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SUMMARY 26 
 27 

Infectious diseases (ID) represent a significant proportion of morbidity and mortality across the 28 

world. Host genetic variation is likely to contribute to ID risk and downstream clinical outcomes,  29 

but there is a need for a genetics-anchored framework to decipher molecular mechanisms of 30 

disease risk, infer causal effect on potential complications, and identify instruments for drug 31 

target discovery. Here we perform transcriptome-wide association studies (TWAS) of 35 clinical 32 

ID traits in a cohort of 23,294 individuals, identifying 70 gene-level associations with 26 ID traits. 33 

Replication in two large-scale biobanks provides additional support for the identified 34 

associations. A phenome-scale scan of the 70 gene-level associations across hematologic, 35 

respiratory, cardiovascular, and neurologic traits proposes a molecular basis for known 36 

complications of the ID traits. Using Mendelian Randomization, we then provide causal support 37 

for the effect of the ID traits on adverse outcomes. The rich resource of genetic information 38 

linked to serologic tests and pathogen cultures from bronchoalveolar lavage, sputum, 39 

sinus/nasopharyngeal, tracheal, and blood samples (up to 7,699 positive pathogen cultures 40 

across 92 unique genera) that we leverage provides a platform to interrogate the genetic basis 41 

of compartment-specific infection and colonization. To accelerate insights into cellular 42 

mechanisms, we develop a TWAS repository of gene-level associations in a broad collection of 43 

human tissues with 79 pathogen-exposure induced cellular phenotypes as a discovery and 44 

replication platform. Cellular phenotypes of infection by 8 pathogens included pathogen 45 

invasion, intercellular spread, cytokine production, and pyroptosis. These rich datasets will 46 

facilitate mechanistic insights into the role of host genetic variation on ID risk and 47 

pathophysiology, with important implications for our molecular understanding of potentially 48 

severe phenotypic outcomes. 49 

 50 
 51 
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HIGHLIGHTS 56 

 57 

• Atlas of genome-wide association studies (GWAS) and transcriptome-wide association 58 

studies (TWAS) results for 35 clinical infectious disease (ID) phenotypes, with genome-59 

wide and transcriptome-wide significant results for 13 and 26 clinical ID traits, 60 

respectively  61 

 62 
• Phenome-scale scan of ID-associated genes across 197 hematologic, respiratory, 63 

cardiovascular, and neurologic traits, facilitating identification of genes associated with 64 

known complications of the ID traits 65 

 66 

• Mendelian Randomization analysis, leveraging naturally occurring DNA sequence 67 

variation to perform “randomized controlled trials” to test the causal effect of ID traits on 68 

potential outcomes and complications 69 

 70 

• A genomic resource of TWAS associations for 79 pathogen-induced cellular traits from 71 

High-throughput Human in vitrO Susceptibility Testing (Hi-HOST) across 44 tissues as a 72 

discovery and replication platform to enable in silico cellular microbiology and functional 73 

genomic experiments 74 

 75 
  76 
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 77 
INTRODUCTION 78 

Genome-wide association studies (GWAS) and large-scale DNA biobanks with 79 

phenome-scale information are making it possible to identify the genetic basis of a wide range 80 

of complex traits in humans (Bycroft et al., 2018; Roden et al., 2008). A parallel development is 81 

the increasing availability of GWAS summary statistics, facilitating genetic analyses of entire 82 

disease classes and promising considerably improved resolution of genetic effects on human 83 

disease (Cotsapas et al., 2011; Gamazon et al., 2019). Recent analysis involving 558 well-84 

powered GWAS results found that trait-associated loci cover ~50% of the genome, enriched in 85 

both coding and regulatory regions, and of these, ~90% are implicated in multiple traits 86 

(Watanabe et al., 2019). However, the breadth of clinical and biological information in these 87 

datasets will require new methodologies and additional high-dimensional data to advance our 88 

understanding of the genetic architecture of complex traits and relevant molecular mechanisms 89 

(Bulik-Sullivan et al., 2015; Gamazon et al., 2018; Shi et al., 2016). Approaches to 90 

understanding the functional consequences of implicated loci and genes are needed to 91 

determine causal pathways and potential mechanisms for pharmacological intervention. 92 

The genetic basis of infectious disease (ID) risk and severity has been relatively 93 

understudied, and its implications for etiological understanding of human disease and drug 94 

target discovery may be investigated using phenome-scale information increasingly available in 95 

these biobanks. ID risk and pathogenesis is likely to be multifactorial, resulting from a complex 96 

interplay of host genetic variation, environmental exposure, and pathogen-specific molecular 97 

mechanisms. With few exceptions, the extent to which susceptibility to ID is correlated with host 98 

genetic variation remains poorly understood (de Bakker and Telenti, 2010). However, for at 99 

least some ID traits, including poliomyelitis, hepatitis, and Helicobacter pylori (Burgner et al., 100 

2006; Herndon and Jennings, 1951; Hohler et al., 2002; Malaty et al., 1994), disease risk is 101 

heritable, based on twin studies. Although monogenic mechanisms of ID risk have been 102 
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demonstrated (Casanova, 2015a, b), the contribution of variants across the entire allele 103 

frequency spectrum to interindividual variability in ID risk remains largely unexplored. 104 

Here we conduct genome-wide association studies (GWAS) and transcriptome-wide 105 

association studies (TWAS) of 35 ID traits. To implement the latter, we apply PrediXcan 106 

(Gamazon et al., 2018; Gamazon et al., 2015), which exploits the genetic component of gene 107 

expression to probe the molecular basis of disease risk. We combine information across a 108 

broad collection of tissues to determine gene-level associations using a multi-tissue approach, 109 

which displays markedly improved statistical power over a single-tissue approach (Barbeira et 110 

al., 2019; Gamazon et al., 2018; Gamazon et al., 2015). Notably, we identify 70 gene-level 111 

associations for 26 of 35 ID traits, i.e., heretofore referred to as ID-associated genes, and 112 

conduct replication using the corresponding traits in the UK Biobank and FinnGen consortia 113 

data (Bycroft et al., 2018; Locke et al., 2019). The rich resource of genetic information linked to 114 

clinical microbiology information that we leverage provides a platform to interrogate the genetic 115 

basis of compartment-specific infection and colonization. To gain insights into the phenotypic 116 

consequences of ID-associated genes, including adverse outcomes and complications, we 117 

perform a phenome-scale scan across hematologic, respiratory, cardiovascular, and neurologic 118 

traits. To extend these findings, we use a Mendelian Randomization framework (Lawlor et al., 119 

2008) to conduct causal inference on the effect of a clinical ID trait on an adverse clinical 120 

outcome. To elucidate the cellular mechanisms through which host genetic variation influences 121 

disease risk, we generate an atlas of gene-level associations with 79 pathogen-induced cellular 122 

phenotypes determined by High-throughput Human in vitrO Susceptibility Testing (Hi-HOST) 123 

(Wang et al., 2018) as a discovery and replication platform. The rich genomic resource we 124 

generate and the methodology we develop promise to accelerate discoveries on the molecular 125 

mechanisms of infection, improve our understanding of adverse outcomes and complications, 126 

and enable prioritization of new therapeutic targets. 127 

 128 
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RESULTS 129 

A schematic diagram illustrating our study design and the reference resource we provide 130 

can be found in Figure 1. Here we analyzed 35 clinical ID traits, 79 pathogen-exposure-induced 131 

cellular traits, and 197 (cardiovascular, hematologic, neurologic, and respiratory) traits. We 132 

performed GWAS and TWAS (Gamazon et al., 2015; Gusev et al., 2016) to investigate the 133 

genetic basis of the ID traits and their potential adverse outcomes and complications. We 134 

conducted causal inference within a Mendelian Randomization framework (Davey Smith and 135 

Hemani, 2014), exploiting genetic instruments for naturally “randomized controlled trials” to 136 

evaluate the causality of an observed association between a modifiable exposure or risk factor 137 

and a clinical phenotype. We generate a rich resource for understanding the genetic and 138 

molecular basis of infection and potential adverse effects and complications.  139 

 140 

GWAS and TWAS of 35 infectious disease clinical phenotypes implicate broad range of 141 

molecular mechanisms 142 

We sought to characterize the genetic determinants of 35 ID traits, including many which 143 

have never been investigated using a genome-wide approach. First, we performed GWAS of 144 

each of these phenotypes using a cohort of 23,294 patients of European ancestry with 145 

extensive EHR information from the BioVU (Roden et al., 2008). We identified genome-wide 146 

significant associations (p < 5x10-8) for 13 ID traits (Figure 2A and Supplementary Table 1). The 147 

SNP rs17139584 on chromosome 7 was our most significant association (p = 1.21 x 10-36) 148 

across all traits, with bacterial pneumonia. A LocusZoom plot shows several additional genome-149 

wide significant variants in the locus (Figure 2B), in low linkage disequilibrium (r2 < 0.20) with 150 

the sentinel variant rs17139584, including variants in the MET gene and in CFTR. The MET 151 

gene acts as a receptor to Listeria monocytogenes internalin InlB, mediating entry into host 152 

cells; interestingly, listeriosis, a bacterial infection caused by this pathogen, can lead to 153 

pneumonia (García-Montero et al., 1995). Given the observed associations in the cystic fibrosis 154 
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gene CFTR (~650 Kb downstream of MET), we also asked whether the rs17139584 association 155 

was driven by cystic fibrosis. Notably, the SNP remained nominally significant, though its 156 

significance was substantially reduced, after adjusting for cystic fibrosis status (p = 0.007; see 157 

Methods) or excluding the cystic fibrosis cases (p = 0.02). The LD profile of the genome-wide 158 

significant results in this locus (Figure 2B) is consistent with the involvement of multiple gene 159 

mechanisms (e.g., MET and CFTR) underlying bacterial pneumonia risk. The rs17139584 160 

association replicated (p = 5.3x10-3) in the UK Biobank (Bycroft et al., 2018) (Supplementary 161 

Table 2). Eighty percent to ninety percent of patients with cystic fibrosis suffer from respiratory 162 

failure due to chronic bacterial infection (with Pseudomonas aeruginosa) (Lyczak et al., 2002). 163 

Thus, future studies on the role of this locus in lung infection associated with cystic fibrosis may 164 

provide germline predictors of this complication; alternatively, the locus may confer susceptibility 165 

to lung inflammation, regardless of cystic fibrosis status. Collectively, our analysis shows strong 166 

support for allelic heterogeneity, with likely multiple independent variants in the locus 167 

contributing to interindividual variability in bacterial pneumonia susceptibility.  168 

Additional examples of genome-wide significant associations with other ID traits were 169 

identified. For example, rs192146294 on chromosome 1 was significantly associated (p = 170 

1.23x10-9) with Staphylococcus infection. In addition, 10 variants on chromosome 8 were 171 

significantly associated (p < 1.17x10-8) with Mycoses infection.  172 

Next, to improve statistical power, we performed multi-tissue PrediXcan (Barbeira et al., 173 

2019; Gamazon et al., 2018; Gamazon et al., 2015). We constructed an atlas of TWAS 174 

associations with these ID traits in separate European and African American ancestry cohorts 175 

(Supplementary Data File 1) as a resource to facilitate mechanistic studies. Notably, 70 genes 176 

reached experiment-wide or individual ID-trait significance for 26 of the 35 clinical ID traits 177 

(Figure 3A and Table 1). Sepsis, the clinical ID trait with the largest sample size in our data 178 

(Figure 3B; Phecode 994; number of cases 2,921; number of controls 22,874), was significantly 179 

associated (p = 8.16x10-7) with IKZF5 after Bonferroni correction for the number of genes 180 
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tested. The significant genes (Table 1) were independent of the sentinel variants from the 181 

GWAS (Supplementary Table 1), indicating that the gene-based test was identifying additional 182 

signals. 183 

Our analysis identified previously implicated genes for the specific ID traits but also 184 

proposes novel genes and mechanisms. ID-associated genes include NDUFA4 for intestinal 185 

infection, a component of the cytochrome oxidase and regulator of the electron transport chain 186 

(Balsa et al., 2012); AKIRIN2 for candidiasis, an evolutionarily conserved regulator of 187 

inflammatory genes in mammalian innate immune cells (Tartey et al., 2015; Tartey et al., 2014); 188 

ZNF577 for viral hepatitis C, a gene previously shown to be significantly hypermethylated in 189 

hepatitis C related hepatocellular carcinoma (Revill et al., 2013); and epithelial cell adhesion 190 

molecule (EPCAM) for tuberculosis, a known marker for differentiating malignant tuberculous 191 

pleurisy (Sun et al., 2014), among many others. These examples of ID-associated genes 192 

highlight the enormous range of molecular mechanisms that may contribute to susceptibility and 193 

complication phenotypes. 194 

 195 

Replication of gene-level associations with infectious diseases in the UK Biobank and FinnGen 196 

 To bolster our genetic findings and show that our results were not driven by biobank-197 

specific confounding, we performed replication analysis for a subset of ID traits available in the 198 

independent UK Biobank and FinnGen consortia datasets (see Methods). Individual gene-level 199 

replication results are provided in Supplementary Table 3. Notably, the genes associated with 200 

intestinal infection (p < 0.05, Phecode 008) in BioVU – the ID trait with the largest sample size in 201 

BioVU and with a replication dataset in the independent FinnGen biobank – showed a 202 

significantly greater level of enrichment for gene-level associations with the same trait in 203 

FinnGen compared to the remaining set of genes (Figure 3C). Thus, higher significance (i.e., 204 

lower p-value) was observed in FinnGen for the intestinal infection associated genes identified 205 

in BioVU, which included the top association NDUFA4 (discovery p = 1.83x10-9, replication p = 206 
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0.044). These results illustrate the value of exploiting large-scale biobank resources for genetic 207 

studies of ID traits- despite well-known caveats (Ko and Urban, 2013; Power et al., 2017).  208 

 209 

Tissue expression profile of infectious disease associated genes suggests tissue-dependent 210 

mechanisms 211 

The ID-associated genes tend to be less tissue-specific (i.e., more ubiquitously 212 

expressed) than the remaining genes (Figure S1A, Mann Whitney U test on the  statistic, p = 213 

7.5x10-4), possibly reflecting the multi-tissue PrediXcan approach we implemented, which 214 

prioritizes genes with multi-tissue support to improve statistical power, but also the genes’ 215 

pleiotropic potential. We hypothesized that tissue expression profiling of ID-associated genes 216 

can provide additional insights into disease etiologies and mechanisms. For example, the 217 

intestinal infection associated gene NDUFA4 is expressed in a broad set of tissues, including 218 

the alimentary canal, but displays relatively low expression in whole blood (Figure S1B). In 219 

addition, TOR4A, the most significant association with bacterial pneumonia (Table 1), is most 220 

abundantly expressed in lung, consistent with the tissue of pathology, but also in spleen (Figure 221 

S1C), whose rupture is a lethal complication of the disease (Domingo et al., 1996; Gerstein et 222 

al., 1967). These examples illustrate the diversity of tissue-dependent mechanisms that may 223 

contribute in complex and dynamic ways to interindividual variability in ID susceptibility and 224 

progression. We therefore provide a resource of single-tissue gene-level associations with the 225 

ID traits to facilitate molecular or clinical follow-up studies.  226 

     227 

Genetic overlap reveals host gene expression programs and common pathways as targets for 228 

pathogenicity 229 

We hypothesized that ID-associated genes implicate shared functions and pathways, 230 

which may reflect common targeted host transcriptional programs. Among the 70 gene-level 231 

associations with the 35 clinical ID traits, 40 proteins are post-translationally modified by 232 
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phosphorylation (Supplementary Table 4), a significant enrichment (Benjamini-Hochberg 233 

adjusted p < 0.10 on DAVID annotations (Huang da et al., 2009)) relative to the rest of the 234 

genome, indicating that phosphoproteomic profiling can shed substantial light on activated host 235 

factors and perturbed signal transduction pathways during infection (Soderholm et al., 2016; 236 

Stahl et al., 2013). In addition, 16 proteins are acetylated, consistent with emerging evidence 237 

supporting this mechanism in the host antiviral response (Murray et al., 2018) (Supplementary 238 

Table 5). These data identify specific molecular mechanisms across ID traits with critical 239 

regulatory roles (e.g., protein modifications) in host response among the ID-associated genes. 240 

We tested the hypothesis that distinct infectious agents exploit common pathways to find 241 

a compatible intracellular niche in the host, potentially implicating shared genetic risk factors. 242 

Notably, 64 of the 70 ID-associated genes (Table 1) were nominally associated (p < 0.05) with 243 

multiple ID traits (Supplementary Table 6). These genes warrant further functional study as 244 

broadly exploited mechanisms targeted by pathogens or as broadly critical to pathogen-elicited 245 

immune response. Gene Set Enrichment Analysis (GSEA) of these genes implicated a number 246 

of significant (FDR < 0.05) gene sets (Figure 4A), including those involved in actin-based 247 

processes and cytoskeletal protein binding, processes previously demonstrated to mediate host 248 

response to pathogen infection (Taylor et al., 2011). Since diverse bacterial and viral pathogens 249 

target host regulators that control the cytoskeleton (which plays a key role in the biology of 250 

infection) or modify actin in order to increase virulence, intracellular motility, or intercellular 251 

spread (Aktories and Barbieri, 2005; Yu et al., 2011; Zahm et al., 2013), these results 252 

reassuringly lend support to the involvement of the genes in infectious pathogenesis.  253 

Notably, we identified an enrichment (FDR = 9.68x10-3) for a highly conserved motif 254 

(“TCCCRNNRTGC”), within 4 kb of transcription start site (TSS) of multi-ID associated genes 255 

(Figure 4A-B), that does not match any known transcription factor binding site (Xie et al., 2005) 256 

and may be pivotal for host-pathogen interaction for the diversity of infectious agents included in 257 

our study. In addition, we found that several of the multi-ID associated genes (with the 258 
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sequence motif near the TSS) have been observed in host-pathogen protein complexes (by 259 

both coimmunoprecipitation and affinity chromatography approaches) for the specific pathogens 260 

responsible for the ID traits (Ammari et al., 2016). See Supplementary Data File 2 for complete 261 

list of host-pathogen interactions for these genes/proteins. One example is CDK5, a gene 262 

significantly associated with Gram-positive septicemia (Table 1) and nominally associated with 263 

multiple ID traits, including herpes simplex. CDK5 is activated by p35, whose cleaved form p25 264 

results in subcellular relocalization of CDK5. The CDK5-p25 complex regulates inflammation 265 

(Na et al., 2015) (whose large-scale disruption is characteristic of septicemia) and induces 266 

cytoskeletal disruption in neurons (Patrick et al., 1999) (where the herpes virus is responsible 267 

for lifelong latent infection). The A and B chains of the CDK5-p25 complex (Figure 4C for 268 

structure diagram (Tarricone et al., 2001)) are required for cytoskeletal protein binding (CDK5), 269 

whereas the D and E chains (p25) are involved in actin regulation and kinase function, all 270 

molecular processes implicated in our pathway analysis. Intriguingly, blocking CDK5 can have a 271 

substantial impact on the outcome of inflammatory diseases including sepsis (Pfänder et al., 272 

2019), enhancing the anti-inflammatory potential of immunosuppressive treatments, and has 273 

been shown to attenuate herpes virus replication (Man et al., 2019), suggesting that modulation 274 

of this complex is important for viral pathogenesis. 275 

CDK5 is also altered by several other viruses, identified using unbiased mass 276 

spectrometry analysis (Davis et al., 2015) (Figure 4D), indicating a broadly exploited mechanism 277 

(across pathogens) that is consistent with the gene’s multi-ID genetic associations in our TWAS 278 

data (Figure 4D). The CDK5-interaction proteins include: 1) M2_134A1 (matrix protein 2, 279 

influenza A virus), a component of the proton-selective ion channel required for viral genome 280 

release during cellular entry and is targeted by the anti-viral drug amantadine (Hay et al., 1985); 281 

2) VE7_HPV16, a component of human papillomavirus (HPV) required for cellular 282 

transformation and trans-activation through disassembly of E2F1 transcription factor from RB1 283 

leading to impaired production of type I interferons (Barnard et al., 2000; Chellappan et al., 284 
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1992; Phelps et al., 1988); 3) VE7_HPV31, which has been shown to engage histone 285 

deacetylases 1 and 2 to promote HPV31 genome maintenance (Longworth and Laimins, 2004); 286 

4) VCYCL_HHV8P (cyclin homolog within the human herpesvirus 8 genome), which has been 287 

shown to control cell cycle through CDK6 and induce apoptosis through Bcl2 (Duro et al., 1999; 288 

Ojala et al., 1999; Ojala et al., 2000); and 5) F5HC81_HHV8, predicted to act as a viral cyclin 289 

homolog. Overall, these data underscore the evolutionary strategies that pathogens have 290 

evolved to promote infection, including the hijacking of the host transcriptional machinery and 291 

the biochemical alterations of the host proteome.  292 

 293 

Serology and culture data reveal insights into clinical infection and pathogen colonization 294 

 We exploited extensive clinical microbiological laboratory analysis of blood (Figure 5A), 295 

bronchoalveolar lavage, sputum, sinus/nasopharyngeal, and tracheal cultures for bacterial and 296 

fungal pathogen genus identification (Supplemental Figure 2A-F), as well as respiratory viral 297 

genus identification (Supplemental Figure 5G) (see Methods) to evaluate phenotype resolution 298 

and algorithm. For example, we found that Staphylococcus infection (Phecode = 041.1) 299 

performed well in classifying Staphylococcus aureus infection based on blood culture data. The 300 

area under the Receiver Operating Characteristic (ROC) curve was 0.938 (Figure 5B) with 301 

standard error of 0.008 generated from bootstrapping (see Methods). The area under the curve 302 

(AUC) quantifies the probability that the Phecode classifier ranks a randomly chosen positive 303 

instance of Staphylococcus aureus infection in blood higher than a randomly chosen negative 304 

one. In comparison, the first principal component (PC) in our European ancestry samples 305 

showed AUC of 0.514 (Figure 5B) while sex and age performed even more poorly (AUC ≈ 306 

0.50). We then tested a logistic model with the Phecode classifier, age, sex, and the first 5 PCs 307 

in the model. The Phecode classifier was significantly associated (p < 2.2x10-16) after 308 

conditioning on the remaining covariates. The fitted value from the joint model consisting of the 309 
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remaining covariates showed AUC of 0.568 (Figure 5B). Collectively, culture data for improved 310 

resolution of clinical infection and pathogen colonization provide validation of our approach.  311 

 312 

Phenome scan of clinical ID-associated genes identifies adverse outcomes and complications 313 

 Electronic Health Records (EHR) linked to genetic data may reveal insights into 314 

associated clinical sequalae (Bastarache et al., 2018; Denny et al., 2013; Unlu et al., 2020). To 315 

assess the phenomic impact of ID-associated genes (Table 1), we performed a phenome-scale 316 

scan across 197 hematologic, respiratory, cardiovascular, and neurologic traits available in 317 

BioVU (Figure 6A and Supplementary Data File 3). Correcting for total number of genes and 318 

phenotypes tested, we identified four gene-phenotype pairs reaching experiment-wide 319 

significance: 1) WFDC12, our most significant (p = 4.23x10-6) association with meningitis and a 320 

known anti-bacterial gene (Hagiwara et al., 2003), is also associated with cerebral edema and 321 

compression of brain (p = 1.35x10-6), a feared clinical complication of meningitis (Niemöller and 322 

Täuber, 1989); 2) TM7SF3, the most significant gene with Gram-negative sepsis (p = 1.37x10-323 

6), is also associated with acidosis (p = 1.95x10-6), a known metabolic derangement associated 324 

with severe sepsis (Suetrong and Walley, 2016), and a gene known to play a role in cell stress 325 

and the unfolded protein response (Isaac et al., 2017); 3) TXLNB, the most significant gene 326 

associated with viral warts and human papillomavirus infection (p = 4.35x10-6), is also 327 

associated with abnormal involuntary movements, p = 1.39x10-6; and 4) RAD18, the most 328 

significant gene associated with Streptococcus infection (p = 2.01x10-6), is also associated with 329 

anemia in neoplastic disease (p = 3.10x10-6). Thus, coupling genetic analysis to EHR data with 330 

their characteristic breadth of clinical traits offers the possibility of determining the phenotypic 331 

consequences of ID-associated genes, including known (in the case of WFDC12 and TM7SF3) 332 

potentially adverse health outcomes and complications. 333 

 334 
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Mendelian Randomization provides causal support for the effect of infectious disease trait on 335 

identified adverse phenotypic outcomes/complications  336 

Since our gene-level associations with clinical ID diagnoses implicated known adverse 337 

complications, we sought to explicitly evaluate the causal relation between the ID traits and the 338 

adverse outcomes/complications. We utilized the Mendelian Randomization paradigm (Lawlor 339 

et al., 2008) (Figure 6B), which exploits genetic instruments to make causal inferences in 340 

observational data, in effect, performing randomized controlled trials to evaluate the causal 341 

effect of “exposure” (i.e., ID trait) on “outcome” (e.g., the complication). Specifically, we 342 

conducted multiple-instrumental-variable causal inference using GWAS (Davey Smith and 343 

Hemani, 2014) and PrediXcan summary results.  First, we used independent SNPs (r2 = 0.01) 344 

that pass a certain threshold for significance with the ID trait (p < 1.0x10-5) as genetic 345 

instruments. To control for horizontal pleiotropy and account for the presence of invalid genetic 346 

instruments, we utilized MR-Egger regression and weighted-median MR (see Methods) 347 

(Bowden et al., 2015; Bowden et al., 2016).   348 

Here, we performed Mendelian Randomization on the ID trait and a complication trait 349 

identified through the unbiased phenome scan. This analysis yields causal support for the effect 350 

of 1) Gram-negative sepsis on acidosis (Figure 6C, weighted-median estimator p = 2.0x10-7); 351 

and 2) meningitis on cerebral edema and compression of brain (Figure 5C, weighted-median 352 

estimator p = 2.7x10-3). Our resource establishes a framework to elucidate the genetic 353 

component of an ID trait and its impact on the human disease phenome, enabling causal 354 

inference on the effect of an ID trait on potential complications. 355 

 356 

 357 

TWAS of 79 pathogen-exposure induced cellular traits highlights cellular mechanisms and 358 

enables validation of ID gene-level associations 359 
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Elucidating how the genes influence infection-related cellular trait variation may provide 360 

a mechanistic link to ID susceptibility. We thus performed TWAS of 79 pathogen-induced 361 

cellular traits – including infectivity and replication, cytokine levels, and host cell death, among 362 

others (Wang et al., 2018) (Supplementary Data File 4). Across all cellular traits, we identified 363 

38 gene-level associations reaching trait-level significance (p < 2.87x10-6, correcting for number 364 

of statistical tests; Figure 7A). In addition, we identified significantly more replicated SNP 365 

associations than expected by chance (binomial test, p < 0.05) across all ID traits 366 

(Supplementary Data File 4) and ID traits which map directly to cellular phenotypes 367 

(Supplementary Data File 5). 368 

Integration of EHR data into Hi-HOST (Wang et al., 2018) may enable replication of 369 

gene-level associations with a clinical ID trait. Indeed, we observed a marked enrichment for 370 

genes associated with direct Staphylococcus toxin exposure cellular response in Hi-HOST 371 

among the human Gram-positive septicemia associated genes from BioVU (see Supplementary 372 

Data File 4 for genes with FDR < 0.05) (Figure 7B). In addition, integration of EHR data into Hi-373 

HOST may improve the signal-to-noise ratio in Hi-HOST TWAS data. Indeed, the top 300 genes 374 

nominally associated (p < 0.016) with Staphylococcus infection (Phecode 041.1) in BioVU 375 

departed from null expectation for their associations with Staphylococcus toxin exposure in Hi-376 

HOST compared to the full set of genes, which did not (Figure 7C), as perhaps expected due to 377 

the modest sample size. Collectively, these results demonstrate that integrating the EHR-378 

derived TWAS results into TWAS of the cellular trait can greatly improve identification of 379 

potentially relevant pathogenic mechanisms.  380 

 381 

Phenome scan of TWAS findings from Hi-HOST 382 

 To identify potential adverse effects of direct pathogen exposure, we performed a 383 

phenome-scan across the 197 cardiovascular, hematologic, neurologic, and respiratory traits as 384 

described above. Our top gene-phenotype pairs include: 1) FAM171B, our most significant 385 
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association with interleukin 13 (IL-13) levels is also associated with alveolar and parietoalveolar 386 

pneumonopathy (p = 4.04x10-5), a phenotype known to be modulated by IL-13 dependent 387 

signaling (Zheng et al., 2008); 2) OSBPL10, the most significant gene associated with cell death 388 

caused by Salmonella enterica serovar Typhimurium, is also associated with intracerebral 389 

hemorrhage (p = 4.99x10-5), a known complication of S. Typhimurium endocarditis (Gómez-390 

Moreno et al., 2000). These data highlight the utility of joint genetic analysis of pathogen-391 

exposure-induced phenotypes and clinical ID traits to gain insights into the molecular and 392 

cellular basis of complications and adverse outcomes. However, more definitive conclusions will 393 

require larger sample sizes and functional studies.  394 

 395 

DISCUSSION 396 

 ID susceptibility is a complex interplay between host genetic variation and pathogen-397 

exposure induced mechanisms. While GWAS has begun to identify population-specific loci 398 

conferring ID risk (Tian et al., 2017), the underlying function of identified variants, predominantly 399 

in non-coding regulatory regions, remains poorly understood. Molecular characterization of 400 

infectious processes has been, in general, agnostic to the genetic architecture of clinical 401 

infection. Although pathogen exposure is requisite to display clinical ID traits, the role of host 402 

genetic variation remains largely unexplored.  403 

Our study provides a reference atlas of genetic variants and genetically-determined 404 

expression traits associated with 35 clinical ID traits from BioVU. We identified 70 gene-level 405 

associations, with replication for a subset of ID traits in the UK Biobank and FinnGen. A 406 

phenome scan across 197 hematologic, respiratory, cardiovascular, and neurologic traits 407 

proposes a molecular basis for the link between certain ID traits and outcomes. Using 408 

Mendelian Randomization, we determined the ID traits which, as exposure, show significant 409 

causal effect on outcomes. Finally, we developed a TWAS catalog of 79 pathogen-exposure 410 
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induced cellular traits (Hi-HOST) in a broad collection of tissues, which provides a platform to 411 

interrogate mediating cellular and molecular mechanisms. 412 

Genetic predisposition to ID onset and progression is likely to be complex (Casanova, 413 

2015a). Monogenic mechanisms conferring ID risk have been proposed, but these mechanisms 414 

are unlikely to explain the broad contribution of host genetic influence on ID risk (Casanova, 415 

2015b). Thus, a function-centric methodology is necessary to disentangle potentially causal 416 

pathways. Our approach builds on PrediXcan, which estimates the genetically-determined 417 

component of gene expression (Gamazon et al., 2015). The genetic component of gene 418 

expression can then be tested for association with the trait, enabling insights into potential 419 

pathogenic mechanisms (Gamazon et al., 2019) and novel therapeutic strategies (So et al., 420 

2017). 421 

Our study identified genes with diverse functions, including roles in mitochondrial 422 

bioenergetics (Balsa et al., 2012; El-Bacha and Da Poian, 2013), regulation of cell death (Labbé 423 

and Saleh, 2008), and of course links to host immune response (Brouwer et al., 2019; Liang et 424 

al., 2019; Pan et al., 2017; Saitoh et al., 2009; Sharfe et al., 1997; Tsuboi and Meerloo, 2007; 425 

Walenna et al., 2018; Willis et al., 2009; Yu et al., 2017; Zhang et al., 2015). These diverse 426 

functions may therefore contribute to pleiotropic effects on clinical outcomes and complications. 427 

In addition, we identified genes implicated in Mendelian diseases, for which susceptibility 428 

to infection is a predominant feature, including WIPF1 (OMIM #614493; recurrent infections and 429 

reduced natural killer cell activity (Lanzi et al., 2012)), IL2RA (OMIM #606367; recurrent 430 

bacterial infections, recurrent viral infections, and recurrent fungal infections (Sharfe et al., 431 

1997)), and TBK1 (OMIM #617900; herpes simplex encephalitis (HSE), acute infection, and 432 

episodic HSE (Herman et al., 2012)). These examples show that the identified genes may also 433 

confer predisposition, with near-complete penetrance, to an infectious disease related trait 434 

displaying true Mendelian segregation.  435 
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Enrichment analysis of 64 of the 70 ID-associated genes with nominal support for 436 

associations with other clinical ID traits identified modulation of the actin cytoskeleton as a 437 

potential shared mechanism of host susceptibility to infection (Figure 4). While manipulation of 438 

the actin cytoskeleton by pathogens is hardly a new concept, our study identified specific host 439 

genetic variation in actin regulatory genes that is potentially causative of clinical ID 440 

manifestations. In addition to pathogen interaction with the cytoskeletal transport machinery, 441 

efficient exploitation of host gene expression program is crucial for successful invasion and 442 

colonization, and here we mapped several pathogenicity-relevant targets. Notably, we observed 443 

a significant enrichment for a highly conserved sequence motif, within 4 kb of a multi-ID-444 

associated gene’s TSS, that is not a known transcription factor binding site. The motif’s 445 

presence near multi-ID associated genes suggests a broad regulatory role in host-pathogen 446 

interaction, involving the diversity of pathogens examined here, towards successful 447 

reprogramming of host gene expression. Furthermore, we identified a significant enrichment for 448 

phosphorylated host proteins, suggesting the value of global phosphoproteomic profiling, which 449 

has recently been used to prioritize pharmacological targets for the novel SARS-CoV-2 virus 450 

(Bouhaddou et al., 2020). These data provide several potential avenues by which host 451 

susceptibility can be breached by a pathogen’s requirement to maintain a niche through 452 

manipulation of host cellular machinery. 453 

To obtain additional support for our gene-level associations, we leveraged two genomic 454 

resources with rich phenotypic information (UK Biobank (Bycroft et al., 2018) and FinnGen 455 

(Locke et al., 2019)). These data will prove increasingly useful to characterizing the genetic 456 

basis of the ID-associated adverse outcomes and complications. Despite the caveats for the 457 

use of EHR in genetic analyses of ID traits (Ko and Urban, 2013; Power et al., 2017), the 458 

growing availability of such independent datasets will facilitate identification of robust genetic 459 

associations. Perhaps more importantly, the breadth of clinical phenotypes in these EHR 460 
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datasets should enable identification of associated adverse outcomes and complications for the 461 

ID-associated genes.  462 

The primary challenges in conducting GWAS of ID traits include phenotype definition 463 

and case-control misclassification. Obstacles to accurate phenotype definition include the 464 

requirement of specialized laboratory testing to identify specific pathogens and administration of 465 

prophylactic therapeutics complicating identification of potentially causative pathogens. 466 

Seropositivity may result from the complex genetic properties of the pathogen and the particular 467 

mechanisms governing host-pathogen interaction. However, seropositivity may not indicate 468 

clinical manifestations of the disease. On the other hand, seronegativity may imply lack of 469 

exposure to the pathogen, the absence of infection even in the presence of exposure, or host 470 

resistance to infection. Anchoring the analysis to host genetic information (as in our use of 471 

genetically-determined expression) and replication of discovered associations may address 472 

some aspects of this challenge. Here we exploit an extensive resource of culture data (for 473 

identification of pathogens from clinical specimens) linked to whole-genome genetic information 474 

to provide additional support to our gene-level associations. Future studies may implement 475 

more complex GWAS models, including incorporating the pathogen genome. 476 

Mendelian Randomization provides a framework to perform causal interference on the 477 

effect of the exposure on the outcome (Davey Smith and Hemani, 2014; Lawlor et al., 2008). 478 

We leveraged a summary statistics based approach to test the causal effect of an ID trait on 479 

potential adverse outcomes, using genetic instruments. Mendelian Randomization requires 480 

three assumptions: 1) the genetic instrument is associated with exposure (i.e., ID trait); 2) the 481 

genetic instrument is associated with the outcome (i.e., adverse outcome or complication) only 482 

through the exposure of interest; and 3) the genetic instrument is affecting the outcome 483 

independent of other factors (i.e., confounders). Violations of these assumptions can have 484 

critical implications for the interpretation of the results. Thus, several approaches have been 485 

developed that are robust to these violations. In the case of ID traits, a methodology that 486 
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distinguishes causality from comorbidity is critical. While many phenotypes are highly comorbid 487 

and suspected to have a causal relationship (e.g., smoking and depression/anxiety), Mendelian 488 

Randomization does not necessarily support the causal hypothesis (Taylor et al., 2014). 489 

Furthermore, since RCTs cannot be ethically conducted for ID traits and adverse outcomes, the 490 

methodology offers an approach for elucidating the role of an infection phenotype or pathogen 491 

exposure in disease causation using an observational study design. Here, we found strong 492 

causal support for the effect of certain clinical ID traits on potential adverse complications 493 

identified through a phenome scan of the ID-associated genes: 1) meningitis - cerebral edema 494 

and compression of brain; and 2) Gram-negative sepsis - acidosis. These data indicate that 495 

genetic risk factors for select adverse outcomes and complications exert their phenotypic effect 496 

through the relevant ID traits. 497 

To enable investigations into mediating cellular and molecular traits for the ID-associated 498 

genes, we provide a functional genomics resource built on a high-throughput in vitro pathogen 499 

infection screen (Hi-HOST) (Wang et al., 2018). Integration of EHR data into Hi-HOST facilitates 500 

replication of gene-level associations with clinical ID traits and greatly improves the signal-to-501 

noise ratio. This discovery and replication platform, encompassing human phenomics and 502 

cellular microbiology, provides a high-throughput approach to linking host cellular processes to 503 

clinical ID traits and adverse outcomes.  504 

Although additional mechanistic studies are warranted, our study lays the foundation for 505 

anchoring targeted molecular studies in human genetic variation. Elucidation of host 506 

mechanisms exploited by pathogens requires multi-disciplinary approaches. Here, we show the 507 

broader role of host genetic variation, implicating diverse disease mechanisms. Our study 508 

generates a rich resource and a genetics-anchored methodology to facilitate investigations of 509 

ID-associated clinical outcomes and complications, with important implications for the 510 

development of preventive strategies and more effective therapeutics. Causal inference on the 511 

clinical ID traits and potential complications promises to expand our understanding of the 512 
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molecular basis for the link and, crucially, enable prediction and prevention of serious adverse 513 

events. 514 

  515 
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FIGURE LEGENDS 854 

Figure 1. Overview of ID atlas resource. List of ID traits tested with corresponding Phecode 855 
(phewascatalog.org) in parentheses.  856 
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Figure 2. Genome-wide association study (GWAS) of ID traits.  (A) Threshold for inclusion of 861 
SNP associations was set at 1.0x10-4. Genome-wide significance for an ID trait was set at p = 862 
5.0x10-8, as indicated by the horizontal dotted line. The subset of 13 ID traits (among the full set 863 
tested) with variants that meet the traditional genome-wide significance threshold are included. 864 
The top variant association for each of the 13 traits is labeled. The most significant variant 865 
association is with bacterial pneumonia (p < 1.0x10-30). (B) LocusZoom plot at the sentinel 866 
variant, rs17139584, associated with bacterial pneumonia. Several variants in low LD (r2 < 0.20) 867 
with the sentinel variant, including variants in the cystic fibrosis gene CFTR and in the MET 868 
gene >650 Kb upstream, are genome-wide significant for bacterial pneumonia. The sentinel 869 
variant remains statistically significant (p = 0.007) after adjusting for a diagnosis of cystic 870 
fibrosis.  871 
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Figure 3. Transcriptome-wide association studies (TWAS) of 35 ID traits reveal novel ID-874 
associated genes. The genetic component of gene expression for autosomal genes was 875 
individually tested for association with each of 35 ID traits (see Methods). (A) Experiment-wide 876 
or ID-specific significant genes are displayed on the ideogram using their chromosomal 877 
locations and color-coded using the associated ID traits. Most associations represent unique 878 
genes within the implicated loci, suggesting the genes are not tagging another causal gene. A 879 
locus on chromosome 9, by contrast, shows multiple associations with the same ID trait, which 880 
may indicate correlation of the expression traits with a single causal gene in the locus. (B) 881 
Manhattan plot shows the PrediXcan associations with sepsis (Phecode 994; number of cases 882 
2,921; number of controls 22,874). Dashed line represents p < 5x10-5. The gene IKZF5 was 883 
significant (p = 8.16x10-7) after Bonferroni correction for the number of genes tested. (C) Q-Q 884 
plot of FinnGen replication p-values for genes associated with intestinal infection (p < 0.05) in 885 
BioVU (red) compared to the remaining set of genes (black). The ID-associated genes tended to 886 
be more significant in the independent dataset than the remaining genes, as evidenced by the 887 
leftward shift in the Q-Q plot. 888 
 889 
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Figure 4. Enriched pathways across multiple ID traits and pathogen evolutionary strategies to 892 
promote infection. (A) Gene set enrichment analysis of ID associated genes having also 893 
nominal associations with additional ID traits. All gene sets satisfied false discovery rate < 0.05 894 
for pathway enrichment and included known biological processes (e.g. protein complex 895 
formation, cytoskeletal protein binding, cell death, actin motility, etc.) relevant to the biology of 896 
infection. (B) Highly conserved motif “TCCCRNNRTGC”, within 4 kb of TSS of ID-associated 897 
genes, is enriched among the multi-ID associated genes and does not match any known 898 
transcription factor binding site. Genes with this motif near the TSS include AKIRIN2, CDK5, 899 
RAD50, PTCD3, and CERS3. This suggests a strategy that the pathogens may broadly exploit 900 
to hijack the host transcriptional machinery. (C) CDK5 is an example of a multi-ID associated 901 
gene, significantly associated with Gram-positive septicemia and nominally associated with 902 
other IDs, including herpes simplex virus. CDK5 is activated by its regulatory subunit p35/p25. 903 
The CDK5-p25 complex regulates inflammation (whose large-scale disruption is characteristic 904 
of septicemia) and induces cytoskeletal disruption in neurons (where the herpes virus promotes 905 
lifelong latent infection). Structure of the CDK5-p25 complex (PDB: 1H4L, (Tarricone et al., 906 
2001)) is shown here. The A and B chains are required for cytoskeletal protein binding (CDK5), 907 
whereas the D and E chains (p25) are involved in actin regulation and kinase function, all 908 
functions implicated in our pathway analysis. (D) Multi-ID associated genes identified by our 909 
study have also been observed in host-pathogen protein complexes (by coimmunoprecipitation, 910 
affinity chromatography, and two-hybrid approaches, among others) for the specific pathogens 911 
responsible for the ID traits. Interactions of pathogen proteins with CDK5 are shown here. 912 
M2_134A1 (UniProt: PO6821) is the matrix protein 2 component of the proton-selective ion 913 
channel required for influenza A viral genome release during cellular entry and is targeted by 914 
the anti-viral drug amantadine (Hay et al., 1985). VE7_HPV16 (UniProt: PO3129) is a 915 
component of human papillomavirus (HPV) required for cellular transformation and trans-916 
activation through disassembly of E2F1 transcription factor from RB1 leading to impaired 917 
production of type I interferons (Barnard et al., 2000; Chellappan et al., 1992; Phelps et al., 918 
1988). VE7_HPV31 (UnitProt: P17387) engages histone deacetylases 1 and 2 to promote 919 
HPV31 genome maintenance (Longworth and Laimins, 2004). VCYCL_HHV8P (UniProt: 920 
Q77Q36) is a cyclin homolog within the human herpesvirus 8 genome that has been shown to 921 
control cell cycle through CDK6 and induce apoptosis through Bcl2 (Duro et al., 1999; Ojala et 922 
al., 1999; Ojala et al., 2000). F5HC81_HHV8 (UniProt: F5HC81) is not well-characterized, but 923 
predicted to act as a viral cyclin homolog. This suggests a second strategy that the pathogens 924 
exploit, i.e., alteration of the host proteome, to promote infection. 925 
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Figure 5. Pathogen genus identification from clinical blood cultures linked to whole-927 
genome information reveals insights into host colonization and infection. (A) Bacterial 928 
and fungal pathogens identified from blood (n = 7,699 positive cultures across 94 genera) from 929 
2,417 individuals. (B) Area under the receiver operating characteristic curve (AUC) showing that 930 
the clinical trait Staphylococcus infection (Phecode = 041.1) performs well in classifying 931 
Staphylococcus aureus infection based on blood culture data from (A), with AUC of 0.938 with 932 
standard error of 0.008. The first PC in the European ancestry samples and a model with age, 933 
sex, and the first 5 PCs, both with substantially lower performance (AUC of 0.514 and 0.568, 934 
respectively), are also shown. 935 
 936 
 937 
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Figure 6. Phenome-scale scan of 70 ID-associated genes across 197 cardiovascular, 939 
hematologic, neurologic, and respiratory phenotypes (cases > 200) in BioVU 940 
(phewascatalog.org) identifies genes association with both disease risk and corresponding 941 
known complications of the infection. (A) Each dot represents the association of an ID-942 
associated gene with one of the 197 (hematologic, respiratory, cardiovascular, and neurologic) 943 
phenotypes. Horizontal red line indicates threshold for statistical significance correcting for 944 
number of phenotypes and ID-associated genes tested. We identify four gene-phenotype pairs 945 
reaching experiment-wide significance: 1) WFDC12, our most significant (p = 4.23x10-6) 946 
association with meningitis, is also associated with cerebral edema and compression of brain (p 947 
= 1.35x10-6), a feared clinical complication of meningitis (Niemöller and Täuber, 1989); 2) 948 
TM7SF3, the most significant gene with Gram-negative sepsis (p = 1.37x10-6), is also 949 
associated with acidosis (p = 1.95x10-6), a known metabolic derangement associated with 950 
severe sepsis (Suetrong and Walley, 2016); 3) TXLNB, the most significant gene associated 951 
with viral warts and human papillomavirus infection (p = 4.35x10-6), is also associated with 952 
abnormal involuntary movements, p = 1.39x10-6; and 4) RAD18, the most significant gene 953 
associated with Streptococcus infection (p = 2.01x10-6), is also associated with anemia in 954 
neoplastic disease (p = 3.10x10-6). (B) Mendelian randomization framework. P-value threshold 955 
used to define an instrumental variable was set at p < 1.0x10-5 and variants in linkage 956 
equilibrium (r2 = 0.01) were used. (C) Mendelian Randomization provides strong support for 957 
causal exposure-outcome relationships for 1) meningitis and compression of brain (left, median-958 
weighted estimator p = 2.7x10-3); and 2) gram-negative septicemia and acidosis (right, median-959 
weighted estimator p = 2.0x10-7). Grey lines indicate 95% confidence interval. 960 
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Figure 7. TWAS of 79 pathogen-exposure induced cellular traits improves identification of 962 
pathogen-induced cellular mechanisms. (A) Genes reaching significance in Hi-HOST after 963 
correction for the total number of genes and cellular phenotypes tested. (B) Integration of EHR 964 
data into Hi-HOST facilitates replication of gene-level associations with a clinical ID trait. Genes 965 
nominally associated (p < 0.05) with Gram-positive septicemia (Phecode 038.2) in BioVU show 966 
significant enrichment for Staphylococcus toxin exposure, a Hi-HOST phenotype. The Q-Q plot 967 
shows the distribution of TWAS p-values in the Hi-HOST data for the top genes in the BioVU 968 
data. False discovery rate (FDR) thresholds at 0.25 (blue), 0.10 (green), and 0.05 (red) are 969 
shown. (C) Integration of EHR data into Hi-HOST also improves the signal-to-noise ratio in Hi-970 
HOST. For example, the top 300 genes nominally associated with Staphylococcus infection 971 
(Phecode 041.1) in BioVU (p < 0.016, red) depart from null expectation for their TWAS 972 
associations with Staphylococcus toxin exposure in Hi-HOST compared to the full set of genes 973 
(black).  974 
 975 
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Table 1. Significant trait-specific gene-level associations with individual infectious 980 
disease phenotypes (for which number of cases > 100). Experiment-wide findings are 981 
noted in bold. 982 

 983 
Gene PheCode Phenotype Cases Controls Ancestry Odds ratio P value 

IKZF5 994 Sepsis 2,921 22,874 European 0.91 8.16x10-7 

AKIRIN2 112 Candidiasis 2,284 21,426 European 0.91 2.83x10-6 

PSMG1 041.1 Staphylococcus infection 2,180 19,844 European 0.90 3.13x10-6 

AGTR1 079 Viral infection 1,811 20,904 European 1.12 1.49x10-6 

SLC35F6 079 Viral infection 1,811 20,904 European 0.89 3.30x10-6 

NDUFA4 008 Intestinal infection 1,608 24,187 European 1.16 1.83x10-9 

C10orf120 008 Intestinal infection 1,608 24,187 European 1.13 4.92x10-8 

RAD18 041.2 Streptococcus infection 1,262 19,844 European 1.16 2.01x10-6 

MAPK8IP2 041.2 Streptococcus infection 1,262 19,844 European 1.14 3.81x10-6 

AVIL 041.4 Escherichia Coli 1,231 19,844 European 1.16 1.58x10-6 

STAP2 078 Viral warts and human papilloma virus 1,152 20,904 European 1.15 2.33x10-6 

TXLNB 078 Viral warts and human papilloma virus 1,152 20,904 European 0.86 4.35x10-6 

SLCO1A2 053 Herpes zoster 989 20,904 European 0.93 1.64x10-7 

CLDN20 053 Herpes zoster 989 20,904 European 0.86 4.54x10-6 

IGF2 041.9 Infection with drug-resistant organism 893 19,844 European 0.83 4.01x10-7 

CERS3 041.9 Infection with drug-resistant organism 893 19,844 European 1.17 4.18x10-6 

TOR4A 480.1 Bacterial pneumonia 862 18,054 European 0.84 5.15x10-8 

FAM166A 480.1 Bacterial pneumonia 862 18,054 European 1.19 1.10x10-7 

C9orf173 480.1 Bacterial pneumonia 862 18,054 European 1.18 4.48x10-7 

PIP5K1A 480.1 Bacterial pneumonia 862 18,054 European 1.16 7.00x10-7 

NELFB 480.1 Bacterial pneumonia 862 18,054 European 0.86 1.87x10-6 

AVEN 480.1 Bacterial pneumonia 862 18,054 European 0.85 3.31x10-6 

TM7SF3 038.1 Gram negative septicemia 820 19,844 European 1.17 1.37x10-6 

RAD50 038.1 Gram negative septicemia 820 19,844 European 1.17 4.50x10-6 

ZNF577 070.3 Viral hepatitis C 808 20,904 European 0.84 6.21x10-7 

ZNF649 070.3 Viral hepatitis C 808 20,904 European 0.85 1.85x10-6 

SETD9 136 Other infectious and parasitic diseases 746 24,770 European 0.83 3.04x10-8 

AC022431.1 136 Other infectious and parasitic diseases 746 24,770 European 1.20 7.92x10-8 

MYO1C 136 Other infectious and parasitic diseases 746 24,770 European 1.10 2.97x10-6 

NUDT5 136 Other infectious and parasitic diseases 746 24,770 European 0.84 3.52x10-6 

MAATS1 110 Dermatophytosis and dermatomycosis 654 3,330 African 0.80 4.82x10-6 

PTPN4 117 Mycoses 627 21,426 European 0.79 1.56x10-7 

WIPF1 117 Mycoses 627 21,426 European 1.20 2.72x10-6 

ALX4 038.2 Gram positive septicemia 613 19,844 European 1.25 4.21x10-8 

C22orf31 038.2 Gram positive septicemia 613 19,844 European 0.81 2.05x10-6 

IL2RA 038.2 Gram positive septicemia 613 19,844 European 1.20 3.88x10-6 

VWA5B1 008 Intestinal infection 368 4,060 African 1.30 3.85x10-6 

ATP6V1C2 041.1 Staphylococcus infection 358 3,337 African 1.33 1.51x10-6 

WDR66 481 Influenza 272 18,054 European 0.71 3.47x10-7 

FAM20A 481 Influenza 272 18,054 European 077 1.51x10-6 

HKDC1 481 Influenza 272 18,054 European 1.34 2.20x10-6 

ASPSCR1 481 Influenza 272 18,054 European 1.35 2.76x10-6 

FAM208A 041.4 Escherichia Coli 243 3,337 African 1.42 1.15x10-6 

TBK1 041.2 Streptococcus infection 229 3,337 African 1.41 4.70x10-6 

DNAJC5G 071 Human immunodeficiency virus 196 20,904 European 1.08 7.36x10-7 

FABP4 070.2 Viral hepatitis B 166 20,904 European 0.70 4.39x10-6 

ANK2 070.2 Viral hepatitis B 166 20,904 European 0.77 4.56x10-6 

HIP1 041.9 Infection with drug-resistant organism 165 3,337 African 1.46 6.74x10-7 

C11orf53 041.9 Infection with drug-resistant organism 165 3,337 African 0.72 4.98x10-6 

EPCAM 010 Tuberculosis 156 19,844 European 1.40 5.04x10-8 

AL589739.1 010 Tuberculosis 156 19,844 European 1.55 9.46x10-8 

PROX2 010 Tuberculosis 156 19,844 European 1.40 9.70x10-7 

USP44 010 Tuberculosis 156 19,844 European 1.44 1.07x10-6 

GPRIN1 010 Tuberculosis 156 19,844 European 1.49 2.55x10-6 

NSUN5 010 Tuberculosis 156 19,844 European 0.75 2.76x10-6 

C19orf55/PROSER3 010 Tuberculosis 156 19,844 European 1.51 3.30x10-6 

DNAJC17 054 Herpes simplex 154 3,241 African 0.65 2.75x10-7 

CHMP5 054 Herpes simplex 154 3,241 African 1.36 2.22x10-6 
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GNRH1 054 Herpes simplex 154 3,241 African 1.47 4.64x10-6 

TXNL1 152 Sexually transmitted infections excluding HIV and hepatitis 152 25,643 European 0.64 3.92x10-7 

LTBP4 152 Sexually transmitted infections excluding HIV and hepatitis 152 25,643 European 0.70 2.13x10-6 

CRYL1 152 Sexually transmitted infections excluding HIV and hepatitis 152 25,643 European 0.70 2.23x10-6 

LIMK2 041.8 Helicobacter Pylori 150 19,844 European 0.71 2.88x10-6 

WFDC12 320 Meningitis 144 25,170 European 1.16 4.23x10-6 

TNNC2 071 Human immunodeficiency virus 139 3,241 African 1.44 2.49x10-6 

PRELID2 071 Human immunodeficiency virus 139 3,241 African 1.47 2.68x10-6 

PTCD3 324 Other CNS infections and poliomyelitis 136 25,170 European 0.89 3.74x10-8 

ATG9A 324 Other CNS infections and poliomyelitis 136 25,170 European 0.76 2.46x10-6 

EIF3M 078 Viral warts and human papilloma virus 136 3,241 African 1.48 3.22x10-6 

CDK5 038.2 Gram positive septicemia 114 3,337 African 0.65 3.64x10-6 

 984 
 985 
 986 
 987 
 988 
 989 
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STAR★METHODS 991 

CONTACT FOR REAGENT AND RESOURCE SHARING 992 

Further information and requests for resources and reagents should be directed to and will be 993 

fulfilled by the Lead Contact, Eric R. Gamazon (eric.gamazon@vanderbilt.edu). 994 

 995 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 996 

BioVU 997 

BioVU, one of the largest DNA biobanks tied to an EHR database, is a subset of the 998 

synthetic derivative (SD), a deidentified electronic health record, consisting of individuals with 999 

whole-genome genetic information. Detailed information on the construction, utilization, ethics, 1000 

and policies of the BioVU resource is described elsewhere (Roden et al., 2008). ID traits were 1001 

defined based on a hierarchical grouping of International Classification of Diseases, Ninth 1002 

Revision (ICD-9) codes into phenotype codes (Phecodes) representing clinical traits, as 1003 

previously described (Denny et al., 2013; Denny et al., 2010). (See below for a description of 1004 

pathogen culture and viral test data in the BioVU individuals, including genera detected from 1005 

different types of cultures.) We used version 1.2 of the Phecode Map containing 1,965 1006 

Phecodes based on 20,203 ICD-9 codes, which substantially improves signal-to-noise and more 1007 

accurately reflects the clinical trait. Phecodes may exclude related phenotypes (e.g., in the case 1008 

of Gram negative septicemia (Phecode = 038.1), the range of Phecodes given by 010-041.99, 1009 

involving bacterial infection) and, importantly, include the definition of the appropriate control 1010 

group (Wei et al., 2017). Detailed description of Phecode trait maps can be found at 1011 

phewascatalog.org. As an efficient and viable model for human genetics research, the Phecode 1012 

system has been used to perform phenome-wide association studies (PheWAS) for validation of 1013 
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known genetic associations and discovery of new genetic disorders (Denny et al., 2013; Unlu et 1014 

al., 2020). 1015 

  1016 

Pathogen culture and virology data linked to whole-genome genetic information 1017 

The SD consists of a wide range of clinical microbiological data. For individuals with 1018 

whole-genome genetic information, we analyzed pathogen (bacterial, mycobacterial, and fungal) 1019 

culture data derived from the following positive cultures for the indicated clinical samples: 1) 1020 

blood (n = 7,699), 2) sputum (n = 2,478), 3) sinus/nasopharyngeal (n = 1,820), 4) bronchial-1021 

alveolar lavage (n = 1,265), and 5) tracheal sampling (n = 422). Furthermore, we analyzed a 1022 

respiratory panel containing 28 viral strains from 2,890 individuals with whole-genome genetic 1023 

information. Viral strains included the following: 1) Adenovirus, 2) Bocavirus, 3) Bordetella 1024 

parapertussis, 4) Bordetella pertussis, 5) Chlamydia pneumoniae, 6) Coronavirus 229E, 7) 1025 

Coronavirus HKU1, 8) Coronavirus NL63, 9) Coronavirus NOS, 10) Coronavirus OC43, 11) 1026 

Enterovirus/Rhinovirus, 12) Human Metapneumovirus, 13) Influenza A, 14) Influenza A, H1, 15) 1027 

Influenza A, H1N1, 16) Influenza A, H3, 17) Influenza B, 18) Mycoplasma pneumoniae, 19) 1028 

Parainfluenza, 20) Parainfluenza 1, 21) Parainfluenza 2, 22) Parainfluenza 3, 23) Parainfluenza 1029 

4, 24) Respiratory syncytial virus (RSV), 25) RSV, A, 26) RSV, B, and 27) Rhinovirus. The 1030 

pathogen information for each individual in our study included: 1) Total number of cultures; 2) 1031 

Number of negative cultures (i.e., no pathogen growth); 3) Number of ambiguous cultures (i.e., 1032 

normal upper respiratory bacteria or low level contamination); 4) Number of positive cultures 1033 

(i.e., the number of cultures with growth consistent with clinical infection); 5) Genus or genera 1034 

isolated (up to 96 unique genera per sample site), which ranged from zero to 10 per sample. 1035 

 1036 

METHODS DETAILS 1037 

GWAS of ID traits 1038 
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GWAS of the ID traits were performed on the 23,294 BioVU individuals of European 1039 

ancestry. Quality control pre-processing and SNP-level imputation were conducted, as 1040 

previously described (Unlu et al., 2020). Genomic ancestry was quantified using principal 1041 

components analysis of the genotype data (Derks et al., 2017; Price et al., 2006). The 1042 

association analysis was performed using age, gender, batch, and the first five principal 1043 

components as covariates. 1044 

 1045 

Conditional SNP-level analysis  1046 

We performed conditional analysis on the top GWAS association with the ID trait (in this 1047 

case, bacterial pneumonia) to determine whether it was driven by a related covariate (in this 1048 

case, cystic fibrosis status). We used logistic regression to model the conditional probability of 1049 

the infectious disease: 1050 

ln
𝑃(𝑌=1 | 𝑠)

1−(𝑃(𝑌=1 | 𝑠)
= 𝛽0 + 𝛽1𝑠 + 𝛽2(𝐶𝐹)  1051 

where 𝑠 is the genotype at the sentinel variant, 𝑌 is the disease (i.e., bacterial pneumonia) 1052 

status, and 𝐶𝐹 is the covariate of interest (i.e., cystic fibrosis).   1053 

 1054 

Transcriptome-wide association studies (TWAS) using PrediXcan 1055 

We performed multi-tissue PrediXcan (Barbeira et al., 2019; Gamazon et al., 2018; Gamazon et al., 2015) in the 1056 

23,294 BioVU subjects. Experiment-wide significance was determined using Bonferroni 1057 

correction for the total number of genes tested (n = 9,868) across 35 phenotypes (i.e., p < 1058 

1.4x10-7). Trait-specific significance was determined using Bonferroni correction for the total 1059 

number of genes tested (n = 9,868, p < 5.07x10-6). Genomic ancestry was quantified using 1060 

principal components analysis (Derks et al., 2017; Price et al., 2006). 1061 

 1062 
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GWAS and TWAS Replication in the UK Biobank and FinnGen consortia 1063 

 Replication of GWAS and TWAS was performed in the UK Biobank (Bycroft et al., 2018) 1064 

and FinnGen consortia (Locke et al., 2019). We used the UK Biobank 1065 

(http://www.nealelab.is/uk-biobank) and the FinnGen (https://www.finngen.fi/en/access_results) 1066 

summary results to generate the gene-level associations. 1067 

 1068 

Classification of pathogen infection based on serology and culture data using several classifiers 1069 

 Let 𝑋 be a classifier (e.g., the Phecode or a logistic regression classifier) of serology and 1070 

culture data based infection for a given pathogen, with probability density 𝜑+(𝑥) for positive 1071 

instances and probability density 𝜑−(𝑥) for negative instances. The ROC curve plots the 1072 

specificity (SP) and sensitivity (SN) at various thresholds: 1073 

𝑆𝑁(𝑇) = ∫ 𝜑+(𝑥)𝑑𝑥
∞

𝑇

 1074 

𝑆𝑃(𝑇) = 1 − ∫ 𝜑−(𝑥)𝑑𝑥
∞

𝑇

 1075 

The area Ω under the curve (AUC) is given by: 1076 

Ω = ∫ 𝑆𝑁(𝑇)𝑆𝑃′(𝑇)𝑑𝑇
∞

−∞

= ∫ ∫ 𝜑+(𝑥)
∞

𝑇

𝜑−(𝑇)𝑑𝑥𝑑𝑇
∞

−∞

= ∫ ∫ 𝐼(𝑥 > 𝑇)
∞

−∞

𝜑+(𝑥)𝜑−(𝑇)𝑑𝑥𝑑𝑇
∞

−∞

 1077 

where 𝐼(𝐴) is the indicator function, i.e., equal to one if (𝑥, 𝑇) ∈ 𝐴 and zero otherwise. The last 1078 

equals the probability that the classifier 𝑋 ranks a randomly chosen positive instance (of culture 1079 

data based infection) higher than a randomly chosen negative instance. We estimated the 1080 

sampling distribution of Ω, using bootstrapping (n = 100) (Efron, 1979). We used the pROC 1081 

package for visualization. 1082 

 1083 

Causal inference by Mendelian Randomization  1084 

To infer causality between the infectious diseases and potential complications, we 1085 

performed Mendelian Randomization (MR, (Davey Smith and Hemani, 2014; Lawlor et al., 1086 
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2008)) in 23,294 individuals of European ancestry in BioVU. To define instrumental variables 1087 

(IVs), we clumped the exposure-associated SNPs with high linkage disequilibrium (LD) using 1088 

Plink1.9 (p < 1x10-5, r2 = 0.01). Only biallelic non-palindromic variants were considered as IVs. 1089 

Considering the pervasive horizontal pleiotropy in human genetic variation (Jordan et al., 2019), 1090 

we applied summary statistics based MR-Egger regression (Bowden et al., 2015). MR-Egger 1091 

regression generalizes the inverse-variance weighted method, where the intercept is assumed 1092 

to be zero. We also used the weighted-median estimator (Bowden et al., 2016) to test the 1093 

causal effect of the exposure trait on the outcome. We leveraged the R package 1094 

‘MendelianRandomization’. 1095 

 1096 

High-throughput Human in vitrO Susceptibility Testing (Hi-HOST) 1097 

We generated an atlas of TWAS associations with 79 pathogen-induced cellular traits – 1098 

including infectivity and replication, cytokine levels, and host cell death (Wang et al., 2018) 1099 

using the Hi-HOST platform (Ko et al., 2012; Ko et al., 2009). A list of populations, pathogens 1100 

and project description may be found at http://h2p2.oit.duke.edu/About/, and phenotype 1101 

definitions and family-based GWAS of the Hi-HOST Phenome Project were previously 1102 

described (Wang et al., 2018). Briefly, lymphoblastoid cell lines (LCLs) from the 1000 Genomes 1103 

Consortium (Auton et al., 2015) were obtained from the Coriell Institute. The LCLs represented 1104 

diverse populations, including ESN (Esan in Nigeria), GWD (Gambians in Western Divisions in 1105 

the Gambia), IBS (Iberian Population in Spain), and KHV (Kinh in Ho Chi Minh City, Vietnam). 1106 

LCLs were cultured in RPMI 1640 media containing 10% fetal bovine serum, 2 mM glutamine, 1107 

100 U/ml of penicillin-G, and 100 mg/ml streptomycin for 8 days prior to experimental use, as 1108 

previously described (Wang et al., 2018). Chlamydia trachomatis infection of LCLs was 1109 

performed using C. trachomatis LGV-L2 RifR pGFP::SW2 (Saka et al., 2011). Salmonella 1110 

infection was performed using pMMB67GFP (Pujol and Bliska, 2003), and sifA deletion was 1111 

constructed using lambda red and validated using PCR (Datsenko and Wanner, 2000; Ko et al., 1112 
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2009). Candida albicans SC5314 infection was performed as previously described (Odds et al., 1113 

2004) and levels of fibroblast growth factor 2 were measured using enzyme linked 1114 

immunosorbent assays. Staphylococcus aureus toxin (alpha-hemolysin) was obtained from 1115 

Sigma and applied to LCLs at a concentration of 1 g/ml for 23 hours. Cell death was measured 1116 

using 7-AAD staining and flow cytometry. Additional experimental details can be found at 1117 

http://h2p2.oit.duke.edu/About/. 1118 

We estimated the gene-level effect size on the Hi-HOST phenotypes, using GWAS 1119 

summary statistics (Barbeira et al., 2018) in each of the 44 GTEx tissues (version 6p) (Battle et 1120 

al., 2017). The gene expression prediction model was trained using GTEx as the reference 1121 

dataset (https://zenodo.org/record/3572842/files/GTEx-V6p-HapMap-2016-09-08.tar.gz). The 1122 

gene-level effect size was estimated using S-PrediXcan after allele harmonization (Barbeira et 1123 

al., 2018). We also applied MultiXcan to improve the ability to identify potential target genes 1124 

(Barbeira et al., 2019). In brief, MultiXcan regresses the cellular trait on the principal 1125 

components of the predicted expression data across all the available tissues. For each gene, 1126 

MultiXcan yields a joint effect estimate across the 44 tissues. We applied the summary-statistic 1127 

based version (S-MultiXcan) and followed the guides from the tool’s webpage 1128 

https://github.com/hakyimlab/MetaXcan.  1129 

 1130 

 1131 

DATA AND SOFTWARE AVAILABILITY 1132 

All code is available at the project’s github page:  1133 

https://github.com/gamazonlab/infectiousDiseaseResource. All trait-level GWAS, 1134 

PrediXcan, and Hi-HOST TWAS results are available at www.phewascatalog.org. 1135 

 1136 

  1137 
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KEY RESOURCES TABLE 1138 

REAGENT or RESOURCE SOURCE IDENTIFIER 

PrediXcan genetic associations for 
35 ID traits 

This paper 
Available in Supplementary 
Materials. 

BioVU 
(Denny et al., 2010; Roden 
et al., 2008) 

https://victr.vanderbilt.edu/pub/biov
u/ 

PrediXcan 
(Gamazon et al., 2018; 
Gamazon et al., 2015) 

https://github.com/hakyimlab/Predi
Xcan 

GTEx 
(2015; Battle et al., 2017; 
Consortium, 2013) 

https://gtexportal.org/home/ 

Gene Set Enrichment Analysis 
(GSEA) 

(Subramanian et al., 2005) 
http://software.broadinstitute.org/g
sea/index.jsp 

Mendelian Randomization software 
package 

(Yavorska and Burgess, 
2017) 

https://cran.r-
project.org/web/packages/Mendeli
anRandomization/MendelianRand
omization.pdf 

Hi-HOST GWAS 
(Ko et al., 2012; Wang et 
al., 2018) 

http://h2p2.oit.duke.edu/About/ 

Hi-HOST TWAS This paper. 
Available in Supplementary 
Materials. 
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