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Abstract 

Background: Regular SARS-CoV-2 testing of healthcare workers (HCWs) has been proposed to 

prevent healthcare facilities becoming persistent reservoirs of infectivity. Using monoplex testing, 

widespread screening would be prohibitively expensive, and throughput may not meet demand. We 

propose a non-adaptive combinatorial (NAC) group-testing strategy to increase throughput and 

facilitate rapid turnaround via a single round of testing.           

Methods: NAC matrices were constructed for sample sizes of 700, 350 and 250 with replicates of 2, 

4 and 5, respectively. Matrix performance was tested by simulation under different SARS-CoV-2 

prevalence scenarios of 0.1-10%, with each simulation ran for 10,000 iterations. Outcomes included 

the proportions of re-tests required and the proportion of true negatives identified. NAC matrices 

were compared to Dorfman Sequential (DS) approaches. A web application 

(www.samplepooling.com) was designed to decode results.  

Findings: NAC matrices performed well at low prevalence levels with an average number of 585 

tests saved per assay in the n=700 matrix at a 1% prevalence. As prevalence increased, matrix 

performance deteriorated with n=250 most tolerant. In simulations of low to medium (0.1%-3%) 

prevalence levels all NAC matrices were superior, as measured by fewer repeated tests required, to 

the DS approaches. At very high prevalence levels (10%) the DS matrix was marginally superior, 

however both group testing approaches performed poorly at high prevalence levels.        

Interpretation: This testing strategy maximises the proportion of samples resolved after a single 

round of testing, allowing prompt return of results to staff members. Using the methodology 

described here, laboratories can adapt their testing scheme based on required throughput and the 

current population prevalence, facilitating a data-driven testing strategy.   
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1. Introduction 

 

Throughout the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) outbreak there have 

been calls for widespread testing to help track and suppress viral transmission.1; 2 Many countries 

have adopted high-throughput testing strategies and tens of millions of SARS-CoV-2 antigen tests 

have been performed since the outbreak began. The reagents required to perform these tests, 

because of the unparalleled global demand, are a limited resource and their utilization should be 

optimized.  

In many regions the prevalence of the SARS-COV-2-associated respiratory disease (COVID-19) is 

beginning to fall in the general population.3 However, certain settings such as hospitals and care 

homes, have the potential to act as persistent reservoirs of infection where the reproduction (R) 

value remains persistently elevated. Approaches to ameliorate nosocomial spread include access to 

adequate personal protective equipment, effective cohorting of patients and the proactive 

identification of infectious staff members.1; 4 

Where staff develop symptoms, they should isolate. However, a yet undetermined proportion of 

patients infected with SARS-CoV-2 develop an asymptomatic viremia.
5; 6

 These asymptomatic 

carriers pose a serious challenge when attempting to prevent spread within hospitals, environments 

where staff often congregate in close proximity with vulnerable patients. Because of this, there is a 

growing demand for the routine testing healthcare workers (HCWs), a premise supported by 

modelling which suggested screening, irrespective of symptoms, could reduce transmission by 25-

33%.
1; 7

   

One of the main hurdles to initiating a comprehensive hospital staff testing program is the large 

number of staff requiring testing and the rapid turnaround times which would be required to make 

any screening strategy useful. An estimated 1.5 million staff work in the NHS, with larger hospitals 

each employing over 20,000 employees. The requirement to test even a small proportion of these 

patients would dwarf the U.K.’s testing capacity and would be prohibitively expensive using standard 



monoplex testing, even taking into account the estimated £5 Billion the UK government plans to 

spend on SARS-CoV-2 over the next 2 years.
8
  However, in moving from an individual diagnostic 

approach towards the population-based screening of asymptomatic individuals, we argue that there 

is a key shift in the philosophy underpinning the application of testing and alternative diagnostic 

approaches could be used, specifically a group testing strategy.  

A group testing strategy is where samples taken from more than one person are tested at the same 

time. The principle being that if a pool returns negative, then everyone in that pool is negative. If a 

pool returns positive, then at least one sample in that pool is positive (Figure 1). The concept was 

first introduced by Dorfman in 1943, who proposed it as an approach to screen soldiers for syphilis 

during World War 2.
9
 Most group testing approaches used since have been based on Dorfman’s 

original methodology. This involves the pooling of multiple samples and, if a pool returns positive, 

the constituent samples undergo further testing (Figure 1).
10

  This approach will be referred to as 

Dorfman Sequential (DS) pooling henceforth.  

Although DS pooling can increase capacity significantly compared to a monoplex approach, 

throughput may not be maximised as at least two rounds of testing are required to differentiate 

positive samples within a pool. In the case of SARS-CoV-2, if the samples were pooled prior to viral 

RNA extraction, then a further RNA extraction step would be required for the second round of 

testing, significantly slowing the process. In the context of HCW screening, any lengthening of the 

testing process could mean a reduced workforce while staff await their results, impacting patient 

care.     

Non-adaptive approaches (Figure 1) overcome the requirement for repeated testing rounds by 

testing the same sample in several simultaneously assayed pools, aiming to maximize the proportion 

of samples resolved after a single round of testing. Although DS approaches may ultimately require 

fewer tests over several rounds compared to non-adaptive approaches, in the context of HCW 

screening, maximizing the number of true negatives identified after a single round of testing should 



be the priority for any testing scheme. We contend that multi-stage group testing approaches are 

not most suitable for HCW screening as they do not recognize the need for rapid results. More than 

one round of group testing would introduce a complexity into assay design and results may be 

considerably delayed for some individuals if their samples are not resolved in the first round.  

Herein, we suggest that a group testing approach should be used as an initial screen, maximizing the 

number of true negatives identified, before monoplex testing is used to determine any 

indeterminate samples (Figure 2). For this, we propose a non-adaptive combinatorial (NAC) pooling 

approach as an alternative screening strategy to maximise throughput after a single round of testing 

in the context of varying population prevalences of SARS-CoV-2 infection.  

2. Methodology 

2.1 Sample Pooling to Establish Limit of Detection 

To establish an approximate suitable limit of detection (LOD) for pooling, nasopharyngeal samples of 

known SARS-CoV-2 status were pooled prior to extraction. Two pools (Pool-1, Pool-2) were prepared 

each comprising 14 SARS-CoV-2 negative and one SARS-CoV-2 positive sample. Pool-1 contained a 

positive sample with a viral load near the limit of detection at previous testing using the IDT N-gene 

assay (Ct= 37). Pool 2 contained a positive sample with a mid-level viral load (Ct= 30, classified as 

mid-range from >100 positive clinical samples). The IDT N-Gene EUA assay comprises two targets 

located in the CV19 N-gene (N1 and N2). The assay has been designed and batch verified by the CDC 

and is run according to CDC protocol.
11

 Pooled samples were extracted using the AmoyDx Virus/Cell 

RNA kit (AmoyDx, Xiamen, China). RNA was tested for SARS-CoV-2 using the EUA IDT N-gene assay 

(IDT, CA, USA) and run on the ABI QuantStudio6 instrument (Thermofisher, MA, USA) 200 copies of 

2019-nCoV_N_Positive (IDT, CA, USA)  were run as a positive control. Baselines and thresholds were 

defined automatically by the ABI QuantStudio6 software. SARS-CoV-2 positive or negative status was 

assigned using the criteria defined by the CDC (Supplementary Data: Table S1).  

2.2 Design of NAC and DS Pooling Matrices 



Simulations were run using the R software package to construct NAC pooling matrices for different 

pre-determined input values of n, the number of samples, and w the number of wells to which each 

sample is allocated. The number of wells is assumed to be fixed at 96 throughout and the maximum 

pool size was fixed at 15, informed by the LOD study as described above. Example pooling matrices 

were generated for n values of 700, 350 and 250 with w values of 2, 4 and 5, respectively. The code 

for the matrix design algorithm is publicly accessible (https://github.com/duncstod/grouptesting).  

Each pooling matrix was constructed by randomly allocating samples to wells until the following 

conditions are satisfied: 1) no sample is tested in the same well more than once, 2) and no sample 

pairs are tested together in the same wells more than once. The maximum number of guaranteed 

positives a pooling matrix can identify is r-1. Such matrices are r-1 disjunct. Pooling matrices can be 

accessed at www.samplepooling.com.  

The performance of each non-adaptive matrix was tested against a matrix with a w value of 1 at the 

same sample size. This w=1 matrix represents the first stage of a DS testing scheme and will be 

referred to as the DS matrix henceforth. Pool size for the DS matricies was determined by the 

number of samples divided by the number of wells, and each sample was allocated to a single well. 

2.3 Iterative Testing of NAC and DS Pooling Matrices  

The efficacy of each matrix was tested by simulation under different SARS-CoV-2 prevalence 

scenarios of 0.1%, 1%, 3%, 7%, and 10% (Table 1). Each simulation ran for 10,000 iterations. In each 

iteration every sample is designated as positive or negative by n draws from a Bernoulli distribution 

with p = 0.1% ,1%, 3%, 7% and 10%. 

From each simulation we derived pooling matrix performance statistics, tested with zero error, 

including the number of tests saved in comparison to a monoplex approach, measured as 

�� � �������	
����� 	�
���
 � 96�� where n represents the total samples tested on a 96-well 

plate and indeterminate results are those samples that cannot be decoded through the matrix, 



meaning retesting is required. The average proportion of samples confirmed as negative for each 

matrix was also determined.  

 

2.4 Development of an Application to Decode Matrix Results  

A web platform was designed (www.samplepooling.com) which allows users to choose their matrix 

(n=700, n=350, n=250) and decode their results. A Combinatorial Orthogonal Matching Pursuit 

(COMP) algorithm initially assumes that each sample is positive at the beginning of the decoding 

process.12  Attempts are then made to disprove this assertion by finding a well in which the sample 

has been placed which has called as negative.  A Definite Defective (DD) algorithm was then used to 

find positive wells which contain a single sample on the list of potentially positive samples.  This 

attributes a status for each result as either “Positive” or “Indeterminate Result” where re-analysis is 

suggested. If the decoding system identifies a well which is not consistent with the matrix, such as a 

false positive result, the results for the concordant wells are displayed but an error message is 

shown for the discrepant well and reanalysis is suggested. The code is publicly accessible via 

https://github.com/MCGM-Covid-19/matrix-decoder.github.io.  

3. Results 

In order to establish a suitable limit of detection (LOD) for pooling, nasopharyngeal samples of 

known SARS-CoV-2 status were placed in two pools, each comprising 14 SARS-CoV-2 negative and 

one SARS-CoV-2 positive sample, the positive samples at differing viral loads. Both pooled samples 

tested positive for SARS-Cov-2 under the Centers for Disease Control and Prevention (CDC) defined 

guidelines; this indicated that positive samples can be detected when diluted 15-fold 

(Supplementary Data). This limit was used as an assumption to inform the design of the pooling 

matrices.  

The performance of all the DS matrices, as defined by the expected number of retests required, 

deteriorated as the population prevalence increased (Table 1). Matrices which were designed to test 

more samples were less tolerant to increases in population prevalence than those designed to test 



fewer (Figure 3). In the simulation where there was a population prevalence of 1%, the n=700 NAC 

matrix performed well, with an average of only 19 samples requiring retesting, representing an 

average of 585 tests saved per 96 well plate  [700 � �����	�
����	� 
����	��19� � 96� � 585�. 

However, as the population prevalence increased the average number of tests decreased markedly 

with an average of only 168 tests saved and 436 retests required when the population prevalence 

was at 10%. Given the matrices were tested using draws from a Bernoulli distribution, there were 

some simulations where the actual sample positivity rate was greater than 10%. Here the 

performance of the n=700 matrix deteriorated significantly, with some simulations saving almost no 

tests compared to no pooling approach (Figure 3).  

The other models, n=350 and n=250, were notably more tolerant to an increase in population 

prevalence than the n=700 model. This is best demonstrated by the proportion of tests confirmed as 

negative (Figure 4). At a prevalence of 10% the proportion of true negatives that were confirmed in 

the n=700 matrix was just 38%. This is in comparison to the n=350 and n=250 models which were 

able to confirm an average of 60% and 73% as negative, respectively. The n=250 matrix was most 

tolerant to an increase in the population prevalence with most simulations proving relatively robust 

at prevalence of 7%, with an average of 87% of tests confirmed negative after a single run. At low 

population prevalence levels (0.1%-1%), all NAC matrices had a near perfect performance as 

measured by the proportion of true negatives identified after a single run (Figure 4).  

The performance of each matrix was compared to a DS group testing strategy at the same 

population prevalence (Figure 5). Both the DS and NAC matrices saw their discriminatory ability 

deteriorate as the population prevalence increased. The n=250 and n=350 matrices were superior to 

DS approaches at all population prevalence levels except for when the prevalence reached 10% 

(Figure 5 and S1). At a population prevalence of 10% the DS approach was marginally superior for all 

matrices, although both group testing strategies at this prevalence level performed poorly, with over 

350 retests required in both. The n=700 NAC matrix was the least robust, although it performed 



better than its DS counterpart at low prevalence levels (0.1-3%), its discriminatory ability was 

inferior once the population prevalence climbed above 7% (Figure 4).    

 

4. Discussion 

Since the SARS-CoV-2 outbreak began in late 2019, there have been over 13 million reported cases 

and few countries remain unaffected. Despite the global nature of the pandemic, the status of the 

outbreak differs markedly between nations and the prevalence in each nation is not homogenous. 

At the time of writing some countries, such as Brazil, find themselves part of an escalating outbreak 

while other nations, like the UK, are experiencing a steady decline in the number of cases each day. 

Given this variation, it is likely that the optimal testing strategy in one country will not be optimal in 

another country. Similarly, the most appropriate testing approach may change within a single 

country as the population prevalence changes or if there are certain settings, such as healthcare 

facilities, where the expected positivity rate is higher. A NAC group testing strategy offers a method 

that can be adapted based on the expected local or national population prevalence, increasing 

throughput, and saving reagents. 

We designed three NAC matrices and tested their single round efficacy at varying population 

prevalences. When the prevalence was low, all the matrices performed well with only fractions of 

samples requiring re-testing. This is especially true in very low prevalence settings (0.1%) where, 

even in the least tolerant n=700 matrix, only one retest was required on average. However, as the 

population prevalence increased the performance of each matrix deteriorated. Even the most 

resilient matrix, n=250, was limited in its discriminatory ability when the population prevalence rose 

above 10%. Numerous reports early in the pandemic detailed programs designed to offer testing to 

symptomatic healthcare workers at hospitals across the UK.
13; 14

 In these trials, the positivity rate in 

symptomatic staff members ranged from 14-20%. Any pooling strategy, if the positivity rate were 

this high, would perform poorly and the number of re-tests required would become onerous, 



defeating the object of a group testing strategy. This is supported by the data presented here and 

we would therefore not recommend the use of pooling when the prevalence of SARS-CoV-2 is higher 

than 7%. Rather, the current monoplex approach would likely remain most practicable.  

The data outlined in this work demonstrates that pooling becomes increasingly useful as the 

population prevalence of SARS-CoV-2 decreases. A recent trial at Barts Hospital, London, tested 

asymptomatic HCWs for 5 consecutive weeks with positivity rates ranging from 7.1% to 1.1%.15 The 

peak of 7.1% was recorded on the 30th March  2020, one week after the UK-wide lockdown and at a 

time when community viral transmission was likely to have been at its highest. This changing 

prevalence demonstrates how a context specific adaptive testing strategy for staff testing might be 

deployed. Initially the most conservative matrix, n=250, should be used to establish the population 

prevalence. At a positivity rate of 7.1% this matrix would still be able to identify 90% of true 

negatives save approximately 121 tests relative to a monoplex approach, superior to a DS strategy at 

the same sample size. If the positivity rate were lower, this would then inform the choice of the 

matrix for subsequent testing rounds. As the rate falls, the utilization of less tolerant but higher 

throughput assays could be used, such as the n=700 matrix described here.   

A maximum pool size of 15 was a formal condition for all the matrices outlined in this work. Based 

on previously published work, it is likely that this pool size could be increased without losing assay 

sensitivity. A recent correspondence outlined how pooling of up to 30 samples could be used to 

increase throughput without impacting diagnostic accuracy, although it was noted that borderline 

positive samples may escape detection in larger pools.16 We chose to test, and subsequently use, a 

pool size of 15 samples for two main reasons. First, this pool size will likely be more sensitive to 

borderline positive samples than larger pools, an important benefit when considering the 

importance of avoiding false negative results in HCWs who will be interacting with vulnerable 

patients. Secondly, although higher pool sizes increase the theoretical throughput of a single plate, 

the complexity of the assay design and processing also increases.  



Critically, we propose these pooling approaches to improve throughput, save resource, and reduce 

the time that HCWs are waiting for their results. Typically, group testing strategies utilize subsequent 

rounds of group testing. These approaches are likely to be mathematically more efficient, as 

measured by the number of tests required to resolve all the samples, than our approach outlined 

here.
17

 However, more than one round of group testing introduces complexity, utilizing laboratory 

resources, and increases the time-to-result.  

Any testing scheme will have positive and negative attributes which can be broadly split into 

throughput, reagent efficiency, speed, and complexity. The most suitable testing strategy will be 

context dependent. In some situations, such as widespread population screening, throughput will 

understandably be the dominant attribute and complex, multi-stage, centralized approaches can be 

used.18 We argue that in the context of HCW screening, a more subtle balance must be struck 

between speed and throughput, with complexity reduced if testing is being performed on a more 

local basis. We believe that the approach described here, an initial NAC screen followed by 

monoplex testing, provides a relatively high throughout system with good efficiency and the design 

can be varied depending on the local sample size and expected population prevalence.   

We have created three distinct NAC matrices and tested their performance against other testing 

approaches. These matrices and the system to decode the results are freely accessible 

(www.samplepooling.com). At low to medium (0.1-7%) positivity rates, as would be expected in 

asymptomatic HCWs, the matrices are able to increase throughput and reduce the requirement for 

repeated testing compared to DS or standard monoplex schemes. The benefit of the approach 

outlined here is that laboratories can choose the matrix which most suits their current population 

prevalence and sample size, facilitating a context specific and data-driven testing approach.  

 

  

 



 

 

 

 

 

 

Simulation 

Number 
n w p 

Tests 

confirmed 

negative (n) 

True Negatives 

Confirmed (%) 

Expected 

Retests 

Required (n) 

Expected Tests 

Saved (n) 

1 

700 

 
2 

 

0.1% 699 99% 1 603 

2 1% 681 97% 18 586 

3 3% 601 86% 100 504 

4 7% 393 56% 305 299 

5 10% 264 38% 435 169 

6 

350 

 
4 

 

0.1% 350 100% 0 254 

7 1% 346 99% 4 250 

8 3% 335 96% 15 239 

9 7% 275 79% 75 179 

10 10% 209 60% 141 113 

11 

250 

 
5 

 

0.1% 250 100% 0 154 

12 1% 247 99% 3 151 

13 3% 242 97% 8 146 

14 7% 217 87% 33 121 

15 10% 182 72% 69 85 

 

Table 1. An outline of the 3 different non-adaptive combinatorial matrices tested at 5 different 

population prevalence levels. n=sample size, w= number of times the sample is repeated over the 

assay plate, p= population prevalence. Figures are presented as mean values from 10,000 

simulations.  

 



 

 

 

 

 

 

 

Figure Legends 

Figure 1. SARS-CoV-2 Testing Approaches. Three approaches are outlined with 6 samples where 

sample 3 is positive. (A) Where there is no pooling (monoplex testing) each well contains one 

sample, therefore the result from that well corresponds directly to that sample. (B) Using Dorfman 

Sequential (DS) pooling, wells contain more than one sample. In this example well 2 is positive 

which, according to the matrix, contains samples 3 and 4. Retesting of samples 3 and 4 is required to 

determine that sample 3 is positive  (C) Using non-adaptive combinatorial strategies, sample 3 is in 

both wells 3 and 4 which appear positive. Given sample 3 is the only sample in both wells 3 and 4, 

the matrix can be decoded to indicate that sample 3 is positive without a requirement for retesting. 

 

Figure 2. Proposed Testing Approach for Healthcare Worker Screening. A single round of group 

testing via a non-adaptive combinatorial scheme is used as an initial high-throughput screen. In this 

example, this screen can confirm the status of 335 samples (96%). The 15 indeterminate samples are 

then determined via monoplex testing, rather than a second group testing round being 

implemented.  

 

Figure 3. Proportion of Samples Requiring Retesting. A series of density plots demonstrating the 

number of retests required (i.e. where the matrix was unable to differentiate the true status of 

sample) after a single round of testing at each prevalence level. At very low prevalence levels (0.1-

1%) (plots A and B) there are only a small number of possible outcomes, therefore the density plots 

appear multi-modal.  

 

Figure 4. Proportion of True Negatives Identified. A series of Density plots demonstrating the 

proportion of samples confirmed negative as a percentage of the total number of true negatives.  

 

Figure 5. Non-adaptive Combinatorial Vs Dorfman Sequential Pooling Approaches. Matrices were 

tested at population prevalences of 0.1%, 1%, 3%, 7% and 10%. Performance statistics for the total 

number of tests saved (compared to monoplex approach) and the number of retests required are 

displayed.   
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