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Abstract

Background:
In response to the ongoing COVID-19 pandemic, several countries adopted measures of social
distancing to a different degree. For many countries, after successfully curbing the initial wave,
lockdown measures were gradually lifted. In Belgium, such relief started on May 4th with phase
1, followed by several subsequent phases over the next few weeks.
Methods:
We analysed the expected impact of relaxing stringent lockdown measures taken according to
the phased Belgian exit strategy. We developed a stochastic, data-informed, meta-population
model that accounts for mixing and mobility of the age-structured population of Belgium. The
model is calibrated to daily hospitalization data and serological data and is able to reproduce
the outbreak at the national level. We consider different scenarios for relieving the lockdown,
quantified in terms of relative reductions in pre-pandemic social mixing and mobility. We validate
our assumptions by making comparisons with social contact data collected during and after the
lockdown.
Results:
Our model is able to successfully describe the initial wave of COVID-19 in Belgium and identifies
interactions during leisure/other activities as pivotal in the exit strategy. Indeed, we find a
smaller impact of school re-openings as compared to restarting leisure activities and re-openings
of work places. We also assess the impact of case isolation of new (suspected) infections, and
find that it allows re-establishing relatively more social interactions while still ensuring epidemic
control. Scenarios predicting a second wave of hospitalizations were not observed, suggesting
that the per-contact probability of infection has changed with respect to the pre-lockdown period.
Conclusions:
Community contacts are found to be most influential, followed by professional contacts and
school contacts, respectively, for an impending second wave of COVID-19. Regular re-assessment
is crucial to adjust to evolving behavioral changes that can affect epidemic diffusion. In addition
to social distancing, sufficient capacity for extensive testing and contact tracing is essential for
successful mitigation.
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1 Introduction

The COVID-19 pandemic has put a massive burden on modern society. While the global death toll
of the virus has risen above 500,000 reported deaths on the 15th of July [1], several countries are
evaluating strategies to cope with the virus on the medium to long term. As neither a vaccine nor
adequate therapeutic options are available at this time, non-pharmaceutical interventions have been
proven effective in reducing the pressure on healthcare systems [2, 3, 4, 5, 6]. After a massive imple-
mentation of lockdown measures, affecting as much as one third of the global world population [7],
governments have eased some of the social distancing measures. After imposing a partial lockdown
on March 14th and a full lockdown on March 18th, the Belgian government curtailed some of these
measures with a plan for a gradual reopening over several weeks, starting from the 4th of May.
The absence of substantial population immunity after this first wave of COVID-19 in Belgium [8]
increases the risk of subsequent large-scale outbreaks when interventions are relaxed which could
result, when not contained, in new COVID-19 waves with large numbers of new confirmed and hos-
pitalized persons. In this context, data-driven models of disease spread can provide useful insights
into the expected impact of easing non-pharmaceutical interventions [6, 9, 2]. Here we revisit the
different scenarios which could have unfolded as a consequence of easing lockdown measures based
on a data-driven metapopulation model for Belgium for COVID-19 [10] and compare the expected
and realized epidemic trajectories. At the same time, we validate the modelled scenarios with social
contact data collected during and after lockdown.

2 Methodology

We constructed a meta-population model for COVID-19, in order to study the Belgian epidemic.
The model reproduces the demography of children (0-18 years) and adults (19 years and above)
in the different Belgian municipalities [11]. Publicly available data [12, 13] from a social contact
survey conducted in Flanders (Belgium) anno 2010-2011 is used to inform mixing patterns of the
population [14, 15, 16]. Mobility data retrieved from the Belgian census [17] is used to reconstruct
mobility fluxes due to school attendance and work. A stochastic compartmental model is used to
describe the spread of COVID-19 in the population within each patch of the system. The model is
fitted to national hospitalization data [18] and serial serological survey data [8].

2.1 Compartmental patch model

We use an extended SEIR stochastic compartmental model (Figure 1) in which we distinguish pre-
symptomatic (Ip), asymptomatic (Ia), and symptomatic (Ims and Iss) transmission by assuming
different transmission rates, governed by different contact patterns. In particular, we assume that
symptomatic individuals (both mildly symptomatic Ims and severely symptomatic Iss) reduce their
number of contacts (following observations made during the 2009 Influenza pandemic [19]) and their
commute (school/work) mobility. A fraction of symptomatic adults can show severe symptoms and
therefore require hospitalization (H) [5, 20]. Once this happens, we assume that they cannot further
infect other people due to isolation measures [21].
We assume that children have a 50% lower susceptibility to infection compared to adults [4, 22, 23].
Table 1 shows a summary of the model parameters and the distributional assumptions thereabout.

2.2 Population mixing

Population mixing is informed by social contact data for different locations (work, home, school,
transportation, leisure activity and other) during weekdays and weekends [14, 15], accessible through
the Socrates tool [12, 13].
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Figure 1: Schematic representation of the compartmental model: Individuals start as sus-
ceptible (S) and can become exposed to the disease (E) when interacting with infected individuals (Ip,
Ia, Ims and Iss). After a latent period, exposed individuals enter a pre-symptomatic phase (Ip), after
which they can either become symptomatic (Ims and Iss) or remain without symptoms (Ia). Symp-
tomatic individuals can develop mild symptoms (Ims) or severe symptoms (Iss). When symptoms are
severe, they are hospitalized (H). The final outcome of infected individuals is either recovery (R) or
death (D).

Table 1: Overview of the model parameters.

Quantity Median (95% CI) Distribution Source

Latent period (ε) 1.4 days ([0:7] days) Exponential [24, 20]
Pre-symptomatic period (θ) 2.4 days ([0:13] days) Exponential [24, 20]
Children infectivity (wrt adults) 0.5 — [4, 25, 22, 26]
Proportion asymptomatic (pa) 0.5 — [25, 26, 27, 28]
Proportion mild symptoms (pm) 0.5/0.425 (children/adults) — [25, 22, 26, 27]
Proportion severe symptoms (ps) 0 /0.0275 (children/adults) — [22, 26]
Symptomatic/asymptomatic period (µ) 2.4 days ([0:13] days) Exponential [29]
Symptom onset to hospitalization (σ) 4.7 days ([0:17] days) Weibull [29]
Hospital admission to death (ξ) 4 days ([1:9] days) Log-logistic [29]
Hospital admission to recovery (τ) 5 days ([1:10] days) Weibull [29]

An asymptomatic individual interacts according to a contact matrix that is the sum of the contact
matrices that correspond to different locations:

Casympt = Chome + Cwork + Cschool + Cleisure + Ctransport + Cother (1)

Given the strong age-specific severity of COVID-19, we assume that, when symptomatic, adults
reduce their contacts in a location-specific fashion, as reported during the 2009 H1N1 pandemic [19]:

Csympt = Chome + 0.09 · Cwork + 0.06 · Cleisure + 0.13 · Ctransport + 0.25 · Cother (2)

We assume that children do not change behavior when symptomatic, as they are more likely to
present fewer and milder symptoms as compared to adults [25, 30, 31].
When intervention measures are implemented (see section 2.4), location-specific contacts are re-
duced. This has an impact on both Csympt and Casympt, implicitly assuming that a reduction in
contacts because of symptoms is the same during the pre-pandemic and intervention period. The
contact matrices then become:

Casympt = Chome + pw · Cwork + ps · Cschool + po · Cleisure + pw · Ctransport + po · Cother

Csympt = Chome + pw · 0.09 · Cwork + po · 0.06 · Cleisure + pw · 0.13 · Ctransport + po · 0.25 · Cother

(3)
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where pw, ps, po are the percentages of contacts at work, at school and during leisure/other activities.

2.3 Population mobility

Commuting data from the Belgian census [17] is used to infer the daily commuting network among
different Belgian municipalities. We assume that intervention measures targeted at reducing con-
tacts at work and at school reduce the mobility of the corresponding age class.

2.4 Interventions taken on the 14th of March

Starting from Friday 13th of March at midnight, Belgian authorities have declared the nation-
wide closure of schools and universities, together with restaurants, cafes and gyms. Also, public
gatherings were banished. On the 17th of March, further dispositions were put in place, limiting
mobility of people in addition to closing companies and shops offering non-essential services. We
model interventions by reducing mixing and mobility in the population (see section 2.2 and 2.3),
with a compliance that increases linearly with time and reaches full compliance on the 23rd of
March.

2.5 Calibration

To calibrate our model, we used national data on daily hospital admissions [18] and results from
serological survey collections [8] to estimate the per-contact transmission probability, the probability
of severe symptoms and the reduction of the contact matrix during intervention with respect to the
pre-pandemic period. More details on the calibration procedure, including a comparison with the
observed seroprevalence data can be found in the Supporting Information (SI).

Exit strategies

The Belgian government lifted the lockdown gradually from the 4th of May onward. Table 2 shows
a simplified summary of the different phases and their implementation. Changes with respect to
the previous phase (i.e. the previous row) are shown in bold. In our scenario analysis we considered
three phases:

• Phase 1: from the 4th of May, increasing the contacts made at work and during commuting by
adults, to account for the increase of people going back to work. Mobility of adults increases
accordingly.

• Phase 2: from the 18th of May, increasing contacts made at school and during commuting by
children to account for school re-opening. Mobility of children increases accordingly.

Table 2: Timing and concepts of lockdown relief. Each phase is implemented incrementally
with respect to the previous ones. Bold values highlight the changes with respect to the previous
phase (i.e. the previous row). Intermediate parameter values are reported, with the full range between
squared brackets.

Timing Work School Mobility Mobility Leisure
start/end & transportation contacts (%) adults (%) children(%) & other

contacts (%) contacts (%)

Lockdown 14-03/04-05 <10 0 <10 0 <10
Phase 1 (work) 04-05/17-05 20 [10-40] 0 20 [10-40] 0 10
Phase 2 (school) 18-05/07-06 20 [10-40] 20 [10-40] 20 [10-40] 20 [10-40] 10
Phase 3 (leisure) 08-06/30-06 20 [10-40] 20 [10-40] 20 [10-40] 20 [10-40] 20 [10-40]
Summer holidays 01-07/31-08 20 [10-40] 0 20 [10-40] 0 20 [10-40]
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Figure 2: Parameter estimation and model fitting. (a): calibration of the pre-intervention
phase. Data on hospital admissions is shown in comparison with the best-fit model. Black points are
used to calibrate the model in the pre-intervention phase. (b): calibration for the intervention phase.
Data on hospital admissions is shown in comparison with the best-fit model. Black points are used to
calibrate the model in the lockdown phase. In both panels median curves are shown along with 50%
confidence intervals (CIs; dark shade) and 95% CI (light shade).

• Phase 3: from the 8th of June, increasing contacts made during leisure and in other locations,
to assess the impact of a possible re-opening of leisure activities.

For these phases we considered a compliance that increases linearly with time and reaches full
compliance after one week.

Case isolation

When extensive contact tracing and testing is available, a viable option for disease mitigation is to
isolate individuals that are infected. We assume that, since all contacts of infected individuals are
tested, case isolation affects also asymptomatic individuals that would otherwise slip out of usual
case-reporting surveillance methods. We present our results in terms of a synthetic quantity, the
parameter α, that is the percentage of individuals entering the symptomatic or asymptomatic class
(Ia, Ims and Iss) that are effectively isolated. We assume that these quarantined individuals reduce
their contacts by a factor of ten. We do not cover here how to link the target α to an optimal
strategy for contact tracing and testing that takes into account feasibility thereof in terms of the
number of index cases that can be traced, test features (e.g. sensitivity, specificity) that vary as a
function of the time since symptom onset, and willingness to report contacts upon being identified
as a COVID-19 case [21, 32, 33]. We also assume that no isolation of pre-symptomatic people is
implemented (Ip). We considered that case isolation can start at the beginning of phase 2 (i.e. on
the 18th of May) or at the beginning of phase 3 (i.e. on the 8th of June), to assess the impact of
delay in implementation.
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Figure 3: Exit scenarios using different timings and location-specific reductions. (a):
different implementations of phase 1 (work re-opening). (b): different implementations of phase 2
(school re-opening). (c): different implementations of phase 3 (leisure re-opening). The top of each
panel shows the parameter values used. In all panels median curves are shown along with 50% con-
fidence intervals (dark shade) and 95% CI (light shade). Color-code is consistent across panels, with
the same color marking the same scenario in different panels.

3 Results

Figure 2(a) shows the daily number of new hospitalizations in the initial phase of the epidemic,
compared with our best model fit (red solid line). Hospitalization data up to the 21st of March
are consistent with an exponential growth model with a doubling time of 3.09 days (95% CI
[3.05 : 3.11]). Combined with our estimated model parameters, this results in a basic reproduction
number R0 = 3.40 (95% CI [3.36 : 3.44]). A strong, periodic effect on the reported number of
hospital admissions can be observed, most likely due to delays in hospitalisation during weekends.
The no-intervention model is in line with hospitalization data up to the 21th of March, showing
that interventions took about one week to impact hospitalizations. Next, we fit to the data up to
the 1st of May, as this is required to calibrate the intervention effects (Figure 2(b)). The model
including the effect of interventions is compatible with an overall reduction in the total number of
contacts of 85% with respect to the period prior the COVID-19 pandemic (see SI for additional
information on contact matrices).
Figure 3 shows the impact of the different phases of the exit strategy, considering different imple-

mentations (i.e. parameter values) for each phase, together with a scenario in which lockdown goes
on indefinitely. We consider results up to the 31st of August, as considering a longer timeframe
would require additional assumptions with regard to social distancing after the summer period.
Results for the whole year are reported in the SI (Figure SI 4). In Figure 3(a), at the beginning of
phase 1 (4th of May), contacts at work and on transportation are increased, ranging from 10% to
40% of pre-pandemic values. As expected, there is a delay between the implementation of the first
phase and its effect on the number of hospital admissions: after 3 weeks the number of hospital
admissions stops to decrease as compared to the lockdown scenario. One further week is required
to see differences between the three implementations of phase 1. In Figure 3(b) we show the impact
of phase 2 (school re-opening) once phase 1 is implemented for the smallest value of contacts at
work/transportation considered (10%). The percentage of school contacts ranges from 10% to 40%.
In this case, the different curves start to diverge 4 weeks after the re-opening of schools. Summer
school holidays, starting on the 1st of July have a considerable (delayed) effect on the number of
hospital admissions only in the 40% school contacts scenario. In Figure 3(c) we show the impact
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Figure 4: Summary of exit scenarios. (a): peak value of daily hospital admissions up to the
31st of August. (b): number of hospitalizations up to the 31st of August. In both panels the y-axis
shows the relative variation with respect to the best-case (least contacts) scenario. A circle denotes
the scenario used in the contact isolation analysis (Figure 6).

of phase 3, once phase 1 and 2 are implemented with the smallest values of the considered param-
eters. Different implementations of the phase 3 give different results after three weeks. Comparing
the three panels, it is clear that changing the implementation of phase 3 has a larger impact than
changing implementation of phase 1 or 2. The larger impact of phase 3 (leisure/other activities) is
confirmed when comparing all the scenarios we considered. Figure 4 shows the number of daily hos-
pitalization and the cumulative number of hospitalizations up to the 31st of August (results up to
the 31st of December are available in SI, Figure SI 4). Results are shown with respect to the scenario
with the smallest number of hospitalizations. A smaller impact for school re-opening with respect to
work and leisure re-opening is observed, both for peak hospitalizations as for total hospitalizations.
Increasing the contacts at school by 10% (i.e. considering a different symbol marker but same color
along the y-axis) has a smaller impact than increasing contacts at work (i.e. same symbol, different
color along the y-axis) or leisure/other contacts (i.e. moving along the x-axis) of the same amount.
Increasing contacts at work has a smaller impact in terms of peak hospitalizations than increasing
leisure/other contacts; a similar impact is instead observed for the total number of hospitalizations.
When considering results over the whole year (Figure SI 4) the relative increase in the epidemic
peak is weakly affected. The total final size, instead, increases for all scenarios, as the daily number
of hospitalizations is summed up over a longer period of time, with a larger impact on scenarios with
the lowest parameter configurations. However, hospitalization data is compatible with the lockdown
scenario (Figure 2) up to the end of June. Comparison of the contact matrices used in the model
with the preliminary results of a recent social contact survey [34] targeting Belgian adults during
and after the lockdown provides a means to interpret this. Figure 5 shows the measured contact
matrices in comparison to one of the simulated scenarios (10% work/transportation contacts, 40%
school contacts and 20% of leisure/other contacts). Our model uses a higher number of contacts
during phase 1, whereas phase 2 and 3 show general agreement between the model and the empirical
data. Since the predicted resurgence in the number of hospitalizations is not observed, this suggests
that the proportionality factor between conversational contacts and transmission rates postulated
in the so-called social contact hypothesis [35] has changed from the lockdown to the post-lockdown
period. This is likely due to behavioral changes (increased hygiene, prominence of outdoor over
indoor community contacts, face-mask wearing, etc.) reducing the per-average contact transmis-
sion probability. For instance, surveys [36, 34] in Belgium have documented a marked increase in
outdoor contacts and face-mask wearing during the three phases of lockdown relief (Figure SI 3),
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Figure 5: Comparison of model contact matrix and measured ones. (a)-(c): Contact matrices
for phase 1 (a), phase 2 (b) and phase 3 (c) in a specific simulated scenario ((10% work/transportation
contacts, 40% school contacts and 20% of leisure/other contacts). (d)-(f): Contact matrices for phase
1 (d), phase 2 (e) and phase 3 (f) measured in a survey representative of the Belgian adult population.
Contacts of children participants, not measured in the survey, are marked with ”X”.

supporting this hypothesis.
Figure 6 shows the impact of case isolation on the scenario marked with a circle in Figure 4 (10%
contacts at work/transportation, 40% contacts at school and 30% leisure/other contacts scenario
marked with a circle in Figure 4). The ability to isolate newly infected individuals has a consid-
erable impact on the number of hospital admissions. The isolation of 25% of new cases is able to
reduce the expected number of hospital admission at the end of August by 25%. The isolation of
twice as many cases (50% instead of 25%) would lead to a reduction of 37% of admissions. Starting
case isolation 3 weeks after (at the start of phase 3 instead of phase 2) lessens the reduction to 21%
from 25%. A stronger effect of this delay is measured in the 50% case isolation scenario: in this
case, starting the isolation at the start of phase 3 decreases the reduction in admissions from 37%
to 28%.

Discussion

We used a stochastic, discrete time, data-driven meta-population model to predict the impact of
lifting the lockdown in three phases. The model includes data on pre-pandemic mobility and mix-
ing, and is calibrated on hospital admissions and seroprevalence data. The initial phase of the
COVID-19 epidemic in Belgium is characterized by a fast spread of the disease, with a doubling
time of 3.09 days (95% CI [3.05 : 3.14]), in line with values from other countries [5, 2, 37, 38, 39].
Combined with our parameter choices, this results in R0 = 3.40 (95% CI [3.36 : 3.44]), which lies
within the interval estimated in recent meta-analysis (mean = 2.6, standard deviation = 0.54 [40]
and mean = 3.28 [39]). Our model appropriately describes hospital admissions during the lockdown
period if a strong reduction (85%) in the number of contacts is established. In this situation the
number of hospital admissions starts to decrease 3 weeks after the start of the lockdown allowing
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the healthcare system to cope with ICU demands. At the end of the lockdown, the reproduction
number is estimated to be 0.73 (95% CI [0.70 : 0.76]). Such a strong reduction in the average num-
ber of contacts marks the disruption that a lockdown has on everyday life. Studies in Wuhan and
Shanghai [4] found an even stronger reduction in the number of contacts during lockdown, while a
recent survey in the UK [40] measured a reduction of 75%. Preliminary analysis of social contact
data collected in Belgium after the lockdown [34] shows similar results as compared to [4] and [40],
in line with our modelling results. Adherence to country-specific contact data is paramount, as
intervention measures can vary substantially between countries, both in terms of implementation
and in terms of compliance. Collecting country specific contact data during the different stages of
the epidemic (i.e. before, during and after intervention) is therefore of crucial importance to ade-
quately assess the impact of social distancing [34]. Nevertheless, our knowledge of contact patterns
before the COVID-19 crisis can be used to identify the relative impact of introducing social dis-
tancing in different locations. In the current analysis this approach was taken, whilst considering a
plausible range of reductions in social contacts in different circumstances. According to our model,
leisure activities have the largest potential impact on the epidemic profile. This is consistent with
leisure/other contacts accounting for 25% to 40% of the total contacts people make, according to
representative surveys [41, 42]. However, the absence of a resurgence of hospitalizations by the end
of June suggests that there is a smaller per-contact probability of transmission after lockdown with
respect to pre-lockdown. This could be due to behavioral changes in how contacts are established
(i.e. increased inter-personal distance or the wearing of face masks [43]) after the lockdown or to
environmental factors (e.g. humidity and temperature [44]) that could affect transmission. In the
light of that, our result are useful in establishing a hierarchy of location-specific contacts, but a
careful interpretation of the absolute number of infections is necessary.

We observed less impact of school closure on hospital admissions in contrast to social mixing at
work and during transport or leisure activities. First, as expected, school closure leads to observable
effects only in those scenarios in which a consistent fraction (i.e. 40% or more) of school contacts
are established in the population. Second, as children have a much lower probability of being
symptomatic (and as such of being hospitalized) with respect to adults [39], increased diffusion
among children increases the observed hospital admissions mostly indirectly, through the increase
of infected adults. We tested, as a sensitivity analysis, a scenario in which children have the same
susceptibility to the disease: in this case school closure would have a larger impact on the number
of infections, especially in the children’s age class. The role of children is still unclear and, although
their secondary attack rate in household is similar to the one of adults [30], there is evidence that
they present smaller viral load [45, 46, 47, 48] and reduced transmissibility [25, 49], together with a
lower number of confirmed cases with respect to adults [22]. This increased susceptibility scenario
is therefore unlikely, given the information on COVID-19 we have so far.
In our results, isolation of newly infected individuals has an important impact on epidemic mitiga-
tion. Implementing case isolation would allow to re-establish social interactions while still ensuring
epidemic containment.We stress here that although we quantified the reduction of spreading poten-
tial in terms of number of contacts, this may also come as a combination of different effects, for
example when antivirals to be used in the early phase of the infection will become available [50].
Also, a fast setup is crucial: a 3 weeks delay in implementing case isolation leads to a considerable
impact on the number of new hospital admissions. As a fast and reliable contact tracing is of
foremost importance, several digital solutions have been proposed to match the need for personal
information with privacy concerns [51, 52].
Other models have been applied to the emergence of COVID-19 in Belgium, either specifically [53,
54, 29] or in multi-country applications [55]. Using different model paradigms allows to focus on
distinct aspects of the outbreak, like delay distributions of the clinical history of patients [29], a
more detailed and age-specific handling of serological data with MCMC [54] or exploring individual-
specific contact tracing options [53]. When evaluating intervention strategies with profound societal
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Figure 6: Effect of case isolation in a specific scenario. (a): new hospitalizations per day.
(b): cumulative number of hospitalizations relative to the no case isolation scenario. All curves are
obtained considering 40% of working contacts, 40% of contacts at school and 40% of leisure/other
contacts with respect to pre-pandemic period (scenario denoted by a black circle in Figure 4). In both
panels median curves are shown along with 50% confidence intervals (dark shade) and 95% CI (light
shade).

impact, ideally different models should be compared [56, 57].
In conclusion, we show the predicted impact of a phase-based relief of lockdown measures taken in
Belgium. Through validation using empirical data on social contacts and the observed trajectory
of the epidemic, our results suggest that the per-contact probability of infection has changed from
pre- to post-lockdown. While economic and societal needs urge governments to relieve strict dis-
tancing measures and mobility restrictions, caution is required when evaluating different scenarios.
Community contacts were found to be most influential, followed by professional contacts and school
contacts, respectively, for an impending second wave of COVID-19. Regular re-assessment is crucial
to adjust to evolving behavioral changes that can affect epidemic diffusion. In addition to social
distancing, sufficient capacity for extensive testing and contact tracing is essential for successful
mitigation.
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