled the number of alleles in EOAD cases, LOAD 

cases and controls according to a multinomial distribution. We randomized these allele-carriers across 

the dataset, and performed the burden test (as described above). Power for genes with cMAC <10 was 

set to 0, as these genes were not analyzed.  

Data availability Statement 

The genetic variants analyzed in this study will be included in the Supplementary data files (Tables SG1-

SG10) upon the formal publication of this manuscript. Summary statistics of the Stage-1 analysis will 

be made available through [holstegelab.eu/data]. The full datasets generated during and/or analyzed 

during the current study are not publicly available due to privacy restrictions applicable to genetic data 

from human subjects. 

Code availability statement 
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All software and algorithms used in the analysis are described in the Supplement attached to 

this Letter. Self-contained code can be found at holstegelab.eu/tools. 
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Tables 

Table 1: Quality Control Steps  

Table 1A: Sample Quality Control 
Sample nr. of samples 
Samples processed Stage-1 Stage-2 Mega 
Samples included in study 25,982 26,379 52,361 

Samples retained after QC (Table S3A) 21,345 11,213 31,905 

Sample totals (of which exome-extracts of targeted genes) 
EOAD 4,060 1,627 (446) 5,643 (446) 

LOAD 8,592 1,757 (385) 10,165 (385) 

Controls 8,693 7,829 (1,347) 16,097 (1,347) 

 
Table 1B: Variant Quality Control 
  Targeted genes 
Variant QC Stage-1 Stage-2 Mega 
Variants called (bi-allelic) 12,938,556 7,803 14,531 

Variants retained after QC (Table S3B-C) 7,543,193 5,072 8,963 

Variant selection    

1. In protein coding autosomal genes (Gencode V19/V29) 6,883,630 5,072 8,963 

Missense variants 2. Missense variants 1,486,559 894 1,873 

3. REVEL > 25 540,934 591 1,263 

4. MAF < 1% / dosage > 0.5 530,072 567 1,228 

5. Missingness (< 20% + no differential missingness) 353,913 428 943 

LOF variants 2. Loss-of-function variants (nonsense, frameshift, 
splice acceptor/donor) 

144,429 106 255 

3. Loftee HC + VEP high impact 109,550 97 236 

4. MAF < 1% / dosage > 0.5 108,016 96 234 

5. Missingness (< 20% + no differential missingness) 57,543 64 168 

Variant Categories REVEL 25-50 198,068 168 360 
REVEL 75-100 99,910 140 320 
REVEL 50-75 54,212 119 258 
LOF 57,543 64 168 

Variant Thresholds LOF+REVEL≥25 409,733 491 1,106 
LOF+REVEL≥50 211,665 323 746 
LOF+REVEL≥75 111,755 183 426 
LOF 57,543 64 168 

 
A. Sample QC: Samples were primarily excluded due to non-European ancestry or close family rela-

tions, for details see Table S3A. Exome-extract samples (between parenthesis) only contain reads that 

cover the 10 genes discovered in Stage-1. In Stage-2, samples were removed that were duplicated 

w.r.t. Stage-1. In the mega-analysis, a merged sample QC removed all family relations to the third 
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degree between Stage-1 and Stage-2 (i.e. the size of the mega-sample does not equal the sum of the 

Stage-1 and Stage-2 samples). B. Variant QC: Stage-1 consists of all variants in the union of the exome 

capture kits. The targeted Stage-2 and Mega analysis regards only the 10 genes identified in Stage-1 . 

Variant QC from the non-targeted Stage-2 and mega-analysis can be found in Table S3B. For each gene, 

we considered in our variant selection 4 different selection thresholds. MAF: minor allele frequency. 

See supplement for in-depth QC methods. 
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Table 2. Stage-1, Stage-2 Association statistics 

	
	

	
	

A. Stage-1, Stage-2 and Meta-analysis. Burden tests that were significant in Stage-1 after multiple 

testing correction using the Benjamini-Hochberg False Discovery Rate (FDR) (<0.1) over 31,204 

tests/variant categories. #In Stage-2, we considered only the direction of the AD-association observed 

in Stage-1. The meta-analysis indicates the combined significance from Stages 1 and 2 (data was com-

bined using the fixed-effect inverse variance method); multiple testing correction for the meta-analysis 

was performed across all 31,204 tests using the Holm-Bonferroni correction (<0.05). Bold black text: 

significant p-values; B. GWAS-targeted analysis in mega-dataset without exome extracts. Genes in all 

loci were prioritized as described in the Online Methods, (Table S5). *These genes also included the 

 Table	2A.	Burden	tests	Stage-1,	Stage-2	and	Meta-analysis.	 

  Stage-1 Stage-2 meta 

gene 
Variant 

damagingness 
threshold 

P value FDR #variants /  
#carriers case / control P value# #variants /  

#carriers 
case / control 
OR (95% CI) P value h-bonf case / control 

OR (95% CI) 
pvalue 

heterog. 

SORL1 

LOF+REVEL≥25 4.8E-06 0.017 242 / 917 1.3 (1.1-1.5) 1.3E-06 122 / 478 1.5 (1.2-1.9) 1.5E-10 4.7E-06 1.4 (1.2-1.5) 1.6E-01 

LOF+REVEL≥50 4.0E-18 <<0.0001 167 / 290 2.6 (2.0-3.2) 1.4E-09 79 / 137 2.4 (1.7-3.5) 8.1E-26 2.5E-21 2.5 (2.1-3.1) 9.8E-01 

LOF+REVEL≥75 1.1E-14 <<0.0001 96 / 164 3.3 (2.4-4.6) 5.2E-10 45 / 82 3.9 (2.3-6.6) 1.1E-22 3.4E-18 3.5 (2.7-4.6) 4.3E-01 

LOF 4.7E-15 <<0.0001 37 / 48 15.6 (3.7-37.3) 1.6E-06 16 / 20 16.3 (3.8-35.0) 3.3E-18 1.0E-13 16.0 (9.5-27.0) 9.4E-01 

TREM2 LOF+REVEL≥25 2.6E-16 <<0.0001 17 / 291 3.6 (2.9-4.6) 1.6E-07 12 / 155 2.4 (1.6-3.4) 5.2E-22 1.6E-17 3.2 (2.6-3.9) 6.5E-01 

ABCA7 
LOF+REVEL≥25 9.5E-08 0.001 265 / 959 1.4 (1.2-1.6) 9.8E-08 170 / 502 1.6 (1.3-2.0) 4.1E-13 1.3E-08 1.4 (1.3-1.6) 6.5E-02 

LOF+REVEL≥75 4.6E-06 0.017 93 / 297 1.6 (1.3-2.1) 4.8E-04 54 / 167 1.8 (1.3-2.6) 7.3E-09 2.3E-04 1.7 (1.4-2.1) 9.1E-01 

ATP8B4 

LOF+REVEL≥25 7.2E-06 0.02 72 / 575 1.5 (1.3-1.8) 3.3E-03 40 / 286 1.4 (1.0-1.8) 9.6E-09 3.0E-04 1.5 (1.3-1.7) 9.7E-01 

LOF+REVEL≥50 2.8E-05 0.068 61 / 521 1.5 (1.3-1.9) 1.6E-02 34 / 265 1.3 (1.0-1.7) 2.8E-06 8.7E-02 1.5 (1.3-1.7) 6.6E-01 

LOF+REVEL≥75 3.2E-06 0.014 38 / 490 1.7 (1.4-2.0) 2.4E-02 22 / 243 1.3 (1.0-1.8) 5.7E-07 1.8E-02 1.5 (1.3-1.8) 4.2E-01 

ABCA1 LOF+REVEL≥75 6.1E-06 0.019 93 / 280 1.7 (1.3-2.2) 6.6E-03 48 / 159 1.6 (1.1-2.3) 2.6E-07 8.0E-03 1.7 (1.4-2.1) 6.3E-01 

ADAM10 
LOF+REVEL≥50 2.0E-05 0.051 15 / 17 3.2 (1.3-8.1) 4.0E-02 4 / 4 8.1 (0.6-42.6) 2.8E-05 8.7E-01 3.6 (1.5-8.5) 5.5E-01 

LOF+REVEL≥75 2.7E-06 0.014 11 / 12 7.5 (1.4-46.8) 1.5E-01 3 / 3 5.6 (0.3-41.8) 4.4E-04 1.0E+00 7.1 (2.6-19.3) 1.1E-01 

Table 2B. GWAS-targeted analysis on mega-dataset without exome-extracts 
 Burden test (variant MAF <1%) Burden test (variant MAF <0.1%) 

Locus 
sentinal GWAS SNP 

gene Variant 
damagingness 

threshold 

P value FDR #variant /  
#carriers 

case / control 
OR (95% CI) 

pvalue #variant /  
#carriers 

fraction  
very rare 

case / control 
OR (95% CI) 

*SORL1, TREM2, ABCA7 (see Table 2A and S6) 

SLC24A4/RIN3 
rs7401792 
rs12590654 

RIN3 LOF+REVEL≥25 1.6E-05 0.0003 44 / 622 1.4 (1.2-1.6) 3.4E-02 42 / 129 21% 1.4 (1.0-2.1) 

LOF+REVEL≥50 1.0E-05 0.0002 23 / 583 1.4 (1.2-1.7) 1.5E-02 21 / 89 15% 1.8 (1.2-2.8) 

*ADAM10, ABCA1 (see Table 2A and S6) 

PTK2B/CLU 
rs73223431 
rs11787077 
 

CLU LOF+REVEL≥25 5.0E-04 0.005 24 / 26 3.6 (1.6-8.3) 5.0E-04 24 / 26 100% 3.6 (1.6-8.3) 

LOF+REVEL≥50 1.1E-03 0.001 14 / 15 5.4 (1.6-28.6) 1.1E-03 14 / 15 100% 5.3 (1.6-28.6) 

LOF+REVEL≥75 5.0E-04 0.005 12 / 12 9.9 (1.6-44.0) 5.0E-04 12 / 12 100% 9.8 (1.6-44.0) 

LOF 2.6E-03 0.02 10 / 10 7.3 (1.9-27.2) 2.6E-03 10 / 10 100% 7.3 (1.9-27.2) 

SPDYE3 
rs7384878 

ZCWPW1 LOF+REVEL≥25 6.1E-03 0.042 22 / 77 1.8 (1.2-2.9) 5.0E-03 21 / 76 99% 1.8 (1.2-2.9) 

LOF+REVEL≥50 3.1E-03 0.022 16 / 70 1.9 (1.2-3.1) 3.1E-03 16 / 70 100% 1.9 (1.2-3.1) 

LOF+REVEL≥75 1.1E-03 0.001 11 / 15 5.0 (1.9-13.5) 1.1E-03 11 / 15 100% 5.0 (1.9-13.5) 

LOF 7.8E-04 0.008 11 / 15 5.0 (1.9-13.5) 7.8E-04 11 / 15 100% 5.0 (1.9-13.5) 

ACE 
rs4277405 

ACE LOF+REVEL≥75 9.0E-04 0.008 38 / 99 2.0 (1.3-2.9) 9.3E-04 38 / 99 100% 2.0 (1.3-2.9) 
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SORL1, TREM2, ABCA7, ADAM10, and ABCA1 genes, which were also identified in the rare variant bur-

den analysis (shown in A) and therefore not shown here. These genes are listed in the context of this 

analysis in Table S6. For both tables the p values were determined using ordinal logistic regression, 

and a case/control OR was computed for reference. Grey text: result burden test MAF<0.1% un-

changed compared to burden test MAF<1%. 
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Table 3. Mega Analysis; effect-sizes and p values. 	

 

Per gene, the characteristics are shown for the variant deleteriousness threshold with the most 

evidence for AD association. For genes with sufficient carriers, signals are shown for LOF and missense 

variants separately. Variants contributing to the burden were validated in a multi-stage analysis (Table 

S12, Online Methods), which resulted in the construction of a refined burden for TREM2 (1 variant 

removed) and ABCA1 (2 variants removed). The attributable fraction of a gene is an estimate of the 

fraction of EOAD and LOAD cases in this sample that have become part of this dataset due to carrying 

a rare damaging variant in the respective gene (Online methods). Note that several variants were ex-

cluded from this analysis (i.e., due to differential missingness) that would otherwise have been in-

cluded in the burden. See section 1.12 of the supplement for a gene-specific discussion of the variants 

that contribute to the association with AD, and gene-specific Tables SG1-SG10 for the list of variants 

considered in the burden-analysis. P values for the mega-analysis are shown in Table S14.  

 Mega-analysis Carrier frequency Odds ratio (95% CI) median 
age at onset 

(IQR) 

Attr. fraction 

 gene group #variant /  
#carriers EOAD / LOAD / controls case / control EOAD / control LOAD / control EOAD / LOAD 

Ta
bl

e 
3a

: p
rim

ar
y 

an
al

ys
is

 

SORL1 
LOF+REVEL≥50 212 / 418 2.75% / 1.51% / 0.68% 2.5 (2.0-3.0) 3.3 (2.6-4.1) 2.0 (1.6-2.5) 65 (59-73) 1.91% / 0.75% 
- REVEL 50-100 161 / 354 2.02% / 1.31% / 0.66% 2.1 (1.7-2.5) 2.5 (2.0-3.2) 1.8 (1.4-2.3) 67 (59-74) 1.22% / 0.58% 
- LOF 51 / 68 0.78% / 0.21% / 0.02% 19.8 (11.9-32.7) 40.7 (12.5-133) 11.3 (3.3-38.3) 62 (56-69) 0.76% / 0.19% 

TREM2 

LOF+REVEL≥25 26 / 441 2.27% / 1.90% / 0.75% 2.8 (2.3-3.5) 3.3 (2.6-4.3) 2.6 (2.1-3.3) 69 (62-75) 1.58% / 1.17% 
LOF+REVEL≥25 [refined] 25 / 404 2.22% / 1.77% / 0.62% 3.1 (2.6-3.8) 3.8 (2.9-4.9) 2.8 (2.2-3.6) 68 (62-75) 1.63% / 1.15% 
- REVEL 25-100 14 / 377 2.06% / 1.63% / 0.59% 3.0 (2.5-3.8) 3.7 (2.8-4.9) 2.7 (2.1-3.6) 68 (62-75) 1.50% / 1.04% 
- LOF 12 / 66 0.21% / 0.29% / 0.16% 2.1 (1.2-3.4) 1.7 (0.8-3.5) 2.2 (1.3-3.9) 71 (63-76) 0.09% / 0.16% 
- LOF [refined] 11 / 29 0.16% / 0.16% / 0.02% 5.6 (2.6-12.1) 5.8 (1.7-19) 5.4 (1.8-16.8) 71 (63-74) 0.13% / 0.13% 

ABCA7 
LOF+REVEL≥25 351 / 1489 6.18% / 5.04% / 3.90% 1.4 (1.3-1.6) 1.6 (1.4-1.9) 1.3 (1.2-1.5) 69 (61-78) 2.40% / 1.29% 
- REVEL 25-100 302 / 1372 5.58% / 4.65% / 3.63% 1.4 (1.3-1.6) 1.6 (1.4-1.8) 1.3 (1.2-1.5) 69 (62-78) 2.06% / 1.18% 
- LOF 49 / 119 0.62% / 0.39% / 0.27% 1.7 (1.1-2.4) 2.2 (1.4-3.5) 1.4 (0.9-2.1) 67 (57-74) 0.34% / 0.11% 

ATP8B4 
LOF+REVEL≥25 94 / 850 3.56% / 3.08% / 2.09% 1.4 (1.2-1.6) 1.5 (1.3-1.8) 1.4 (1.2-1.6) 70 (61-78) 1.24% / 0.84% 
- REVEL 25-100 74 / 797 3.35% / 2.93% / 1.93% 1.5 (1.3-1.7) 1.6 (1.3-1.9) 1.4 (1.2-1.7) 70 (62-78) 1.20% / 0.84% 
- LOF 20 / 54 0.21% / 0.16% / 0.16% 1.1 (0.6-1.9) 1.2 (0.6-2.4) 1.0 (0.5-1.8) 70 (59-78) 0.03% / -0.01% 

ABCA1 

LOF+REVEL≥75 122 / 442 1.91% / 1.50% / 1.13% 1.6 (1.3-2.0) 1.9 (1.5-2.5) 1.5 (1.2-1.9) 70 (60-76) 0.91% / 0.48% 
LOF+REVEL≥75 [refined] 120 / 282 1.52% / 1.10% / 0.52% 2.4 (1.9-3.1) 2.9 (2.2-4.0) 2.2 (1.6-2.9) 70 (59-76) 1.01% / 0.60% 
- REVEL 75-100 95 / 395 1.63% / 1.32% / 1.05% 1.5 (1.2-1.8) 1.7 (1.3-2.2) 1.4 (1.1-1.8) 70 (61-76) 0.68% / 0.37% 
- REVEL 75-100 [refined] 93 / 235 1.24% / 0.92% / 0.44% 2.3 (1.7-3.0) 2.7 (1.9-3.8) 2.1 (1.5-2.8) 70 (59-76) 0.78% / 0.48% 
- LOF 27 / 47 0.28% / 0.18% / 0.08% 3.5 (1.9-6.4) 4.7 (2.2-10.3) 2.8 (1.3-6.1) 67 (59-77) 0.22% / 0.11% 

ADAM10 LOF+REVEL≥50 19 / 22 0.23% / 0.05% / 0.02% 4.7 (2.0-10.8) 9.0 (2.9-28) 2.2 (0.5-8.2) 63 (60-68) 0.20% / 0.03% 
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LOF+REVEL≥50 23 / 583 2.67% / 2.10% / 1.62% 1.4 (1.2-1.7) 1.6 (1.3-2.0) 1.3 (1.1-1.6) 70 (59-79) 1.04% / 0.46% 
- REVEL 50-100 17 / 577 2.62% / 2.08% / 1.61% 1.4 (1.2-1.7) 1.6 (1.3-2.0) 1.3 (1.1-1.6) 70 (59-79) 1.01% / 0.45% 
- LOF 6 / 8 0.06% / 0.03% / 0.01% 2.1 (0.5-9.3) 2.9 (0.5-18.0) 1.7 (0.3-10.3) 69 (57-86) 0.04% / 0.01% 

CLU 
LOF+REVEL≥25 24 / 26 0.23% / 0.09% / 0.03% 3.6 (1.6-8.3) 5.8 (2.0-17.1) 2.5 (0.8-7.6) 63 (58-73) 0.19% / 0.05% 
- REVEL 25-100 14 / 16 0.12% / 0.06% / 0.03% 2.6 (0.9-7.5) 3.6 (0.9-13.6) 2.1 (0.6-8.0) 68 (58-76) 0.08% / 0.03% 
- LOF 10 / 10 0.12% / 0.03% / 0.01% 7.3 (1.9-27.2) 14.2 (2.9-470.4) 3.8 (0.6-122.4) 63 (59-68) 0.11% / 0.02% 

ZCWPW1 LOF 11 / 15 0.15% / 0.05% / 0.01% 5.0 (1.9-13.5) 9.1 (2.0-42.0) 2.9 (0.8-14.7) 63 (58-81) 0.14% / 0.03% 

ACE 

LOF+REVEL≥75 38 / 99 0.60% / 0.39% / 0.20% 2.0 (1.3-2.9) 2.4 (1.5-4.1) 1.7 (1.0-2.7) 67 (60-75) 0.35% / 0.16% 
- REVEL 75-100 10 / 49 0.33% / 0.22% / 0.07% 3.2 (1.7-5.7) 3.9 (1.8-8.8) 2.7 (1.3-5.9) 66 (61-72) 0.24% / 0.14% 
- LOF 
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Figures  

 
Fig 1. Study set-up and power A: Schematic of study set-up; The AD-association of genes identified in 

Stage-1 was confirmed in Stage-2, and combined significance was determined in a meta-analysis. To 

accurately estimate variant effect-sizes for variant-categories/age at onset bins, even those with very 

low variant counts for which the normal-distribution approximation fails, we analyzed variant 

characteristics in a mega-sample instead of through meta-analysis. This mega-sample was also used 

for the GWAS gene burden analysis (without exome-extracts).  B. Top: the number of genes (Y-axis) 

that have at least a certain cumulative carrier frequency of prioritized variants (X-axis). Variants were 

prioritized according to different deleteriousness thresholds. White box: only genes with a cMAC≥10 

(cumulative minor allele count of at least 10 alleles across the sample) in the Stage-1 sample of 12,652 

cases and 8,693 controls were considered to have a high enough carrier frequency allowing burden 

analysis. The previously identified SORL1, TREM2, and ABCA7 genes are indicated, revealing that car-

riers of damaging variants in these genes are relatively common, which has aided their identification 

in the past. B. Bottom: Power analysis for Stage-1, to attain a p<1e-6, on the same scale as the top 
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figure B. For comparison purposes, we also plot 80% power thresholds for 5,000 and 1,000 samples 

(subsampled from Stage-1). Approximate regions are indicated for variants identified with GWAS (red) 

or family studies (purple), as well as the region in which variant-burdens in SORL1, TREM2 and ABCA7 

were identified by previous sequencing studies4-8 (dark-blue). Common variants with very high effect-

sizes (red) are not expected to exist. Genes with cMAC<10 were not analyzed (light-red). Power calcu-

lations show that, by aggregating more cases and controls, one might be able to identify burdens of 

rare variants with either (i) a large effect but with an extremely low frequency of carriers or (ii) with a 

modest average effect but a higher number of carriers. C. P-value Q-Q plot of Stage-1 discovery-anal-

ysis. Gene-names were indicated in grey when the deleteriousness threshold was not the most signif-

icant burden test in that gene. 
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Fig. 2: Characterization of gene specific variant features based on the mega-sample. 

 

 

We considered the deleteriousness threshold that provides the most evidence for AD-association (Ta-

ble 3, refined burden). A. Carrier frequency by age at onset. A carrier is an individual who carries at 

least one damaging variant in the considered gene. B. Odds ratios by age at onset. The effect-size 

significantly decreased with age at onset for SORL1, TREM2, ABCA7, ABCA1, ADAM10 (after multiple 

testing correction, Table S7). C. Odds ratios by variant frequency. The rareness of variants in SORL1 

significantly associated with the effect size (Table S9). D. Cumulative minor allele count by variant 

frequency: the total number of cases (dark) and controls (light) that carry gene-variants with allele 
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frequencies as observed in the mega-sample. Numbers above the bars indicate the number of contrib-

uting variants. Whiskers: 95% CI. 
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Fig 3. Summary Figure: Odds ratio by age at onset and variant pathogenicity.  

 

Odds ratio’s for LOF (red) and missense (yellow) variants. Case/control OR (square, 95% CI), EOAD OR 

(triangle pointing upwards), LOAD OR (triangle pointing downwards). Missense variants in the consid-

ered gene appertained to the variant-deleteriousness threshold that provides the most evidence for 

its AD-association (Table 3, refined). The LOF burden effect- size was significantly larger than the mis-

sense burden effect-size in the SORL1 and we observed similar trends in ABCA7 and ABCA1 (Table S9, 

Supplementary Methods). Of note: missense variants in ZCWPW1 did not contribute to the most sig-

nificant burden but were shown here for reference purposes (REVEL>25).  
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