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Abstract—word count (133) 21 

Whether weather plays a part in the transmissibility of the novel COronaVIrus Disease-22 

19 (COVID-19) is still not established. We tested the hypothesis that meteorological factors (air 23 

temperature, relative humidity, air pressure, wind speed and rainfall) are independently 24 

associated with transmissibility of COVID-19 quantified using the basic reproduction rate (R0). 25 

We used publicly available datasets on daily COVID-19 case counts (total n = 108,308), three-26 

hourly meteorological data and community mobility data over a three-month period. Estimated 27 

R0 varied between 1.15-1.28. Mean daily air temperature (inversely) and wind speed (positively) 28 

were significantly associated with time dependent R0, but the contribution of countrywide 29 

lockdown to variability in R0 was over three times stronger as compared to that of temperature 30 

and wind speed combined. Thus, abating temperatures and easing lockdown may concur with 31 

increased transmissibility of COVID-19.  32 

  33 
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Text—word count (3216) 34 

INDTRODUCTION 35 

As the novel COronaVIrus Disease-19 (COVID-19) continues to devastate the world, 36 

there remains a myriad of unknowns about its pathogenesis, population dynamics, epidemiology, 37 

prevention and treatment. Since its introduction into the global susceptible population SARS-38 

CoV-2, the causative agent of COVID-19, has presented several conundrums. It was initially 39 

believed that like many other viruses, SARS-CoV-2 may also be responsive to the environmental 40 

influences posed by climatic and meteorological factors1-4. However, current understanding of 41 

the potential role of weather on the spread of SARS-CoV-2 is far from clear. 42 

The COVID-19 outbreaks have been generally more severe in the countries located in the 43 

mid-latitudes where the temperature is considerably low in contrast to the tropical countries. 44 

Several studies around the world have attempted to specifically establish a relationship between 45 

COVID- 19 transmission and various meteorological factors.5-7 For example, a study conducted 46 

in New York, USA, found that mean temperature, minimum temperature and air quality had a 47 

significant association with the COVID-19 pandemic.5 Similarly, Shi et al8 reported a 48 

statistically significant correlation between daily temperature and daily count of COVID-19 49 

cases in China and suggested that temperatures above 8–10 °C would lead to a decline in the 50 

number of infected cases. In a parallel investigation, Prata et al5 concluded that a rise in 1 °C 51 

temperature would result in a decrease in the number of daily confirmed COVID-19 cases in 52 

Brazil. There have been very few investigations from India in this regard9-11 – a country with 53 

second largest population size after China. These studies from India have generally indicated a 54 

potential role of weather conditions in the spread of COVID-19. 55 
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On the other end of the spectrum, a study conducted by Yao et al12 concluded that there is 56 

no association of COVID-19 transmission with temperature or UV radiation in Chinese cities. 57 

Indeed, an elegant, evidence-based review by Brassley et al6 summarized the existing evidence 58 

in this regard and observed that a. cold and dry conditions may facilitate the spread of the novel 59 

coronavirus (2019-nCoV) b. much of the emerging data for 2019-nCoV has yet to be peer-60 

reviewed and is thus needed; and c. relying on weather changes alone to slow the transmission of 61 

COVID-19 are unlikely to be sufficient. Considering these recommendations; the variability in 62 

the observed associations; and a relative lack of such studies from India, we conducted this 63 

investigation on a nationwide sample of geographical locations across India. The primary goal 64 

was to test the putative association of geo-meteorological characteristics with rates of COVID-19 65 

transmission and to test its independence from other socio-behavioral interventions like 66 

lockdowns and mobility. 67 

MATERIALS AND METHODS 68 

 Data sources: We selected a total of 46 geographical locations across India. For each 69 

selected location (either a city, union territory or district), we collected data for a three-month 70 

period (March 1, 2020 through May 31, 2020). Following data items were collected for each 71 

study location: daily number of confirmed COVID-19 cases, meteorological data, demographic 72 

data and overall geographic data. The meteorological data included 3-hourly recordings of 73 

temperature, relative humidity, air pressure, wind speed and rainfall. The demographic data 74 

included the 2011 census population and the geographical data included area and elevation. The 75 

area and population records were combined to estimate the community density. Lastly, temporal 76 

data on the lockdown implementation phases and the mobility of the population (estimated 77 
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anonymously from the cellphone use data) was collected to study the potential temporal 78 

concurrence with COVID-19 transmission. 79 

All data used in this study are publicly available and are completely anonymized. The 80 

study was approved by the Institutional Ethics Committee of Government Medical College, 81 

Nagpur, India. Following were the sources of data: number of daily COVID-19 cases – 82 

https://api.covid19india.org/; meteorological data –https://www.tutiempo.net/ and 83 

https://www.worldweatheronline.com/; 2011 census data – https://censusindia.gov.in/2011-84 

common/censusdata2011.html; and geographical data – combination of census data and search 85 

on Wikipedia® (https://en.wikipedia.org/wiki/Wikipedia). Lastly, the temporal mobility data was 86 

downloaded from the publicly available repository: https://www.google.com/covid19/mobility/. 87 

These indicated percent change from baseline mobility on visits to the following five 88 

destinations - retail and recreation, grocery and pharmacy, parks, transit stations and workplaces. 89 

Quantification of COVID-19 transmissibility: Using the daily case count data we 90 

estimated the basic reproduction rate (R0) in two different ways. First, we estimated the average 91 

R0
 over the entire duration of 92 days period of data collection. For this, we used two methods – 92 

the exponential growth (EG) and the maximum likelihood (ML). Second, we estimated the daily 93 

R0 in a time-dependent (TD) fashion. All estimates of R0 require a knowledge of serial interval, 94 

the time difference between onset of symptoms in an infector and an infectee. We assumed a 95 

gamma distributed serial interval with a mean of 3.96 days and a standard deviation of 4.75 days 96 

as reported by Du et al.13 We used the R package R0 14 to derive all the estimates of R0. Finally, 97 

we considered the possibility of biased estimates of R0 owing to the relative lack of testing 98 

facilities, especially during the initial period of the epidemic. For this, we used the method of 99 

https://api.covid19india.org/
https://www.tutiempo.net/
https://www.worldweatheronline.com/
https://censusindia.gov.in/2011-common/censusdata2011.html
https://censusindia.gov.in/2011-common/censusdata2011.html
https://en.wikipedia.org/wiki/Wikipedia
https://www.google.com/covid19/mobility/
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Lachmann et al15 that considers South Korea as the reference country and estimates the degree of 100 

undertesting by combining demographic and vital statistics data. Using this method, we derived 101 

the possible undertesting on each study day. 102 

Statistical analysis: Our analyses used estimates of R0 as the dependent variable and the 103 

geo-meteorological and socio-behavioral characteristics as the explanatory variables. To 104 

compare groupwise means we used the Mann-Whitney U test or Kruskal-Wallis test as 105 

appropriate. Significance of heterogeneity across study locations was statistically tested using the 106 

Q test. Time series data were smoothed using a five-day sliding window technique. Further, to 107 

make the different time series (each meteorological characteristic) comparable, we converted 108 

them to a series of z-scores. To test the temporal concurrence, we used the cross-correlation 109 

between two time series (Pearson’s correlation). To test the association of time series variables 110 

with estimated time dependent R0, we used multivariable, ordinary least squares regression. 111 

Starting with the full model, we conducted stepwise, backward elimination regression modeling 112 

with a probability retention criterion of 0.05. Lastly, to quantify the relative contribution of each 113 

covariate with time dependent R0, we estimated the proportional reduction in error (PRE) using 114 

the approach of Judd, McCleland and Ryan.16 PRE was estimated as reduction in the residual 115 

sum of squares by including a covariate in the full model. Statistical analyses were conducted 116 

using the Stata 14.2 statistical package (Stata Corp, College Station, TX). Type 1 error rate of 117 

0.05 was used for hypothesis testing. 118 

RESULTS 119 

Representativeness of the study locations: We included 46 locations across India that 120 

contained 32 cities, 12 districts and 2 union territories. Figure 1 shows the geographical spread of 121 
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these locations and the geographic and demographic details for these locations are provided in 122 

Supplementary Table 1. The study locations varied widely in terms of the area (range 4.86 – 123 

6039 sq. miles), elevation (range 3 – 11500 feet above sea level) and population density (range 124 

33.6 to 56812.3/sq. mile). The selected locations are distributed across India and represent 125 

majority of the states / union territories of India. Meteorological data was available on all the 126 

selected study locations. 127 

The cumulative number of COVID-19 confirmed cases (till and including May 31, 2020) 128 

reported from these locations also varied widely (1 to 37666). The 46 selected locations together 129 

accounted for a total of 108,308 confirmed COVID-19 cases. From entire India the number of 130 

cumulative COVID-19 cases till May 31, 2020 were 182,140. Thus, our selected geographic 131 

locations accounted for ~60% of all India COVID-19 cases till May 31, 2020. The top 5 132 

contributing locations to the overall cumulative COVID-19 case counts were Mumbai (37666), 133 

Delhi (18058), Chennai (12040), Ahmedabad (11919) and Pune (7459) as shown in 134 

Supplementary Figure 1. 135 

Average estimated R0 for COVID-19: We first estimated the R0 based on case counts 136 

reported for the entire country as well as only for the locations included in this study. For each of 137 

these datasets, we estimated the R0 in two ways – first based on the actual reported case counts 138 

and second by inflating the case counts to account for the potential undertesting on each day. The 139 

results of these analyses are shown in Figure 2 and referred to as unadjusted (actual case counts, 140 

blue bars) and adjusted (for potential undertesting, purple bars). Our average estimates of R0 141 

using different methods of estimation and with or without adjusting for undertesting ranged from 142 

1.18 to 1.27 for India and 1.15 to 1.28 for the selected study locations. All the estimates and their 143 
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95% confidence intervals (error bars in Figure 2) were significantly above unity. These results 144 

indicated that over the study period, the average estimates of R0 were significantly greater than 145 

one, confirming the existence of the epidemic; the average R0 estimates were only moderately 146 

above unity; the average R0 estimates were minimally influenced by potential undertesting; and 147 

that the study locations yielded average R0 estimates consistent with those for the whole country 148 

thereby indirectly reaffirming the representativeness of the selected study locations. 149 

We also examined the heterogeneity of the average R0 estimates across the study 150 

locations. For these analyses, we restricted the locations which showed at least seven consecutive 151 

days with a contiguous segment of non-zero cases. Total of 35 locations were eligible based on 152 

this criterion. The average R0 estimates derived using the ML method [point estimates and 153 

confidence intervals (CI)] for these 35 locations are shown in Figure 3. There was a significant 154 

heterogeneity in the average R0 estimates (p = 6.9x10-30) with estimates ranging from 1.98 for 155 

Dehradun to 0.89 for Kolkata. The average R0 estimates for the top five contributing locations 156 

were: Mumbai 1.16 (95% CI 1.14 – 1.18); Delhi 1.25 (95% CI 1.23 – 1.28); Chennai 1.20 (95% 157 

CI 1.17 – 1.23); Ahmedabad 1.10 (95% CI 1.07 – 1.13) and Pune 1.22 (95% CI 1.18 – 1.26). 158 

Temporal changes in R0 estimates: Next, we considered the variability in R0 estimates 159 

over the duration of the study for all locations together. Figure 4 shows that the R0 estimates 160 

were initially high but undulated widely and gradually converged towards the overall estimates 161 

shown in Figure 2 with narrow confidence bands later. Thus, the time dependent R0 estimates 162 

showed considerable variation across study time. 163 

We examined the association of the time-dependent R0 estimates with two socio-164 

behavioral characteristics – implementation of a countrywide lockdown and the extent of social 165 
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distancing as reflected by the cellphone mobility data. When contrasted against the various 166 

phases of countrywide lockdown in India (grey shaded regions in Figure 4), we found that the 167 

median R0 estimates consistently reduced as lockdown was imposed. Before lockdown began 168 

(March 1 through March 24, 2020) the median R0 estimate was 1.54 and this estimate decreased 169 

to 1.40 (March 25 – April 14, 2020), 1.21 (April 15 – May 3, 2020), 1.16 (May 4 – May 17, 170 

2020) and 1.10 (May 18, 2020 onwards) during lockdown phases 1 through 4, respectively 171 

(Kruskal-Wallis p <0.0001). 172 

The cellphone-based community mobility data also revealed consistent and interesting 173 

patterns. As shown in Supplementary Figure 2, the overall trends in community mobility for all 174 

five destinations showed a dramatic decrease around the beginning of phase 1 lockdown, 175 

remained very low during phase 1 lockdown and then gradually increased as the lockdown 176 

progressed. The 5-day rolling z-scores for the average mobility based on these five parameters is 177 

shown in Figure 4 (green curve). 178 

Association of time dependent estimates with meteorological data: The time trends 179 

for temperature, relative humidity, air pressure, wind speed and rainfall are shown in Figure 180 

5A.Over the duration of the study, temperature and wind speed steadily increased; relative 181 

humidity and air pressure gradually decreased while rainfall remained steady. As a first step of 182 

the association analyses, we estimated the cross-correlation between each meteorological 183 

variable and the R0 estimates. Figure 5B shows the cross-correlograms for lags ranging from -10 184 

to 10 days. We found that higher temperature, wind speed and rainfall were correlated inversely 185 

while relative humidity and air pressure were correlated positively with time dependent R0 186 

estimates. The best cross-correlation was observed for temperature and humidity on the same day 187 
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(-0.73 and 0.63, respectively), wind speed on previous day (-0.40), rainfall preceding by 4 days 188 

(-0.29) and air pressure preceding by 6 days (0.54). Together these results indicated that 189 

concurrent or immediately preceding values of meteorological variables are significantly 190 

correlated with time dependent R0 estimates. 191 

Multivariable association of meteorological and socio-behavioral predictors with 192 

time dependent R0: We then examined whether the meteorological and socio-behavioral 193 

covariates were independently associated with time dependent R0 estimates. The full regression 194 

model used time dependent R0 estimates as the dependent variable and following 14 covariates 195 

as explanatory variables: five z-scores for the meteorological covariates, five z-scores for 196 

community mobility data and four phases of lockdown (each used as a dichotomous variable). 197 

The results of these analyses are shown in Table 1. In the full model, we observed that the 198 

lockdown phases 3 (only marginally) and 4 and wind speed were the only covariates that were 199 

statistically significantly associated with R0 estimates. In this context, the mobility data (which 200 

was highly correlated with the lockdown phases) did not retain statistical significance. However, 201 

considering the potential for interactions among covariates and the possibility of an 202 

underpowered full model (14 covariates observed on 92 days), we conducted stepwise regression 203 

modeling with a probability retention criterion of 0.05. The results of the final model (Table 1) 204 

showed that temperature z-scores, wind speed and lockdown phases 2-4 were retained in the 205 

final model. This model fitted the data well with an adjusted R2 of 0.56 (Supplementary Figure 206 

3) 207 

From the point of public health relevance, we then quantified the contribution of each 208 

variable retained in the final model to the overall variance of time dependent R0. The PRE 209 
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estimates for the variables retained in the final model were as follows: temperature: 9.1%, wind 210 

speed: 9.9%, lockdown phase 2: 12.2%, lockdown phase 3: 22.5% and lockdown phase 4: 211 

27.0%. These results indicate that while the meteorological factors of temperature and wind 212 

speed were statistically significant predictors of COVID-19 transmissibility, their contribution to 213 

dampening the R0 estimate was 3-4 times weaker as compared to the countrywide lockdown 214 

phases 2-4. 215 

DISCUSSION 216 

 Using nationwide data from India over a three-month period, our study made three 217 

cardinal observations. First, the average basic reproduction rate (R0) of COVID-19 infection in 218 

the period from March 1 through May 31, 2020 ranged from 1.15 to 1.28 even after accounting 219 

for the potential undertesting. Second, the COVID-19 transmissibility (quantified using R0) was 220 

significantly associated with daily average temperature (inversely), daily average wind speed 221 

(positively) and the countrywide intervention of lockdown (inversely). Third, the contribution of 222 

lockdown to the variability in time dependent R0 was three times more than the contribution of 223 

temperature and wind speed combined. Together, these results suggest that in India while the 224 

meteorological determinants of COVID-19 were independently associated with the 225 

transmissibility, their contribution was outweighed by that of the countrywide lockdown. 226 

 Even though statistically significantly greater than unity, our estimate of R0 was low. 227 

This estimate is comparable to the value of 1.32 reported by Du et al. However, the low value of 228 

R0 should be interpreted with caution. First, there has been a debate about the length of serial 229 

interval with values ranging from as low as 3 days to as high as 9 days.13, 17-21 We used the serial 230 

interval of ~4 days which is on the lower side of the serial interval range and could have partly 231 
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contributed to the low R0 observed in this study. Second, the major part of the study period 232 

included lockdown and reduced mobility and therefore the R0 estimate may represent a muted 233 

transmissibility owing to interventions in place. Third, the low R0 estimate does not indicate lack 234 

of viral infectiousness or any other viral characteristic but only implies the extent of potential 235 

spread of the disease.22 Fourth, the epidemic of COVID-19 is still ongoing and our estimate of R0 236 

only captures the initial, ascending limb of the epidemic curve. Therefore, this R0 estimate does 237 

not fully capture the population dynamics of COVID-19. Fifth, our estimate of R0 is a 238 

conglomerate of the varying estimates across the study locations as shown in Figure 3. The 239 

variability in R0 across study locations indicates that the location-specific epidemic curves were 240 

not aligned to the same starting point in time and therefore our R0 estimate should not be used as 241 

a generalizable estimate of COVID-19 transmissibility. The reason for estimating R0 in the study 242 

was to investigate the potential influence of geo-meteorological factors on transmissibility. 243 

Several researchers around the world have demonstrated an inverse relationship between 244 

air temperature and COVID-19 transmissibility.23-27 Our results also are in agreement with the 245 

general understanding that higher ambient temperature can inversely influence COVID-19 246 

transmissibility.23, 27 The study duration mark a period of increasing temperature in the Indian 247 

peninsula and our results indicate that, in general, high ambient temperatures were associated 248 

with lower R0 estimates such that unit standard deviation increase in air temperature was 249 

associated with a 0.08 lower R0 (Table 1, final model).On the other hand, we observed that a unit 250 

standard deviation increase in wind speed was associated with a 0.08 higher R0 (Table 1, final 251 

model). The current evidence for the potential role of wind speed in COVID-19 spread is 252 

conflicting with studies reporting positive,28 null29-31 and negative1, 32 association with COVID-253 

19 transmissibility. Our observation of a positive association of COVID-19 transmissibility with 254 
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wind speed is in line with the growing idea that the SARS-CoV-2 virus may be airborne.33, 34 Of 255 

note, incidence of COVID-19 has been shown to be associated with air pollution1, 35, 36 – a factor 256 

that is significantly influenced by wind speed.37 Our study cannot directly answer these 257 

interesting hypotheses, which should be tested in future studies. Nevertheless, a head-to-head 258 

comparison indicated that the lockdown period was associated with three times stronger 259 

contribution to the variability in R0 as compared to that of air temperature and wind speed 260 

combined. From the perspective of public health action, this observation supports the role of 261 

proactive interventions to de-escalate the transmissibility of COVID-19. Conceivably, as the 262 

temperatures wane and the lockdown is eased, more cases of COVID-19 can be expected. 263 

Our results should be interpreted in the light of some limitations. First, this was a 264 

retrospective analysis that combined data from different sources. The data are collected at the 265 

level of geographic locations and not at the level of individual patient. For example, person-to-266 

person transmissibility of COVID-19 in an infector-infectee scenario was not investigated in this 267 

study. Therefore, all the estimates and associations should only be considered as general patterns 268 

rather than definitive evidence. Second, akin to any observational study, unmeasured 269 

confounding can be expected to be operational. Despite these potential limitations our study 270 

demonstrated interesting and important patterns of association of geo-meteorological factors in 271 

COVID-19 spread. To control a pandemic of this magnitude, all scientific evidence from a 272 

holistic standpoint is needed. To that end, our study provides clues into the ecological aspects of 273 

COVID-19 during the initial months in India.  274 

 275 

  276 
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Table 1. Multivariable association of meteorological and socio-behavioral covariates with 426 

time dependent R0 estimates (all study locations, March 1 – May 31, 2020) 427 

Covariate β 95% CI p 

FULL MODEL 

Temperature z-score -0.10 -0.24 - 0.05 0.190 

Relative humidity z-score -0.04 -0.16 - 0.09 0.539 

Air pressure z-score -0.06 -0.18 - 0.06 0.322 

Wind speed z-score 0.06 0.00 - 0.11 0.036 

Rainfall z-score 0.02 -0.03 - 0.07 0.471 

Retail/recreation z-score 0.54 -0.30 - 1.37 0.204 

Grocery/pharmacy z-score 0.17 -0.08 - 0.41 0.184 

Parks z-score -0.26 -0.91 - 0.39 0.426 

Transit station z-score -0.48 -1.18 - 0.23 0.180 

Workplaces z-score 0.04 -0.19 - 0.28 0.724 

Lockdown phase 1 -0.01 -0.27 - 0.25 0.936 

Lockdown phase 2 -0.23 -0.61 - 0.16 0.247 

Lockdown phase 3 -0.41 -0.87 - 0.05 0.079 

Lockdown phase 4 -0.61 -1.14 - -0.08 0.024 

Intercept 1.56 1.30 - 1.81 <0.001 

FINAL MODEL 

Temperature z-score -0.08 -0.13 - -0.03 0.005 

Wind speed z-score 0.08 0.03 - 0.12 0.003 
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Lockdown phase 2 -0.22 -0.34 - -0.09 0.001 

Lockdown phase 3 -0.32 -0.45 - -0.19 <0.001 

Lockdown phase 4 -0.47 -0.63 - -0.30 <0.001 

Intercept 1.51 1.44 - 1.58 <0.001 

β, regression coefficient; CI, confidence interval; p, significance value 428 
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Figure 1. Geographical spread, COVID-19 case counts and population density of the study 430 

locations. Selected locations are shown as bubbles, the size of which is proportional to log of 431 

COVID-19 case counts. The color of the bubble indicates quartile of population density based on 432 

the cutoffs mentioned in Supplementary Table 1 – first quartile, blue; second quartile, green, 433 

third quartile orange and fourth quartile, red. 434 

 435 
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Figure 2. Average estimated R0 for COVID-19. Bars show the average R0 estimates and error 436 

bars indicate the 95% confidence intervals. Average R0 estimates were derived using three 437 

methods: ML, maximum likelihood; EG, exponential growth; and TD, time dependent. Each 438 

estimate was also derived without adjustment (unadjusted, blue bars) and adjusted for potential 439 

undertesting (adjusted, purple bars). 440 

 441 
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Figure 3. Heterogeneity of R0 estimates across study locations. The forest plot shows point 443 

(diamonds) and 95% confidence interval (error bars) estimates for maximum likelihood 444 

estimates of R0. 445 

 446 
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Figure 4. Time dependent R0 and socio-behavioral interventions. Red line and pink bands 447 

indicate the time dependent R0 and 95% confidence intervals, respectively, for each day during 448 

the study. These align to the left axis (colored red). The green curve shows the 5-day rolling 449 

average z-score for cellphone-based mobility data and aligns to the right axis (colored green). 450 

Shaded boxes in the background indicate different phases of the countrywide lockdown in India. 451 

 452 
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Figure 5. Meteorological determinants of COVID-19 transmissibility. (A) Time trends for 454 

each of the five, color-coded meteorological variables. For each variable, the data were first z-455 

transformed and then subjected to a 5-day moving average. (B) Cross-correlograms for 456 

correlation of each meteorological variable with estimated time dependent R0. All cross-457 

correlograms were assessed between lags of -10 to 10 days. Most significant correlation for each 458 

variable is indicated as a number alongside the lag at which it was observed. Rel, relative. 459 
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