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Abstract

We present a compartmental extended SEIQRD metapopulation model for SARS-CoV-2 spread
in Belgium. We demonstrate the robustness of the calibration procedure by calibrating the
model using incrementally larger datasets and dissect the model results by computing the
effective reproduction number at home, in workplaces, in schools, and during leisure activ-
ities. We find that schools are an important transmission pathway for SARS-CoV-2, with the
potential to increase the effective reproduction number from Re = 0.66 ± 0.04 (95 % CI) to
Re = 1.09 ± 0.05 (95 % CI) under lockdown measures. The model accounts for the main
characteristics of SARS-CoV-2 transmission and COVID-19 disease and features a detailed
representation of hospitals with parameters derived from a dataset consisting of 22 136 hos-
pitalized patients. Social contact during the pandemic is modeled by scaling pre-pandemic
contact matrices with Google Community Mobility data and with effectivity-of-contact pa-
rameters inferred from hospitalization data. The calibrated social contact model with its
publically available mobility data, although coarse-grained, is a readily available alternative
to social-epidemiological contact studies under lockdown measures, which were not avail-
able at the start of the pandemic.

keywords: SARS-CoV-2, age-stratified compartmental SEIQRD model, non-pharmaceutical
interventions, Google Community Mobility data, effective reproduction number, model cal-
ibration, schools closure
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1 INTRODUCTION

1 Introduction

After an initial outbreak in early 2020 in Wuhan, China, Severe acute respiratory syndrome coro-1

navirus 2 (SARS-CoV-2) has spread globally [1]. SARS-CoV-2 is capable of sustained human-2

to-human transmission [2] and may cause severe disease and death, especially in older in-3

dividuals. The SARS-CoV-2 pandemic has, in general, shown a remarkably low incidence4

among children and young adults [3, 4, 5]. Furthermore, presymptomatic transmission is a5

major contributor to SARS-CoV-2 spread [6, 7]. Both on March 15th, 2020, and on October6

19th, 2020, the Belgian governments imposed social restrictions after testing & tracing meth-7

ods had failed to prevent the large-scale spread of SARS-CoV-2. Recently, pharmaceutical8

interventions under the form of vaccinations have become available. If natural immunity9

wanes or if SARS-CoV-2 further mutates, it is expected that SARS-CoV-2 will become en-10

demic [8]. Hence, there is a need for well-informed models and knowledge build-up to11

assist policymakers in choosing the best non-pharmaceutical and pharmaceutical interven-12

tions during future SARS-CoV-2 outbreaks.13

14

Currently, four other models exist to inform policymakers in Belgium. The agent-based15

model (ABM) of Willem et al. [9], the data-driven model by Barbe et al. [10] and the nation-16

level, age-stratified compartmental models of Abrams et al. [11] and Franco [12]. The models17

of Abrams et al. [11] and Franco [12] feature similar disease dynamics as our model but rely18

on different assumptions to model social contact. The different model outputs are currently19

combined into an ensemble to inform policymakers [13]. In the ensemble, each model fulfills20

a niche, for instance, the ABM of Willem et al. [9] is good for studying microscopic social be-21

havior, and was used to inform the optimal household bubble size. The model of Barbé excels22

at short-term forecasts while our model, together with the compartmental models of Abrams23

et al. [11] and Franco [12], are well-fit to study the long-term effects of population-wide in-24

terventions.25

26

In this work, we built a compartmental, age-stratified, nation-level model which accounts27

for the main characteristics of SARS-CoV-2 disease. The model features a detailed repre-28

sentation of hospitals with residence times and mortalities derived from a large dataset of29

hospitalized patients in Belgium. We built a social contact model which scales pre-pandemic30

contact matrices from a study by Willem et al. [14] with the Google Community Mobility31

data [15] and with effectivity-of-contact parameters derived from hospitalization data us-32

ing an Markov Chain Monte Carlo (MCMC) method [16]. Tardiness in compliance with social33

restrictions is included using a delayed-ramp model and waning of humoral immunity is34

included by estimating the rate of seroreversion from two serological datasets. We find that35

the combination of the deterministic epidemiological model, which incorporates rigid a pri-36

ori knowledge on disease dynamics, and the calibrated effectivity-of-contact parameters in37
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2.1 The extended SEIQRD-model 2 MATERIALS AND METHODS

the social contact model allows us to combine the ease of long-term extrapolation and sce-38

nario analysis of compartmental models with the flexibility of a data-driven model. The39

model does not require ad hoc tweaking and is computationally cheap, making it ideal to40

perform optimizations that require thousands of model evaluations. Further, due to the41

public nature of the Google Community Mobility data, the model provides a more rapidly42

deployable alternative to social epidemiological studies comparing mixing patterns during43

and after lockdown, such as Coletti et al. [17] for Belgium, which were not available at the44

start of the pandemic.45

46

Using a hospitalization dataset of 22 136 coronavirus disease 19 (COVID-19) patients in Belgian47

hospitals, we computed age-stratified hospital residence times and mortalities. Using the ob-48

tained parameters, we found the model was able to predict the total number of patients and49

the number of deceased patients in Belgian hospitals well. We calibrated the model to hos-50

pitalization data made publically available by the Belgian Scientific Institute of Public Health51

(Sciensano) and demonstrated the calibration procedure’s robustness. We computed the52

basic reproduction numbers (R0) and the time to reach compliance to lockdown measures53

during both coronavirus disease 2019 (COVID-19) waves in Belgium. The average time to for54

anti-SARS-CoV-2 antibodies to wane (seroreversion), was estimated as 9.2 months (IQR: 7.255

- 12.1 months). Using the calibrated model, we computed the relative share of contacts and56

the effective reproduction numbers and found these to be in line with estimates from other57

authors at home, at school, at work and during leisure activities to asses their effect on SARS-58

CoV-2 spread during both 2020 COVID-19 waves. We observed a strong correlation between59

school re-opening and increases in SARS-CoV-2 transmission. More precisely, schools have60

the potential to increase the effectiveic reproduction number from Re = 0.67±0.04 (95 % CI)61

to Re = 1.09± 0.05 (95 % CI) under lockdown measures.62

63

Throughout the work, Belgium is used as a case but the scope of the work is extendable to64

other countries. Since February 2021, the effects of new SARS-CoV-2 strains and pharmaceu-65

tical interventions (vaccines) need to be accounted for. For this purpose, a model extension66

was developed and is currently used in the aforementioned model ensemble [13]. However,67

due to the longevity of this work, we chose to limit the scope of this study to the effects of68

non-pharmaceutical interventions.69
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2 MATERIALS AND METHODS

2 Materials and methods70

2.1 The extended SEIQRD-model71

2.1.1 Disease dynamics72

The SEIR(D) model [18] is a compartmental model that subdivides the human population73

into four groups: 1. susceptible individuals (S), 2. exposed individuals in the latent phase74

(E), 3. infectious individuals capable of transmitting the disease (I) and 4. individuals re-75

moved from the population either through immunization or death (R/D). Despite being a76

simple and idealized reality, the SEIR(D) dynamics are used extensively to predict the out-77

break of infectious diseases and this was no different during the SARS-CoV-2 outbreak ear-78

lier this year [1, 3, 19].79

80

In this work, we extended the SEIRD model to incorporate more expert knowledge on SARS-81

CoV-2 disease dynamics. For that purpose, the infectious compartment was split into four82

parts. The first is a period of presymptomatic infectiousness because several studies have83

shown that presymptomatic transmission is a dominant transmission mechanism of SARS-84

CoV-2 [6, 7]. After the presymptomatic period, three possible infectious outcomes are mod-85

eled: (1) Asymptomatic outcome, for individuals who show no symptoms at all, (2) Mild86

outcome, for individuals with mild symptoms who recover at home, and (3) Hospitalization,87

when mild symptoms worsen. Children and young adults have a high propensity to expe-88

rience an asymptomatic or mild outcome, while older individuals have a higher propensity89

to be hospitalized [6, 7]. Belgian hospitals generally have two wards for COVID-19 patients:90

1) cohort, where patients are not monitored continuously and 2) Intensive care units (ICUs),91

for patients with the most severe symptoms. Intensive care includes permanent monitoring,92

the use of ventilators, or the use of extracorporeal membrane oxygenation (ECMO). Patients93

can perish in both hospital wards, but mortalities are generally lower in cohort. After a stay94

in an ICU, patients return to cohort for recovery in the hospital. During the recovery stay,95

mortality is limited. We assume that mildly infected individuals and hospitalized patients96

cannot infect susceptibles are thus quarantined. Because reinfections with SARS-CoV-2 have97

already been reported [20, 21, 22, 23], and because it has already been estimated that anti-98

SARS-CoV-2 antibodies wane [24, 25], we incorporate waning antibody immunity by send-99

ing recovered individuals back to the susceptible population pool. The model dynamics are100

depicted in Figure 1.101

2.1.2 Model structure and equations102

In this work, we implemented the extended SEIQRD dynamics shown in Figure 1 using ordi-103

nary differential equations (ODEs), without spatial stratification and with age-stratification.104
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2.1 The extended SEIQRD-model 2 MATERIALS AND METHODS

Si Ei Ipresy, i Qmild, i

Iasy, i

QICU, i

Qcohort, i

Ri

QICU, rec, i

Di

Infected Infectious Hospitalized

Figure 1: Extended SEIQRD dynamics used in this study. Here, S stands for sus-
ceptible, E for exposed, Ipresy for presymptomatic and infectious, Iasy for asymp-
tomatic and infectious, Qmild for mildly symptomatic and infectious, Qcohort for
cohort, QICU,rec for a recovery stay in cohort coming from IC, QICU for Intensive
Care Unit, D for dead and R for recovered. A subscript i is used to denote the
ith age strate of the model, the model has a total of nine age strata. An overview
of the model parameters can be found in table 1.

This was accomplished by defining a system of K × N ordinary differential equations, one105

for every of the K = 10 model compartments, each of which is further split into N = 9106

age-stratified metapopulations. The age groups have different contact rates with other age107

groups and the disease progresses differently for each age group, making the model behave108

realistically. Our model consists of 9 age classes, i.e., [0, 10(, [10, 20(, [20, 30(, [30, 40(, [40, 50(,109

[50, 60(, [60, 70(, [70, 80(, [80,∞(. The advantage of using ODEs over network- or agent-110

based models are the limited computational resources required to explore scenarios and111

perform optimizations that require thousands of function evaluations. The disadvantage112

is the assumption of homogeneous mixing, i.e. every individual is equally likely to come113

into contact with another individual. More realistic approaches are spatial patch models,114

network-based models, agent-based models, or combinations thereof. However, these come115

at a substantial computational cost. Because Belgium is a small and heavily urbanized coun-116

try, a spatially explicit model becomes relevant at very low SARS-CoV-2 prevalence. The117

macroscopic coarse-graining of homogeneous mixing works well to describe major COVID-118

19 waves but is less fit for monitoring the disease at low prevalence. The model dynamics119

are translated into the following system of coupled ordinary differential equations,120
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2 MATERIALS AND METHODS 2.1 The extended SEIQRD-model

Ṡi = −βSi
N∑
j=1

Nc,ij

(Ipresy, j + Iasy, j

Tj

)
+ ζRi, (1)

Ėi = βSi

N∑
j=1

Nc,ij

(Ipresy, j + Iasy, j

Tj

)
− (1/σ)Ei, (2)

˙Ipresy, i = (1/σ)Ei − (1/ω)Ipresy, (3)
˙Iasy, i = (ai/ω)Ipresy, i − (1/da)Iasy, i, (4)

˙Qmild, i = ((1− ai)/ω)Ipresy ,i − ((1− hi)/dm + hi/dhosp)Qmild, i, (5)
˙Qcohort, i = (cihi/dhosp)Qmild, i − (mC,i/dC,D,i)Qcohort, i (6)

−((1−mC,i)/dC,R,i)Qcohort, i, (7)
˙QICU, i = ((1− ci)hi/dhosp)Qmild, i − (mICU,i/dICU,D,i)QICU, i (8)

−((1−mICU,i)/dICU,R,i)QICU, i (9)
˙QICU,rec, i = ((1−mICU,i)/dICU,R,i)QICU, i − (1/dICU,rec,i)QICU,rec, i, (10)

Ṙi = (1/da)Iasy, i + ((1− hi)/dm)Qmild, i + ((1−mC,i)/dC,R,i)Qcohort, i (11)

+(1/dICU,rec,i)QICU,rec,i − ζRi, (12)

Ḋi = (mICU,i/dICU,D,i)QICU, i + (mC,i/dC,D,i)Qcohort, i, (13)

for i = 1, 2, . . . , 9. Here, T stands for total population (Table 1), S stands for susceptible, E
for exposed, Ipresy for presymptomatic and infectious, Iasy for asymptomatic and infectious,
Qmild for mildly symptomatic and infectious, Hcohort for cohort, HICU,rec for a recovery stay
in cohort coming from Intensive Care, HICU for Intensive Care Unit, D for dead and R for
recovered. A subscript to these variables is used to refer to one of the nine age strata in the
model. Using the above notation, all model states are 9-dimensional vectors,

S = [S1(t) S2(t) . . . Si(t)],

where Si(t) denotes the number of susceptibles in age-class i at time t after the introduction121

of SARS-CoV-2 in the population. As initial condition, the whole population is assumed122

susceptible to SARS-CoV-2 and one exposed individual and one pre-symptomatic infectious123

individual in every age class is assumed, so Ei(0) = Ii(0) = 1 for all i = 1, 2, ..., 9. The124

time between the start of the simulation and the start of data collection is then estimated125

when calibrating the model. An overview of all model parameters, their values, and their126

meaning can be found in table 1. In what follows, the most important model parameters and127

their chosen values are motivated.128

2.1.3 Model parameters129

Transmission rate and social contact data The transmission rate of the disease depends on130

the product of four contributions (Equation 1). The first contribution, (Ipresy, j + Iasy, j)/Tj , is131

7
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2.1 The extended SEIQRD-model 2 MATERIALS AND METHODS

the fraction of contagious individuals in age group j. We thus assume presymptomatic and132

asymptomatic individuals spread the disease, while mildly infected are assumed to self-133

quarantine and hospitalized individuals cannot infect health care workers. The second con-134

tribution, Nc,ij , is the average number of human-to-human interactions of an individual in135

age group i, with an individual in age group j per day. The sum of the first two contributions136

over all age groups j,
∑N
j=1Nc,ij(Ipresy, j+Iasy, j)/Tj , is the number of contacts of an individual137

in age group i that can result in SARS-CoV-2 transmission. This is multiplied with the num-138

ber of susceptibles in age group i (Si), and with β, the probability of contracting COVID-19139

when encountering a contagious individual, to compute the number of effective contacts at140

every timestep. We assume that the per-contact transmission probability β is independent141

of age and we infer its value by calibrating our model to Belgian hospitalization data. In a142

model-based inference-based study by Davies et al. [3], it was deduced that children were143

less susceptible to SARS-CoV-2 disease. Viner et al. [26] analyzed 32 studies that reported144

on the susceptibility of children and found preliminary evidence that susceptibility to SARS-145

CoV-2 infection is lower in children. However, it assumed in our model that individuals of146

all ages to have an equal susceptibility to and transmissibility of SARS-CoV-2. The number147

of (pre-pandemic) human-human interactions,Nc, are both place and age-dependent. These148

matrices assume the form of a 9x9 interaction matrix where an entry i, j denotes the number149

of social contacts age group i has with age group j per day. These matrices are available for150

homes (Nc, home), schools (Nc, schools), workplaces (Nc, work), in public transport (Nc, transport),151

during leisure activities (Nc, leisure) and during other activities (Nc, others), from a study by152

Willem et al. [14]. The total number of prepandemic social interactions must be translated153

into an appropriately weighted sum of the contributions in different places, adequately de-154

scribing pandemic social behavior (Section 2.3). The basic reproduction number R0, defined155

as the expected number of secondary cases directly generated by one case in a population156

where all individuals are susceptible to infection, is computed using the next-generation157

matrix (NGM) approach introduced by Diekmann et al. [27, 28]. For our model, the basic158

reproduction number of age group i is,159

R0,i = (aida + ω)β
N∑
j=1

Nc,ij (14)

and the population basic reproduction number is calculated as the weighted average over160

all age groups using the demographic data in Table 1. The detailed algebra underlying the161

computation of Equation 14 is presented in the supplementary materials (Section A.4).162

Infectiousness The duration of infectiousness is determined by the number of days pa-163

tients can spread viral particles. Several studies have reported patients have the highest164

viral load of the coronavirus at the time they are diagnosed and patient’s viral loads declin-165

ing gradually over time [29, 30, 31, 32, 33]. He et al. [29] inferred the infectiousness profile166

8
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2 MATERIALS AND METHODS 2.1 The extended SEIQRD-model

of COVID-19 patients to be an approximately normal distribution, with the peak infectivity167

roughly at the time of symptom onset and infectiousness quickly declining within 7 days168

after symptom onset. A comparison of viral load between symptomatic and one asymp-169

tomatic case revealed similar viral loads, an indicator that asymptomatic individuals can170

be as infectious as symptomatic patients [33]. He et al. [29] further concluded that 44 % of171

secondary cases were infected during the presymptomatic stage, a finding consistent with172

studies from other authors [6, 7]. Wei et al. [7] determined that presymptomatic transmission173

exposure occurred 1-3 days before the source patient developed symptoms . In Equation 2,174

σ denotes the length of the latent, non-infectious period and in Equation 3, ω is the length of175

the presymptomatic infectious period. In this work, we assume the incubation period, equal176

to ω + σ, lasts 5.2 days [6]. The length of the presymptomatic period is fixed at 0.7 days,177

which corresponds to 44 % of SARS-CoV-2 infections experiencing a presymptomatic infec-178

tious period of 2 days. The duration of infectiousness for mildly symptomatic cases (dm) is179

assumed to be 7 days. The average duration of asymptomatic infectiousness, on which the180

basic reproduction number (R0) depends (Equation 14), will be inferred from hospitalization181

data using an MCMC method (Section 2.4).182

Disease severity and hospitalizations The model parameter ai (Equation 4) is the prob-183

ability of an individual in age group i having a subclinical infection. Several authors have184

attempted to estimate the fraction of asymptomatic infections. Li et al. [34] estimated that185

86 % of coronavirus infections in China were undocumented in the weeks before their govern-186

ment instituted stringent quarantines. However, this figure includes an unknown number187

of mildly symptomatic cases and is thus an overestimation of the asymptomatic fraction. In188

Iceland, citizens were invited for testing regardless of symptoms. Of all people with positive189

test results, 43 % were subclinical [35]. A systematic review and meta-analysis by Buitrago-190

Garcia et al. [36] suggested a lower subclinical fraction of 31 % (26 % - 37 %, 95 % CI). If the191

subclinical fractions per age group estimated by Davies et al. [3] are applied to the Belgian192

population, an average subclinical fraction of 57 % is obtained for Belgium. In this study, we193

applied the relative subclinical fraction per age group of Wu et al. [37] to obtain a population194

average subclinical fraction of 57 % (Table 1). In Equation 5, h is the fraction of mild cases that195

require hospitalization and in Equation 8, c is the fraction of the hospitalized which remain196

in cohort. In this study, the age-stratified hospitalization probabilities (h) were inferred from197

hospital mortality data (Table 1) and the age-stratified distributions between cohort and ICU198

(c) were computed using data from 22 136 patients treated in Belgian hospitals (Section 2.2).199

In Equation 5, dhosp is the average time between first symptoms and hospitalization, which200

was previously estimated as 5-9 days by Linton et al. [38] and as 4 days by To et al. [32]. In201

Equations 8, 9 and 10, dC,R, dC,D, dICU,R and dICU,D are the age-stratified average lengths of a202

hospital stay in cohort and in an ICU. The subscript R denotes the duration if the patient re-203

covers, while subscript D denotes the duration if the patient perishes. mC and mICU are the204

9
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2.2 Analysis of hospital surveillance data 2 MATERIALS AND METHODS

age-stratified mortalities of patients in cohort and in ICU. In Equation 10, dICU,rec denoted205

the age-stratified length of a recovery stay in cohort after a stay in ICU. The aforementioned206

hospitalization parameters are computed using data from 22 136 patients treated in Belgian207

hospitals. The methodology of the analysis is presented in Section 2.2, the results of the208

analysis are presented in Section 3.1209

Testing, tracing and quarantine, waning antibody immunity The effects of testing, trac-210

ing and quarantine are not explicitly implemented for this study. Reinfections with SARS-211

CoV-2 have been reported in single cases in the USA [20], Ecuador [21] and Belgium [22].212

Further, two asymptomatic reinfections were also reported in Indian healthcare workers [23].213

Rosado et al. [24] estimated that antibodies could wane in 50% of recovered individuals after214

1 year. Wheatley et al. [25] found that both neutralizing and binding antibody responses de-215

cay after recovery from a mild COVID-19 infection. Although the long-term kinetics of the216

antibody response to SARS-CoV-2 will not be definitively quantified until infected individ-217

uals are followed years after a confirmed infection, and although the persistence of serum218

antibodies is unlikely to be the sole determinant of long-lasting immunity (memory T and219

B cells), it is clear that waning of antibodies best be included in our model. In Equations220

1 and 12, the rate of anti-SARS-CoV-2 antibody waning is denoted as ζ, and its inverse is221

the average time for anti-SARS-CoV-2 antibodies to wane. Using serological data by Herzog222

et al. [39] and the Belgian Scientific Institute of Public Health (Sciensano), the distribution of ζ223

will be inferred using an MCMC method.224

2.2 Analysis of hospital surveillance data225

A subset of data from the Belgian COVID-19 clinical surveillance on hospitalizations by Van226

Goethem et al. [40], which was anonymized and provided through a secured data transfer227

platform by the Belgian Scientific Institute of Public Health (Sciensano), is analyzed to compute228

age-stratified estimates of the following model parameters: the distribution between the co-229

hort and IC wards (c), the residence times in the cohort and IC wards, in the case of recovery230

and in the case of death (dC,R, dC,D, dICU,R, dICU,D), the residence time for a recovery stay231

in cohort after a stay in ICU (dICU,rec), the time between symptom onset and hospitalization232

(dhospital) and the mortalities in the hospital, cohort and IC wards (mC,ICU, mC, mICU). The233

raw data consistes of 52 327 patients hospitalized in Belgian hospitals between March 4th,234

2020, and March 3rd, 2021. Data are reported for all hospitalized patients with a confirmed235

COVID-19 infection (diagnosed using reverse transcriptase-polymerase chain reaction, chest236

computed tomography, or rapid antigen test) and the reporting coverage on the period 15th237

of March - 27th of June was estimated to be rough 70 % of all hospitalized COVID-19 cases238

[40]. The data gathered during the period March 14th, 2020 until June 12th, 2020 were pre-239

viously analyzed by Faes et al. [41]. The added value of performing a similar analysis in240

this study is threefold: 1) To include the patient data gathered in the meantime. 2) To com-241
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pute the age-stratified mortalities in the cohort and IC hospital wards (mC , mICU), as well242

as the age-stratified recovery time in cohort after a stay in ICU (dICU,rec), which were not243

included by Faes et al. [41]. 3) To obtain age-stratified estimates in nine ten-year age strata244

as compared to four age strata by Faes et al. [41]. For every patient the following data were245

provided: 1) age, 2) sex, 3) date of onset of symptoms 4) hospital admission date, 5) hospi-246

tal discharge date, 6) date of ICU transfer, 7) the number of days spent in ICU, 8) outcome247

(recovered or deceased). Data from 30 191 patients were excluded from the analysis because248

one or more of the above entries were missing or because the computed residence times249

were negative. Patients that came from a nursing home were excluded from the analysis250

because their inclusion skewed the model predicted number of hospital deaths when the ob-251

tained hospitalization parameters were propagated in the model. Thus, in total, data from252

the remaining 22 136 patients were used (Figure 14). The confidence intervals of the mortal-253

ities (mC,ICU, mC and mICU) and the distribution between the cohort and IC ward (c) were254

computed using bootstrap resampling. For all hospital residence times, the shape and scale255

parameters of a Weibull distribution were fitted to the data. To determine if the duration of256

a cohort or ICU stay differed significantly and to determine if the mortalities in cohort and257

ICU differed significantly, the non-parametric Mann-Whitney U-test was used. Temporal258

changes in the estimated hospitalization parameters are not considered in this study. The259

results of the analysis are presented in Section 3.1.260

2.3 Social contact model261

As previously mentioned, the social behavior of the Belgian population must be translated262

into a linear combination of the aforementioned pre-pandemic interaction matrices. Mathe-263

matically, we must find tangible coefficients so that the linear combination of pre-pandemic264

interaction matrices, i.e.,265

Nc = αNc, home + βNc, schools + γNc, work + δNc, transport + εNc, leisure + φNc, others , (15)

is a good representation of macroscopic social behaviour during the pandemic. Instead of us-266

ing pre-pandemic contact matrices, modelers would ideally use pandemic contact matrices267

to build disease models as these are expected to better represent mixing behaviour under268

lockdown measures. Although these new contact studies under social restrictions will be269

valuable during future pandemics, such matrices were not available at the start of the pan-270

demic. Hence, our model builds upon pre-pandemic knowledge of social behaviour to make271

a prediction on pandemic social behavior.272

Mobility reductions Google’s Community Mobility Reports (GCMRs) collates data from273

smartphone users accessing Google applications who allow recording of their location history274

[42]. The data are categorised into six discrete categories: 1) retail and recreation, 2) parks, 3)275
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groceries and pharmacies, 4) workplaces, 5) transport and 6) residential areas. The GCMRs pro-276

vide the percentage change in activity at each location category compared to that on baseline277

days before the start of the COVID-19 pandemic (a 5-week period running from 3 January278

2020 to 6 February 2020) [15]. The values thus represent the relative change compared to the279

baseline, and not the absolute number of visitors. The GCMRs are not age-stratified and do280

not correct for potential underrepresentation of older individuals in the data collection. In281

our model, the GCMRs for Workplaces, Transit stations, Retail & recreation and Groceries282

& pharmacy are used as proxies to scale the work (Nc, work), transport (Nc, transport), leisure283

(Nc, leisure) and other (Nc, others) social contact matrices.284

285

Two surges in COVID-19 cases were observed in Belgium, resulting in two lockdowns (Fig-286

ure 2). The first lockdown was imposed on March 15th, 2020, and lasted until May 4th, 2020,287

and involved the closure of schools, bars, clubs, restaurants, all non-essential shops, and a288

closure of the border to non-essential travel (Table 2). From May 4th, 2020 until July 1st, 2020289

the lockdown was gradually lifted. During the first lockdown, schools remained fully closed290

until May 18th, 2020, and were only re-opened to a very limited extent before the end of the291

school year on July 1st, 2020. The second lockdown was imposed on October 19th, 2020,292

and is still ongoing at the time of writing. Schools were closed on November 2nd, 2020, and293

re-opened on November 16th, 2020. Further, schools were closed during the Christmas hol-294

idays from December 18th, 2020 until January 4th, 2021. Universities remained fully closed295

since October 19th, 2020. Briefly summarized, the first 2020 COVID-19 wave consisted of 1) a296

rapid surge in cases, 2) a lockdown, and 3) a release of lockdown measures. The second 2020297

COVID-19 wave consisted of 1) a rapid surge in cases, 2) a lockdown with schools closed, 3)298

a lockdown with varying school policies. A more detailed overview of all key events in Bel-299

gium during the COVID-19 pandemic is provided in the supplementary materials (Section300

A.3).301

302

During both lockdowns, mobility increases in the categories residential and parks were ob-303

served (Figure 2). These are indicative of decreased mobility, as these suggest increased304

activity around the home environment. The other four categories are more indicative of305

general mobility as they are related to activity around workplaces, retail outlets and use of306

public transportation [43]. Thus, although the mobility figures indicate people spent more307

time at home, this does not mean people have more contacts at home (especially under308

stay-at-home orders). Amplifying the fraction of household contacts under lockdown mea-309

sures would increase intergenerational mixing of the population under lockdown, which is310

unrealistic and will lead to overestimations of the hospitalizations. The inability to accu-311

rately capture the disease spread in home bubbles under lockdown measures is an inherent312

downside of compartmental epidemiological models. We have thus not scaled the home313

interaction matrix (Nc,home) with the residential mobility from the GCMRs.314
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Figure 2: Mobility data extracted from the Google Community Mobility Reports.
Dashed lines indicate the start of the first lockdown on Friday, March 13th, 2020,
and the start of the second lockdown on Monday, October 19th, 2020. Increases
in the categories residential and parks suggest increased activity around the home
environment, while increases in the other categories are more indicative of in-
creases in general mobility [43]. The mobility reduction in workplaces is used to
scale the work interaction matrix, the retail & recreation reduction is used to scale
the leisure interaction matrix, the groceries & pharamacy reduction is used to scale
the other interaction matrix, the transit stations reduction is used to scale the pub-
lic transport mobility matrix.

Effectivity parameters During the first lockdown, we estimated that the overall fraction315

of the social contacts that contributed to SARS-CoV-2 spread, from hereon referred to as the316

effectiveness of the contacts (Ω), was approximately one third of what would be expected317

based on the GCMRs reductions and the pre-pandemic contacts. Over the course of the first318

lockdown, work mobility decreased by 56 %, the public transport mobility decreased by 65319

%, leisure mobility decreased by 72 % and grocery (others) mobility decreased by 26 % (Table320
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2). Mathematically,321

Nc = Ω︸︷︷︸
≈0.30

[
Nc, home+(1−0.56)Nc, work+(1−0.65)Nc, transport+(1−0.72)Nc, leisure+(1−0.26)Nc, others

]
,

(16)
Intuitively, the effectivity of a contacts may not scale linearily with the observed mobility322

reductions. The net effectivity of the contacts under lockdown measures depends on a com-323

bination of the pre-pandemic physical proximity and duration of the contact, the effectivity324

of preventive measures and on behavioural changes. As an example, the effects of alcohol325

gel and face masks might be large in the workplace and in grocery stores, but not at home or326

during leisure activities. To account for different effectivities of contacts in different places,327

we could introduce one additional parameter per contact matrix, bound between zero and328

one, and infer its distribution from the available hospitalization data. However, estimating329

six effectivity parameters was unfeasible because of identifiability issues. We determined330

that the effectivity parameters of public transport and other places could not be identified.331

This is most likely because very little contacts are made in those places [44]. Consequently,332

the effectivity parameters of public tranport, other places and leisure contacts were aggre-333

gated to reduce the number of effectivity parameters from six to four. Finally, the linear334

combination of interaction matrices used to represent social contact under lockdown mea-335

sures is,336

Nc(t) = ΩhomeNc, home + ΩschoolsHschools(t)Nc, schools + ΩworkGwork(t)Nc, work+

Ωrest

[
Gtransit(t)Nc, transport +Gretail & recreation(t)Nc, leisure +Ggrocery & pharmacy(t)Nc, others

]
.

(17)

Here,Nc, home,Nc, schools,Nc, work,Nc, transport,Nc, leisure andNc, others denote the pre-pandemic337

contact matrices at home, in schools, in workplaces, on public transport, during leisure ac-338

tivities and during other activities [14]. Gwork, Gtransit, Gretail & recreation and Ggrocery & pharmacy339

denote the GCMRs mobility reductions in the respective categories and our updated at every340

timestep in the simulations. Hschools denotes the fraction of schools opened, as school open-341

ing cannot be deduced from the GCMRs. In spite of their limited re-opening on May 18th,342

2020, schools are assumed to be closed during the first lockdown. Ωhome, Ωschools , Ωwork,343

Ωrest are the effectivity parameters at home, in schools, at work and during leisure, public344

transport and other activities.345

Obedience to measures In reality, compliance to social restrictions is gradual and cannot346

be modeled using a step-wise change of the social interaction matrix Nc(t) (Section 2.1.3).347

This can be seen upon close inspection of the GCMRs after lockdown measures were taken348

(Figure 2). Because Google mobility data are updated daily in the model, the effect of gradual349

mobility changes is inherently included. However, the added value of a social compliance350
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model is to gradually introduce the effects of the effectivity parameters in the model. Fur-351

ther, since the compliance model parameters will be estimated from hospitalization data, the352

added degrees of freedom aid in obtaining a better model fit to the peak hospitalizations. In353

our model, we use a delayed ramp to model compliance, i.e.,354

Nc(t− t0) = Nc, old + f(t− t0, τ, l)(Nc, new −Nc, old) (18)

where,355

f(t− t0, τ, l) =


0.0, if t− t0 ≤ τ
t−t0
l −

τ
l , if τ < t− t0 ≤ τ + l

1.0, otherwise

where τ is the number of days before measures start having an effect and l is the number of356

additional days after the time delay until full compliance is reached. Both parameters are357

calibrated to the daily number of hospitalizations in Belgium (Section 2.4). The difference358

t− t0 denotes the number of days since a change in social policy.359

2.4 Parameter identification and model predictions360

Aim of the calibration procedure To demonstrate the robustness of the social contact361

model and calibration method, for each of the 2020 COVID-19 waves, we calibrate the model362

to a minimal dataset and then increase the amount of data used in the calibration procedure363

to assess if the model can adequately predict future hospitalizations and to assess if the pos-364

terior distributions of the effectivity parameters (Ωx) convergence. For the first COVID-19365

epidemic, we calibrate the model using data until April 4th, 2020, and then extend the data366

range used in the calibration in two-week increments until July 1st, 2020. During the sec-367

ond wave, we calibrate the model until November 7th, 2020, and then extend the calibration368

to the date of schools re-opening until November 16th, 2020, the date of schools closing for369

Christmas holidays on December 18th, 2020 and we finally calibrate until February 1st, 2021.370

By February 1st, 2021, the full impact of school closure and decrease in work mobility during371

the holiday period is visible in the new hospitalizations. Extending the calibration beyond372

February 1st, 2021 is out of scope for this study, as the emergence of more contagious strains373

(B.1.1.7) and the national vaccination campaign need to be included from this point onward374

(Table 2). As previously mentioned, the effectiveness of contacts in schools cannot be studied375

during the first COVID-19 wave because schools were only opened to a very limited extent376

before their final closure on July 1st, 2020.377

Parameters The model parameters R0, l, τ , Ωhome, Ωschools, Ωwork, Ωrest and ζ must be cali-378

brated to the available hospitalization data. From Equation 14, the basic reproduction num-379

ber depends on four model parameters, β, ω, da and ai. We calibrate β and da to hospitaliza-380

tion data. ω is ommitted from the calibration because an increase in ω can be compensated381
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by a decrease in da. The subclinical fraction ai is ommitted because it is an age-stratified pa-382

rameter consisting of nine values, which renders its calibration computationally unfeasable.383

The calibration of β and da should allow sufficient degrees of freedom to obtain a robust es-384

timate of the basic reproduction number without increasing the demand for computational385

resources too much. In total, nine parameters must be calibrated to hospitalization data.386

Data The calibration procedure aims to obtain a parameter set that leads to a good agree-387

ment between the model predictions and the observed data. We calibrate all parameters388

except the seroreversion rate (ζ) to the time-series of daily new hospitalizations (Hin), which389

are available for download at https://epistat.sciensano.be/Data. The serorever-390

sion rate is estimated using five serological measurements from Herzog et al. [39] and eight391

serological measurements from Sciensano, spanning a period from March 30th, 2020 until392

July 7th, 2020. For the sake of computational efficacy, the model is first calibrated to the first393

COVID-19 wave in Belgium, then, the model states on September 1st, 2020 are used as the394

initial condition to initiate the calibration of the second COVID-19 wave. In this way, the395

calibration procedure is split between the first COVID-19 wave from March 15th, 2020 until396

July 1st, 2020, and the second COVID-19 wave from September 1st, 2020 until February 1st,397

2021.398

Statistical model Rather than using the method of least squares, we assume the data are in-399

dependent and identically distributed (i.d.d.) sequences of poisson variables. The resulting400

log-likelihood function is,401

logL(y | x,θ) = −
N∑
i=1

[
yi(θ)− xi log(yi(θ))

]
, (19)

where the vector of parameters, θ, that maximizes the log-likelihood function must be found.402

In Equation 19, y denotes the model prediction, x denotes the timeseries of data and N403

represents the number of datapoints.404

Calibration procedure The fitting procedure is performed in two steps. Maximising the405

result of Equation 19 is computationally demanding and suffers from the presence of local406

maxima. We thus need an efficient way to scan through the nine-dimensional parameter407

space θ = {β, da, ...,Ωrest, ζ}. A good technique to initially broadly identify the region where408

the global maximum is situated is Particle Swarm Optimisation (PSO) [45]. When a region of409

interest has been identified, we use the maximum-likelihood estimates as initial values for410

the ensemble sampler for Markov Chain Monte Carlo (MCMC) proposed by Goodman and411

Weare [16]. For all parameters, uniform prior distributions were used.412
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2.5 Effects of non-pharamaceutical interventions413

To better compare the effects of mobility changes on the daily number of new hospitaliza-414

tions, we compute the relative share of contacts and the effective reproduction number (Re)415

at home, in schools, in workplaces and for the combination of leisure, public transport and416

other contacts. The number of effective contacts in the aforementioned places at time t are417

equal to,418

N∗c, home(t) = ΩhomeNc, home, (20)

N∗c, schools(t) = ΩschoolsHschools(t)Nc, schools, (21)

N∗c, work(t) = ΩworkGwork(t)Nc, work, (22)

N∗c, rest(t) = Ωrest

[
Gtransit(t)Nc, transport +Gr & r(t)Nc, leisure +Gg & p(t)Nc, others

]
, (23)

where N∗c, home, N∗c, schools, N
∗
c, work, N∗c, rest denote the number of effective contacts at home,419

in schools, at work or for the sum of leisure, public transport and other contacts. The relative420

share of contacts in location x and for age group i is computed as,421

rx,i(t) =
N∑
j=1

(
N∗c, x(t)

N∗c, home(t) +N∗c, schools(t) +N∗c, work(t) +N∗c, rest(t)

)
, (24)

The effective reproduction number for age goup i, in place x and at time t is computed as,422

Re,x,i(t) = Si(t)
Si(0)(aida + ω)β

N∑
j=1

N∗c,x,ij(t), (25)

Finally, the population average effective reproduction number in place x, and the population423

average relative share of contacts in location x, are computed as the weighted average over424

all age groups using the demographics listed in Table 1.425

3 Results426

3.1 Analysis of hospital surveillance data427

The average time from symptom onset to hospitalization is 6.4 days (IQR 2.0 - 8.0 days).428

Of the 22 136 hospitalized patients, 3 624 patients (16.2 %) required intensive care at some429

point during their stay and 18 512 (83.8 %) remained in cohort. The overall mortality in the430

hospital is 21.4 %, the mortality in cohort was significantly lower than the mortality in ICU431

(16.6 % vs. 46.3 %, p < 0.001). One patient under 20 years old has died from COVID-19,432

mortality is generally low for young patients and increases with older age (Figure 16 and433

Table 4 of the supplementary materials). The average length of the stay in a cohort ward434

was 11.0 days (IQR: 4.0 - 13.0 days) and the average length of an ICU stay was 13.6 days435

(IQR: 4.0 - 19.0 days) (p < 0.001). The average cohort stay was 10.8 days (IQR: 4.0 - 12.0436
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days) if the patient had recovered and 11.8 days (IQR: 4.0 - 14.0 days) if the patient had died437

(p < 0.001). The average ICU stay was 12.0 days (IQR: 3.0 - 15.0 days) if the patient had438

recovered and 15.2 days (IQR: 5.0 - 21.0 days) if the patient had died (p < 0.001). Patients439

recovering from their ICU stay spend 11.2 additional days (IQR: 4.0 - 13.0 days) in cohort for440

a recovery and observation stay. Residence times in cohort are shorter than residence times441

in ICU. In both wards, deceased patients had longer stays than recovered patients (Figure442

15 and Table 5 of the supplementary materials). Residence times in cohort and ICU increase443

with the patient’s age, the same goes for the length of a recovery stay after a stay in ICU. For444

example, a 20-30 year old patient is expected to spend 6.3 days (IQR: 2.0 - 7.0 days) in cohort445

while a 70-80 year old patient is expected to spend 12.6 days in cohort (IQR: 5.0 - 14.0 days)446

(Table 5).447

3.2 Model calibration448

The population average basic reproduction number was computed as R0 = 4.16 (IQR: 3.90449

- 4.39) for the first 2020 COVID-19 wave and as R0 = 3.69 (IQR: 3.64 - 3.75) for the second450

2020 COVID-19 wave. Large differences in the basic reproduction number exist between451

the different age groups (Figure 3). It is clear that the youths and working-aged popula-452

tion drive the SARS-CoV-2 pandemic while people of ages 70 or above can hardly sustain a453

SARS-CoV-2 pandemic amongst themselves, this is mainly because elderly individuals have454

limited social interactions (Figure 3). Still, these individuals make up roughly 35 % of all455

hospitalizations. The biggest risk group are the individuals aged 50 to 70, which make up456

roughly 50 % of the expected hospitalizations. The high expected fraction of hospitalizations457

in this age group is due to a trade-off between social contact and hospitalization risk. These458

individuals have plenty of social contact and at the same time, have a high propensity to459

hospitalization.460

461

Compliance to social measures was similar for both 2020 COVID-19 waves, with an average462

delay of 0.22 (IQR: 0.07-0.31) and 0.39 (IQR: 0.20 - 0.52) days, and a time to reach full compli-463

ance to measures of 9.17 (IQR: 8.89 - 9.50) and 6.94 (IQR: 6.71 - 7.18) days respectively. Using464

the serological datasets by Herzog et al. [39] and Sciensano, the average time to serorever-465

sion (1/ζ) was estimated as 9.2 months (IQR: 7.2 - 12.1 months) (Figure 13). The model was466

calibrated to the new hospitalizations and serological data, however, to obtain estimates for467

the total number of patients in Belgian hospitals and the number of deceased patients in468

Belgian hospitals, the hospitalization parameters computed using the clinical surveillance469

dataset are propagated in the model using bootstrap sampling. In supplementary figures 5470

and 6, the ability of the calibrated model to predict the number of daily hospitalizations, the471

total number of patients in Belgian hospitals, the total number of deaths in Belgian hospi-472

tals, and the seroprevalence in the Belgian population during both 2020 COVID-19 waves473
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Figure 3: Basic reproduction number per age group (R0,i), for Belgium (blue).
Expected fraction of the total Belgian hospitalizations during the first COVID-19
wave, as predicted by the model, from March 15th, 2020 until July 1st, 2020 in
age group i (orange, striped). Youths and working-aged population drive the
pandemic, while the senior population is mostly in need of hospital care.

are demonstrated. The model’s ability to predict the number of hospital deaths in every age474

strata is demonstrated in Figure ??.475

476

Figure 5 summarizes the results of six model calibrations using hospitalization datasets start-477

ing on March 15th, 2020 until April 4th, 2020, and subsequently increased in two-week incre-478

ments. Here, Figure 5 (a) represents the minimal dataset, where the data range used for the479

calibration was equal to March 15th, 2020 until April 4th, 2020. Opposed is Figure 5f, which480

uses the maximal dataset, using hospitalization data from March 15th, 2020 until July 1st,481

2020. Using the minimal dataset (Figure 5a), the posterior distributions are uninformative482

and model prediction uncertainty is large. Using additional data from April 15th, 2020 (Fig-483

ure 5b) onwards, the model captures the observed downward trend in the hospitalization484

data. Before the release of social restrictions on May 4th, 2020 (Figure 5a-5c), the poste-485

rior distributions seem to converge to distributions different from the ones found using the486

maximal dataset (Figure 5f). However, during the gradual lifting of lockdown restrictions487

(Figure 5d-5f), the posterior distributions monotonically converge to their final distributions.488

489

Similarly, four calibrations on hospitalization datasets of increasing length during the second490

COVID-19 wave were performed and the results are summarized in Figure 6. Once more,491

the minimal dataset (Figure 6a), which uses data from September 1st, 2020 until November492

7th, 2020 does not result in informative posterior distributions of the effectivity parameters.493

Uncertainty on the model prediction is large, but the mean model prediction is fairly ac-494

curate. As soon as schools are opened on November 16th, 2020, the daily hospitalizations495

evolve to a plateau. Despite large uncertainty on the model prediction, the emergence of the496
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3.3 Effects of non-pharamaceutical interventions 3 RESULTS

hospitalization plateau is captured in the uncertainty band, and the model thus provides a497

starting estimate using the minimal dataset. Although model accuracy has risen, a similar498

conclusion can be drawn for the calibration using data until schools re-opening on Novem-499

ber 16th, 2020. When including data in the hospitalization dataset until schools closure for500

the Christmas holidays on December 18th, 2020 (Figure 6c), the model correctly attributes501

the increased transmission to the opening of schools. In Figure 6c, it can be seen that the502

effectivity parameter for schools is almost equal to the maximum value of one. Although the503

posteriors of the effectivity parameters still differ significantly from their final distributions,504

the model provides an accurate prediction for the future evolution of the new hospitaliza-505

tions during the Christmas holidays and until schools re-opening on January 4th, 2021. From506

the inference using the maximal dataset (Figure 6d), it is clear that the model attributes high507

effectivities for contacts at home and in schools.508

3.3 Effects of non-pharamaceutical interventions509

To better compare the effects of non-pharmaceutical interventions between both 2020 COVID-510

19 waves, we computed the relative share of contacts and the effective reproduction number511

at home, in schools, in workplaces, and for the sum of leisure, public transport, and other512

contacts (Figure 7). In this way, we can dissect the force of infection in our model, allowing513

us to assess the relative impact of contacts made at different locations on SARS-CoV-2 trans-514

mission. In pre-pandemic times, leisure and work contacts account for the bulk of total con-515

tacts, while under strict lockdown measures (March 15th, 2020 - May 4th, 2020 and October516

19th, 2020 - November 16th, 2020), the contacts at home are the main driver of SARS-CoV-2517

spread. The effective reproduction number under strict lockdown measures was equal to518

Re = 0.67 (IQR: 0.48 - 0.76) for the first COVID-19 epidemic and was equal to Re = 0.66519

(IQR: 0.61 - 0.69) for the second COVID-19 epidemic. Aside from the interactions at home,520

leisure contacts had the second most impact during the first COVID-19 wave, with roughly521

twice the impact of work contacts. When lifting social restrictions from May 4th, 2020 on-522

wards, the relative contribution of home contacts gradually declines, while the contributions523

of work and leisure become more important. The effective reproduction number gradually524

increases and approaches the critical value of Re = 1 by the beginning of summer (average525

of June, 2020 Re = 0.91, IQR: 0.77 - 1.00).526

527

As soon as schools are re-opened on November 16th, 2020, a plateau in the daily number528

of hospitalizations emerges (Figure 7). There were no other major policy changes around529

this time, except schools re-opening. Our model deduces this correlation by inferring pos-530

terior values of the effectivity of contacts in schools close to one, meaning school contacts531

were highly effective for SARS-CoV-2 transmission. Schools have an impact similar to the532

home interactions, with both contributing roughly 40 % to the total number of effective con-533
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3 RESULTS 3.3 Effects of non-pharamaceutical interventions

tacts during the second COVID-19 wave. The opening of schools under lockdown can tip534

the scale, and push the effective reproduction number just above the critical value of Re = 1.535

When schools are opened, the effective reproduction number increases fromRe = 0.66±0.04536

toRe = 1.09±0.05, causing a stagnation of the daily hospitalizations. To further validate this537

result, we extracted the number of laboratory-confirmed cases in youths [0, 20[, the working538

population [20, 60[ and the senior population [60,∞[ from the Belgian Scientific Institute of539

Public Health (Sciensano). The time-series were normalized with the number of cases on540

November 21st, 20201 to allow a better comparison. The number of laboratory-confirmed541

cases amongst youths starts increasing as soon as schools are opened on November 16th,542

2020 (Figure 4). A similar pattern is observed during school closure and re-opening for the543

Christmas holidays, although it should be noted the relationship is less clear. This is most544

likely the effect of Christmas and New Year celebrations and returning travelers. The use545

of a time-lagged cross-correlation revealed a significant lead-relationship between the num-546

ber of cases in youths and the working population by 9 days, and a leading relationship547

between the number of cases amongst youths and the senior population by 13 days (Section548

A.5). This indicates that as schools are reopened, SARS-CoV-2 finds its way through social549

networks from younger to older individuals, eventually pushing the effective reproduction550

number above one.551
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Figure 4: Relative number of confirmed cases in youths, the working population
and the senior population during the period November 2nd, 2020 until Febru-
ary 1st, 2021, as compared to the number of confirmed cases in each group on
November 16th, 2020. The grey shade is used to indicate schools were open.

1Date of school reopening 2021-11-16 plus one five-day incubation period.
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Figure 5: (left) Estimated posterior distributions for the effectivity of a contact at home (Ωhome), in the workplace (Ωwork) and for the sum of leisure activities,
other activities and public transport (Ωrest), (right) together with the resulting model prediction for the daily hospitalizations from March 15th, 2020 until July
14th, 2020 (right). The effectivity of school contacts could not be deduced during the first 2020 COVID-19 wave because schools were only re-opened very
limited before their final closure on July 1st, 2020. Calibration performed using the daily hospitalizations in Belgium until: (a) 2020-04-04, (b) 2020-04-15, (c)
2020-05-01, (d) 2020-05-01, (e) 2020-06-01 and (f) 2020-07-01. Calibration data in black, validation data in red. Model predictions are accurate in all but the
minimal calibration dataset (a). Monotonic convergence of the effectivity parameter posteriors is reached quickly after lockdown release on May 4th, 2020 (d-f).
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Figure 6: Estimated posterior distributions for the effectivity of a contact at home (Ωhome), at school (Ωschools), in the workplace (Ωwork) and for the sum of
leisure activities, other activities and public transport (left), together with the resulting model prediction for the daily hospitalizations from September 1st, 2020
until February 14th, 2021 (right). Calibration performed using the daily hospitalizations in Belgium until: (a) 2020-11-07, (b) 2020-11-16, (c) 2020-12-18, (d)
2021-02-01. Calibration data in black, validation data in red. Model predictions are accurate for all calibration datasets. Monotonic convergence of the schools
effectivity parameter is reached a-posteriori schools re-opening (c).
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Figure 7: (First column) Relative share of contacts at home, in the workplace, in schools and for
the sum of leisure activities, (Second column) effective reproduction number (Re) at home, in the
workplace, in schools and for the sum of leisure activities, other activities and public transport. The
right axis denotes the predicted number of daily Belgian hospitalizations. The first row depicts the
first COVID-19 wave in Belgium, from March 15th, 2020 until July 14th, 2020, while the second
row depicts the second COVID-19 wave in Belgium, from September 1st, 2020 until February 1st,
2020. Mean and 95 % confidence interval of 1000 model realisations. The background is shaded
grey before lockdown measures were taken. During both lockdowns, home interactions have the
largest share of effective contacts. During lockdown release, the relative importance of work and
leisure contacts start increasing. Schools opening and closing has a large impact on the effective
reproduction number, and can end a decreasing trend in hospitalizations.
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4 DISCUSSION

4 Discussion553

4.1 Analysis of hospital surveillance data554

We computed hospitalization parameters using data from 22 136 patients in Belgian hospi-555

tals. The average time from symptom onset to hospitalization was estimated as 6.4 days.556

This estimate is in line with the previous estimate for Belgium of 5.7 days by Faes et al. [41],557

and is in line with estimates for other regions such as 5-9 days for China [38], 4.4 days for558

Hong Kong, and 5.1 days for the UK [46], especially when the interquartile range of 2.0 - 8.0559

days is taken into account. Of the 22 136 hospitalized patients, 3 624 patients (16.2 %) re-560

quired intensive care at some point during their stay and 18 512 (83.8 %) remained in cohort.561

The result is slightly lower than the estimate of Wu and McGoogan [47] for China, who esti-562

mated that one-quarter of all hospitalized patients require intensive care. It should however563

be noted that the criteria for ICU admission and release might differ between countries. The564

ICU admission probabilities and mortalities in cohort and ICU indicate that COVID-19 has a565

much higher severity in older individuals, which is in line with estimates from other studies566

[4, 48]. In terms of hospital residence times, our estimates agree well with those made by567

Faes and colleagues [41]. The average time spent in cohort was estimated as 11.0 days (3.4568

- 15.6 days for the youngest versus oldest age groups), while the average time spent in ICU569

was estimated as 13.6 days (6.0 - 10.8 days for the youngest versus oldest age groups). The570

average time spent in ICU was lower in the 80+ age group (10.8 days) than in the 70-80-571

year-olds (15.0 days). The residence time estimates are in line with Vekaria et al. [49] who572

estimated a length of stay in England for COVID-19 patients not admitted to ICU of 8.4 days573

and for ICU length of stay of 12.4 days. It was previously reported by Faes et al. [41] that the574

median residence time decreased after the first 2020 COVID-19 wave, however, we chose not575

to account for temporal changes in the hospital residence times and mortalities. The model576

predicted total number of patients and number of deaths in Belgian hospitals (Figures 9 and577

10) would likely benefit from propagating time-dependent hospitalization parameters in the578

model. Vandromme et al. [50] previously found that the average hospital residence times579

in Belgium have decreased between the first and second 2020 COVID-19 waves, which is580

mainly due to standardization of COVID-19 hospital treatment. In spite, the model predic-581

tions are sufficiently accurate to aid policymakers in the decision-making process.582

583

4.2 Model calibration584

We obtained an average basic reproduction number of R0 = 4.16 (IQR: 3.90 - 4.39) for the585

first 2020 COVID-19 wave and of R0 = 3.69 (IQR: 3.64 - 3.75) for the second 2020 COVID-586

19 wave, which is in line with the global consensus range of R0 = [2, 4]. The estimate for587

the second COVID-19 wave is slightly lower, and this is most likely because this estimate588
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4.2 Model calibration 4 DISCUSSION

implicitly includes the effects of preventive measures and mentality changes that were grad-589

ually adopted during the first 2020 COVID-19 wave. The compliance to social measures590

was similar between both 2020 COVID-19 waves, little lag was observed (0.22 vs. 0.39 days)591

and the time to reach full compliance was of the same magnitude (9.17 vs 6.94 days). Thus,592

compliance to lockdown restrictions can be modeled using a ramp function without lag,593

eliminating one of the model’s parameters, namely τ (Equation 18). The seroreversion rate594

was estimated using two serological datasets. The data by Herzog et al. [39] consists of595

residual blood samples sent to laboratories, while the dataset of Sciensano consists of blood596

samples from Red Cross blood donors. The dataset of Herzog et al. [39] is likely biased to-597

wards sick individuals, while the dataset of Sciensano is biased towards healthy individuals.598

In the calibration procedure, both datasets were given equal weights to incorporate a truth599

in the middle heuristic. We estimated the average time to seroreversion as 9.2 months (IQR:600

7.2 - 12.1 months), although the estimated distribution (Figure 13) has a long tail, it is very601

likely that antibody immunity gradually wanes. The estimate is consistent with the finding602

that 50 % of antibodies are most likely lost one year after the infection [24]. Using the same603

dataset, Abrams and colleagues [11] have estimated the rate of antibody waning at 8 months604

using their SARS-CoV-2 model (informal communication). It should be noted that the in-605

corporation of antibody waning completely ignores the effects of cellular immunity and that606

more research on the exact kinetics of the immune response is necessary. In spite, it is best607

to include waning immunity in SARS-CoV-2 models, especially when long time-horizons608

are considered in the simulations. In this study, a population average subclinical fraction of609

57 % was used, which was higher than estimated in a systematic review by Buitrago-Garcia610

et al. [36] (31 %) and higher than the estimate for the Icelandic population of Gudbjartsson611

et al. [35] (43 %). We expect that a decrease in the subclinical fraction could be compensated612

by a decrease of the per-case hospitalization risk (h) to obtain the same fit to the hospital-613

ization data. However, lowering the subclinical fraction would lead to a reduced fraction of614

seropositive individuals in the population and thus a mismatch between the simulated sero-615

prevalence data and observed seroprevalence data. Because of the good agreement between616

the simulated and observed seroprevalence, the fraction of subclinical infections are most617

likely correctly represented in the model (Figures 9 and 10).618

619

We calibrated the model’s effectivity parameters (Ωhome, Ωschools, Ωwork, Ωrest) on incremen-620

tally larger hospitalization datasets and found that the model provides accurate forecasts621

under the observed mobility changes, even when the posteriors still depend on the extent622

of the dataset. However, correct2 effectivity parameters could only be deduced a posteriori623

events. This is because information on the effectiveness of contacts can only be obtained by624

observing the hospitalizations under changing policies. Examples are the effects of leisure625

and work relaxations during the first COVID-19 wave and the effect of schools re-opening626

2Assuming the inferred posterior distributions of the maximal dataset are correct.
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4 DISCUSSION 4.3 Effects of non-pharamaceutical interventions

during the second COVID-19 wave. From April 15th, 2020 onwards (Figure 5, panel b) the627

ever decreasing trend in the daily hospitalizations is nicely captured even with posteriors628

seemingly converging to distributions different than those of the maximal dataset (panel f).629

Still, on May 1st 2020 (panel c), the model could have been used to accurately inform poli-630

cymakers on the effects of lifting work and leisure restrictions just four days later. As soon631

as restrictions are lifted, the posteriors quicly converge to their final distributions. A similar632

observation is made with regard to the schools effectivity parameter. From November 7th,633

2020 onwards (Figure 6, panel a) the effect of schools re-opening is captured in the model634

uncertainty, in spite of deviant posterior distributions. From Decenber 18th, 2020 onwards635

(panel c) the effect of schools re-opening is captured both in the model predictions and the636

effectivity parameters. Because accurate posteriors can only be inferred a posteriori, the637

modeler must asses if policy changes have been sufficient to deduce meaningfull effectivity638

posteriors. This is important when performing scenario analysis, as incomplete knowledge639

of the effectivity posterior can significantly alter the results.640

641

Scaling pre-pandemic contact matrices with public mobility data has proven to be a rapidly642

deployable and cheap alternative to the use of survey-based contact studies under lockdown643

measures, such as the one of Coletti et al. [17] for Belgium. The social contact model is well-644

fit for the acute stages of the pandemic when these contact data are still being gathered.645

However, as the pandemic progresses, the survey-based contact studies are the preferred646

choice as the use of public mobility data is more coarse-grained. Because the GCMRs are not647

available for different age groups, they do not allow us to accurately capture how individ-648

uals of different ages have altered their behavior under lockdown measures. For example,649

the contact study by Coletti et al. [17] shows that younger individuals tend to increase their650

contacts sooner than older individuals after the release of lockdown measures. These dif-651

ferential effects are still captured in our social contact model, albeit less accurate than the652

survey-based contact model, by the multiplication of the GCMRs with the pre-pandemic653

number of contacts. For example, the mobility reduction in workplaces is only applied to654

the matrix of work contacts, which only contains contacts for individuals between 20 and655

60 years old. Further, because the GCMRs are collated smartphone data, one could expect656

the elderly population to be underrepresented due to lower smartphone usage. However,657

it is unlikely that this would drastically alter our study’s results because older individuals658

have fewer contacts than younger individuals and thus contribute less to overall SARS-CoV-659

2 spread.660

661
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4.3 Effects of non-pharamaceutical interventions 5 CONCLUSIONS

4.3 Effects of non-pharamaceutical interventions662

Finally, we would like to discuss the importance of schools in the SARS-CoV-2 pandemic. As663

previously mentioned in section 3.3, there seems to be a strong correlation between school664

re-opening, the rise of laboratory-confirmed cases amongst youths, the rise of the number665

of clusters in schools, and the emergence of plateaus in the daily hospitalizations (Figures 4666

and 7). Our model incorporates this correlation as high effectivities of school contacts. An667

increase in the effective reproduction number, from Re = 0.66 ± 0.04 to Re = 1.09 ± 0.05,668

is observed when schools are re-opened. Several studies have found children to be less669

susceptible to a SARS-CoV-2 infection [3, 26, 51]. Because quantitative data was scarce at the670

time of writing, we incorporated no changes in susceptibility and infectiousness in children671

in this study. However, this will not alter the large impact schools seem to have on SARS-672

CoV-2 spread in our model. If the susceptibility and infectiousness in children is lowered,673

this will most likely be countered during the parameter inference, where we expect higher674

values for the effectivity of contacts of children in schools (Ωschools) to be inferred. Although675

the present evidence is circumstantial, and correlation does not imply causation, schools676

seem to play a critical role in SARS-CoV-2 spread. Thus, school closure seems an effective677

way of countering an epidemic SARS-CoV-2 trend.678

5 Conclusions679

We obtained an average basic reproduction number of R0 = 4.16 (IQR: 3.90 - 4.39) and680

R0 = 3.69 (IQR: 3.64 - 3.75) for both 2020 COVID-19 waves in Belgium. We found that SARS-681

CoV-2 strongly discriminates between individuals of different age groups, with youths and682

the working-aged population driving the pandemic, and the senior population needing683

hospital care. These results are in line with the established consensuses and highlight the684

model’s validity. Further, by propagating the hospitalization parameters computed using685

the clinical surveillance dataset, the model is able to accurately predict the number of daily686

hospitalizations, the total number of patients in Belgian hospitals, the total number of deaths687

in Belgian hospitals, and the seroprevalence in the Belgian population during both 2020688

COVID-19 waves.689

690

The combination of the deterministic epidemiological model, which incorporates a-priori691

knowledge on disease dynamics, and the social contact model whose infectivity parameters692

were inferred allow us to make the most out of the available pre-pandemic data and public693

mobility data. Our method is computationally cheap and does not require ad-hoc tweaking694

to obtain a good fit to the observed data. A disadvantage is that the effectivity parameter dis-695

tributions only converge to their correct posterior distributions a posteriori policy changes.696

Still, even when using a very limited calibration dataset, the model is able to make accurate697

28

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 FUTURE RESEARCH

predictions of the future number of hospitalizations, highlighting the robustness of the cali-698

bration method.699

700

As soon as schools were re-opened on November 16th, 2020, the number of confirmed cases701

amongst youths starts increasing. A significant lead relationship between the number of702

cases amongst youths and the working population, and youths and the senior population703

was found. Our model incorporates this correlation as high effectivities of school contacts.704

When schools were re-opened under lockdown policies, the model indicates the effective705

reproduction number increased from Re = 0.66 ± 0.04 to Re = 1.09 ± 0.05. Thus, school706

closure is an effective measure to counter an epidemic SARS-CoV-2 trend.707

6 Future research708

• The calibration procedure should be repeated using pandemic social contact matrices,709

which are currently being gathered for Belgium by Coletti et al. [17]. Further, the ef-710

fects of integrating the contacts with their duration should be explored. A comparison711

between the different results can then be made.712

• The effective reproduction number in the different places should be compared to data713

on SARS-CoV-2 clusters to further validate the model.714

• It is expected that lockdown measures in Belgium will be lifted soon. The impact of re-715

leasing measures on the daily hospitalizations should be studied to find a link between716

the effectivity parameters and the mobility reductions.717

• If schools are a major contributor to SARS-CoV-2 spread, administering a vaccine with718

high transmission-blocking potential to youths is expected to have a similar effect as719

schools closure. Due to their localized nature, vaccination for SARS-CoV-2 in schools720

is logistically easier than vaccinating the general population.721
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A Supplementary materials757

A.1 Overview of model assumptions and limitations758

The following assumptions were made concerning the SEIQRD dynamics:759

1. All individuals experience a brief presymptomatic, infectious period.760

2. All individuals, including children, are equally susceptible to SARS-CoV-2 infection.761

It is unlikely that lower susceptibility in children would alter the dominant role of762

schools in SARS-CoV-2 transmission. During model calibration, a higher effectivity763

of the contacts in schools (Ωschools) could compensate for the lower susceptibility in764

children.765

3. Asymptomatic and mild cases automatically lead to recovery and in no case to death.766

4. Mildly infected and hospitalized individuals cannot infect susceptibles (= quarantined).767

A fraction of individuals experiencing influenza-like illness will not reduce their num-768

ber of non-household contacts and will thus contribute to disease spread [52]. In our769

model, this behavior is not accounted for. The model cannot be used to model the770

effect of transmission to healthcare workers.771

5. All deaths come from hospitals, meaning no patients died at home [53].772

6. The modeled population is the general population of Belgium and does not explicitly773

take nursing homes into account. The model is unfit to make predictions on nursing774

home deaths.775

7. Waning of antibody immunity is incorporated in the model as individuals transition-776

ing from the recovered (R) population pool to the susceptible (S) population pool. The777

incorporation of antibody waning ignores the effects of cellular immunity (through T-778

and B-cells). More research on the exact kinetics of the immune response is necessary779

to finetune to the model.780

The following assumptions to the hospital dynamics were made:781

1. Upon arrival in the hospital, all patients immediately transfer to a cohort ward or an782

ICU. In real life, a patient may first spend some time in a cohort ward before going to783

an ICU and this is not accounted for.784

2. Residence times in cohort and in ICU differ depending on the outcome of the infection785

(recovered or deceased).786

3. All recovered ICU patients spend some additional time in cohort (recovery and obser-787

vation stay).788
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4. Patients in nursing homes were excluded from the analysis of the clinical surveillance789

dataset. The model can make predictions on hospital deaths in individuals coming790

from the general population.791

5. During the analysis of the hospital surveillance data, the data analysis was not split792

into several time intervals and hence the temporal changes in hospital residence times793

and mortalities were neglected. In spite, Faes et al. [41] have reported that the median794

residence time decreased after the first 2020 COVID-19 wave.795

The following assumptions were made in the social contact model:796

1. Prepandemic contact matrices by Willem et al. [14] are scaled with mobility reductions797

extracted from the GCMRs and an effectivity parameter inferred from hospitalization798

data using a Markov-Chain Monte-Carlo method to mimic pandemic social behavior.799

2. The GCMRs are not age-stratified and do not correct for a potential underrepresenta-800

tion of older individuals in the data collection. The GCMRs are a more coarse-grained801

approach as compared to social-epidemiological contact studies that estimate mixing802

patterns under lockdown measures [17]. However, setting up a survey-based contact803

study is a resource and time-intensive endeavor. The advantage of using the GCMRs in804

our social contact model is their rapid and public availability, making their use appro-805

priate during the early stages of a pandemic when more accurate survey-based contact806

studies are being set up.807

3. The effectivity of the contacts (Ωx) are bound between zero and one. This implies that808

if work mobility is reduced to 40 % of its pre-pandemic value, the work contacts can809

account for no more than 40 % of its pre-pandemic value.810

4. There is no link between the effectivity parameters and the mobility reduction. How-811

ever, when relaxing measures, an increase in mobility will likely be accompanied by an812

increase in the effectiveness of school contacts. This is due to mentality changes upon813

relaxation, as measures will gradually be ignored more.814

A.2 Overview of model parameters815
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Table 1: Overview of simulation parameters used in the extended SEIQRD metapopulation model.

Symbol Parameter Value Unit Reference
a subclinical fraction per age group [0.98 0.98 0.88 0.69 0.59 0.39 0.13 0.07 0.01]

population mean: 0.57
(−) Wu et al. [37]

h fraction of mildly infected individuals requiring hospitalisation [0.01 0.02 0.02 0.02 0.02 0.05 0.11 0.22 0.57]
population mean: 0.08

(−) Inferred

c fraction of hospitalisations not requiring ICU transfer Table 4, population mean: 0.84 (−) Hospital dataset
da duration of subclinical infection 6.54 days Inferred
dm duration of mild infection 7 days To et al. [32]
dhosp average time from symptom onset to hospitalization Table 6, population mean: 6.4 days Hospital dataset
dC,R length of cohort stay if recovered Table 5, population mean: 10.8 days Hospital dataset
dC,D length of cohort stay if deceased Table 5, population mean: 11.8 days Hospital dataset
dICU,R length of ICU stay if recovered Table 5, population mean: 12.0 days Hospital dataset
dICU,D length of ICU stay if deceased Table 5, population mean: 15.2 days Hospital dataset
dICU,rec length of recovery and observation stay in cohort after ICU stay Table 6, population mean: 11.2 days Hospital dataset
mC mortality in cohort Table 4, population mean: 0.17 (−) Hospital dataset
mICU mortality in ICU Table 4, population mean: 0.46 (−) Hospital dataset
σ length of latent period 4.5 days Computed
ω length of presymptomatic infectious period 0.7 days Wei et al. [7], He

et al. [29]
σ + ω length of incubation period 5.2 days Liu et al. [6]
β probability of infection upon contact with an individual capable of

transmitting SARS-CoV-2 under the assumption that the infectee is
100 % susceptible to SARS-CoV-2 infection

0.032 (−) Inferred

T0 total population [1.31 1.30 1.40 1.50 1.52 1.60 1.35 0.91 0.66]∗1e6,
total population: 11.54 ∗ 1e6

people StatBEL [54]

Nc contact matrix 9x9 matrix days-1 Willem et al. [14]
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A.3 Key events A SUPPLEMENTARY MATERIALS

A.3 Key events816

The first lockdown, which started on March 15th, 2020, and lasted until May 4th, 2020 in-817

volved the closure of schools, bars, clubs, restaurants, all non-essential shops, and closure818

of the border to non-essential travel (Table 2). The GCMRs show a 56 % reduction in work-819

place mobility (Figure 2 and Table 2). Based on surveys from the Belgian National Bank,820

28.6 % of all employees were able to work from home, 29.9 % remained in the workplace821

and 4.4 % worked both from home and in the workplace. 32.4 % were temporary unem-822

ployed and 4.8 % were absent [55]. Public transport mobility decreased by 65 %, leisure823

mobility decreased by 72 %, and grocery & pharmacy mobility was reduced by 26 %. From824

March 15th, 2020 until May 4th, 2020, mobility remained practically constant at the afore-825

mentioned reductions. On May 4th, 2020 the lockdown was gradually lifted by re-opening826

all non-essential shops and lifting telework restrictions. The effect can be seen in the Google827

Community Mobility Reports (Figure 2), by the end of April, workplace and retail & recreation828

mobility gradually start increasing. By July 1st, 2020, almost all social measures had been829

lifted. During the first lockdown, schools remained fully closed until May 18th, 2020, and830

were only re-opened to a very limited extent before the end of the school year on July 1st,831

2020. For this reason, schools are assumed to remain closed during the first COVID-19 wave.832

During July, there were few social restrictions, and this resulted in new, localized infection833

clusters. During most of August 2020, a lockdown with a curfew was imposed in Belgium’s834

Antwerp province. We do not attempt to model the hospitalizations during July and August835

2020, as modeling localized infection clusters with a nation-level epidemiological model can836

only be accomplished by severe ad-hoc tweaks in the social contact model. A spatial model837

extension was developed to better account for such localized phenomena.838

839

During the second lockdown from October 19th, 2020 until the present day (26/02/2021),840

workplace mobility has been reduced by approximately 25 %. During Autumn break and841

Christmas holidays, workplace mobility further declined to approximately 45 %. Public842

transport mobility decreased by 30 % and by 50 % during holidays, leisure mobility de-843

creased by 40-50 % and grocery & pharmacy mobility have decreased by approximately 5-10844

%. Primary and secondary schools were closed between October 19th, 2020, and re-opened845

on November 16th, 2020. Further, schools have been closed during the Christmas holidays846

from December 18th, 2020 until January 4th, 2021, and were closed during spring break from847

February 15th, 2021 until February 21th, 2021. Universities have remained fully closed since848

October 19th, 2020.849

850

During both lockdowns, increases in the categories residential and parks were observed (Fig-851

ure 2). These are indicative of decreased mobility, as these suggest increased activity around852

the home environment. The other four categories are more indicative of general mobility as853
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A SUPPLEMENTARY MATERIALS A.3 Key events

they are related to activity around workplaces, retail outlets and use of public transporta-854

tion [43]. Thus, although the mobility figures indicate people spent more time at home, this855

does not mean people have more contacts at home (especially under stay-at-home orders).856

Amplifying the fraction of household contacts under lockdown measures would increase in-857

tergenerational mixing of the population under lockdown, which is unrealistic and will lead858

to overestimations of the hospitalizations. The inability to accurately capture the disease859

spread in home bubbles under lockdown measures is an inherent downside of compartmen-860

tal epidemiological models. We have thus not scaled the home interaction matrix (Nc,home)861

with the residential mobility from the GCMRs.862
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Table 2: Dates of key events during the first and second lockdown in Belgium. Google mobility reduction (see Figure 2), computed
as the average reduction between one key event and the next.

Date Key event Details Gwork Gtransit Gr& r Gg & p Hschools

First COVID-19 wave (March - July 2020)
15/03/2020 Lockdown Closure of schools, bars, clubs and restaurants; Closure of all non-

essential shops; Non-essential travel forbidden. [56]
- 56 % -65 % -72 % -26 % - 100 %

04/05/2020 Lockdown release
phase Ia

Re-opening of industry and B2B services. Re-opening of non-essential
retail. Merging of two social bubbles allowed [57].

- 44 % -54 % -57 % -18 % - 100 %

11/05/2020 Lockdown release
phase Ib

Re-opening of all businesses and shops. Working at home remains the
norm where possible.

- 38 % -45 % -46 % -12 % - 100 %

18/05/2020 Lockdown release
phase IIa

Re-opening of businesses that involve the most human-human contact
(f.i. hairdressers). Re-opening of schools for graduating classes in ele-
mentary and secondary education [58].

- 38 % -39 % -39 % -8 % - 100 %

04/06/2020 Lockdown release
phase III

Re-opening of bars and restaurants. Gatherings up to 10 persons are
allowed.

-22 % -27 % -15 % -4 % - 100 %

01/07/2020 Lockdown release
phase IV

Closure of schools for summer holidays. Gatherings of up to 15 persons
are allowed.

-32 % -27 % -11 % -8 % - 100 %

01/08/2020 Antwerp Lock-
down

The number of infections starts increasing in Antwerp province, where
a second lockdown with curfew is imposed [59].

-28 % -33 % -32 % -6 % - 100 %

Second COVID-19 wave (September 2020 - present)
01/09/2020 End of summer

holidays
Opening of elementary and secondary schools. -18 % -17 % -14 % -5 % - 0 %

19/10/2020 Lockdown Closure of bars and restaurants; Curfew; Strict social restrictions. [60] -26 % -31 % -39 % -3 % - 0 %
02/11/2020 Lockdown Closure of non-essential stores; Closure of all schools. [61] -43 % -48 % -55 % -13 % - 100 %
16/11/2020 Schools reopen Elementary and secondary schools reopen. Universities remain closed. -27 % -37 % -44 % -5 % - 0 %
12/18/2020 -
04/01/2021

Christmas holidays Elementary and secondary schools close. Decrease in work related mo-
bility.

-45 % -47 % -42 % -4 % - 100 %

04/01/2021 -
15/02/2021

Period between
holidays

Elementary and secondary schools reopen. British variant (501Y.V1)
starts spreading [62]. Vaccination campaign in elderly homes starts [63].

-27 % -38 % -43 % -6 % - 0 %
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A SUPPLEMENTARY MATERIALS A.4 Basic reproduction number

A.4 Basic reproduction number863

Since the system of differential equations (Eq. 1 - Eq. 12), is autonomous, the eigenvalues of864

the Jacobian matrix evaluated at its hyperbolic equilibrium point can be used to determine865

the nature of that equilibrium [64]. The basic reproduction number (R0) is computed as866

the spectral radius of the Jacobian matrix at the disease-free equilibrium [27]. Our model867

has seven infected states: E, Ipresy, Iasy, Qmild, Qcohort, QICU and QICU, rec (Figure 1). At the868

disease-free equillibrium, the whole population is susceptible to the infectious disease, Si =869

Ti,870

u∗ = (Ti, 0, 0, 0, 0, 0, 0, 0, 0). (26)

The Jacobian J is defined as,871

J =



∂f1
∂x1

∣∣∣∣∣
u∗

. . .
∂f1
∂xn

∣∣∣∣∣
u∗

...
. . .

...
∂fm
∂x1

∣∣∣∣∣
u∗

. . .
∂fm
∂xn

∣∣∣∣∣
u∗


, (27)

where n and m are equal to the number of infected compartments. Next, the Jacobian is872

decomposed in the following form,873

J∗ = (T + Σ)J . (28)

The matrix T contains all terms that lead to transmissions of SARS-CoV-2, while Σ contains874

all terms that lead to transitions. For our model,875

T =


0 β

N∑
j=1

Nc,ij β
N∑
j=1

Nc,ij 0 0 0 0

0 0 0 0 0 0 0
...

...
...

...
...

...
...

0 0 0 0 0 0 0


, (29)

where an entry Ti,j is the rate at which individuals in infected state j gives rise to individuals876

in infected state i. And,877

Σ =



−1/σ 0 0 0 0 0 0
1/σ −1/ω 0 0 0 0 0
0 ai/ω −1/da 0 0 0 0
0 (1− ai)/ω 0 −(1−hi

dm
+ hi

dhosp
) 0 0 0

0 0 0 cihi
dhosp

−
(
mC,i

dc,D,i
+ 1−mC,i

dc,R,i

)
0 0

0 0 0 (1−ci)hi

dhosp
0 −

(
mICU,i

dICU,D,i
+ 1−mICU,i

dICU,R,i

)
0

0 0 0 0 0 1−mICU,i

dICU,R,i
− 1
dICU,rec,i


,

(30)
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A.5 Time-lagged cross correlation A SUPPLEMENTARY MATERIALS

where an element Σ-1
i,j is the expected time that an individual who presently has state j will878

spend in state i during its entire epidemiological life. The next generation matrix (NGM) is879

then calculated as,880

NGM = −TΣ-1 . (31)

The basic reproduction number R0 is defined as the spectral radius3 ρ of this matrix [27],881

R0 = ρ(−TΣ-1) , (32)

which becomes for our model,882

R0,i = (aida + ω)β
N∑
j=1

Nc,ij . (33)

A linear relationship between the reproduction number and the chance of infection upon883

contact (β), the number of contacts (Nc) and the sum of the durations of infectiousness for884

those compartments able to infect susceptibles makes sense.885

A.5 Time-lagged cross correlation886

We extracted the number of laboratory confirmed cases in youths [0, 20[, the working pop-887

ulation [20, 60[ and the senior population [60,∞[ from the Belgian Scientific Institute of Public888

Health (https://epistat.sciensano.be/Data) from November 2nd, 2020 to February889

1st 2020. We then normalized the timeseries with the number of cases on November 21st,890

2020 and visualized the result in Figure 4. Using the Python module pandas, the dataseries891

were shifted with k days and the cross correlation was computed. The procedure was per-892

formed for k ∈ [−15, 5] days, the resulting cross correlation function is shown in Figure 8 and893

the results of the analysis are summarized in Table 3. Next, we constructed a statiscal test to894

check if the covariance between two series x and y, shifted with the number of days resulting895

in the maximum covariance, kmax, varied significantly from zero. Thus, the null hypothesis896

is,897

H0 : ρxy(kmax) = 0.0 . (34)

If the cross correlation of lag kmax is zero, then, for a fairly large timeseries consisting of n898

datapoints, the covariance ρxy(kmax) will be approximately normally distributed, with mean899

zero and standard deviation σ = 1√
n−|k|

. Since approximately 95% of a normal population900

is within 2 standard deviations of the mean, a test will reject the hypothesis that the cross901

correlation of lag k equals zero when,902

|ρ(k)| ≥ 2√
n− |k|

. (35)

The null hypothesis was rejected for all timeseries.903

904

3Largest absolute eigenvalue.
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Figure 8: Cross correlation between the number of cases in Belgium in the age
groups [0−20[, [20−60[ and [60−∞[, from November 2nd, 2020 until February 1st
2020 in function of the number of days the timeseries are shifted relative to each
other (τ ). The maximum cross correlation is obtained when the series [0−20[ and
[20− 60[ are shifted -9 days, the maximum cross correlation is obtained when the
series [0−20[ and [60−∞[ are shifted -13 days, and the maximum cross correlation
is obtained when the series [20− 60[ and [60−∞[ are not shifted.

Table 3: Results of the time-lagged cross-correlation between the number of cases in the age
groups [0 − 20[, [20 − 60[ and [60 −∞[. Data from November 2nd, 2020 until February 1st
2020 were used in the analysis, which is equal to the daterange range shown in Figure 4.

Age group (years) Time-lag
(days)

Covariance
(-)

[0− 20[ vs. [20− 60[ -9 0.72
[0− 20[ vs. [60−∞[ -13 0.70
[20− 60[ vs. [60−∞[ 0 0.98

A.6 Supplementary data and figures905

39

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 27, 2021. ; https://doi.org/10.1101/2020.07.17.20156034doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.17.20156034
http://creativecommons.org/licenses/by-nc-nd/4.0/


A.6 Supplementary data and figures A SUPPLEMENTARY MATERIALS

0

200

400

600

Da
ily

 h
os

pi
ta

liz
at

io
ns

 (-
)

0

2000

4000

6000

To
ta

l p
at

ie
nt

s i
n 

ho
sp

ita
ls 

(-)

0

2000

4000

6000

De
at

hs
 in

 h
os

pi
ta

ls 
(-)

2020-04-08 2020-05-18 2020-06-27 2020-08-060

4

8

12

Se
ro

pr
el

ev
an

ce
 (%

) model mean
Herzog et al. 2020
Sciensano

Figure 9: (top to bottom) Model predictions and data during the first COVID-19
wave in Belgium, from March 15th, 2020 until September 1st, 2020: 1) The daily
Belgian hospitalizations, 2) the total number of patients in Belgium hospitals, 3)
the total number of deceased patients in Belgian hospitals, 4) the seroprelevance
in the Belgian population. Mean and 95 % confidence interval of 1000 model
realisations. Red datapoints indicate the data was used in the model calibration,
black datapoints indicate data was not used in the model calibration. The model
is calibrated to the daily Belgian hospitalizations (top), the prediction for the total
number of patients in Belgian hospitals and total number of deceased patients
in Belgian hospitals are obtained by propagating the age-stratified mortalities
(mC and mICU), age-stratified distributions between cohort and ICU (c) and the
residence time distributions derived from the hospital dataset in the model (dC,R,
dC,ICU, dICU,R, dICU,D) (see Table 4 and 5).
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Figure 10: (top to bottom) Model predictions and data during the second
COVID-19 wave in Belgium, from September 1st, 2020 until February 1st, 2021:
1) The daily Belgian hospitalizations, 2) the total number of patients in Belgium
hospitals, 3) the total number of deceased patients in Belgian hospitals, 4) the
seroprelevance in the Belgian population. Mean and 95 % confidence interval
of 1000 model realisations. Red datapoints indicate the data was used in the
model calibration, black datapoints indicate data was not used in the model cal-
ibration. The model is calibrated to the daily Belgian hospitalizations (top), the
prediction for the total number of patients in Belgian hospitals and total num-
ber of deceased patients in Belgian hospitals are obtained by propagating the
age-stratified mortalities (mC andmICU), age-stratified distributions between co-
hort and ICU (c) and the residence time distributions derived from the hospital
dataset in the model (dC,R, dC,ICU, dICU,R, dICU,D) (see Table 4 and 5).
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Figure 11: Cumulative deaths in Belgian hospitals per ten-year age strata. For
the first Belgian 2020 COVID-19 wave, from March 1st, 2020 until September 1st,
2020. Yellow bars represent the data collected by Sciensano, inverted triangles
represent the model prediction mean with 95 % confidence interval.
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Figure 12: Cumulative deaths in Belgian hospitals per ten-year age strata. For
the second Belgian 2020 COVID-19 wave, from September 1st, 2020 until Febru-
ary 1st, 2021. Yellow bars represent the data collected by Sciensano, inverted
triangles represent the model prediction mean with 95 % confidence interval.
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Figure 13: Estimated distribution of the time to seroreversion (1/ζ). The mean
time to seroreversion is 9.2 months (IQR: 7.2 months - 12.1 months).
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Included patients in survey
(n = 52 327)

Excluding patients with missing age
(−4 483)

Excluding patients with missing admission
date, discharge date, outcome status

(−19 835)

Excluding patients with negative event time
(−1 777)

Excluding patients from nursing homes
(−4 096)

Included patients in analysis
(n = 22 136)

Figure 14: Flow diagram illustrating the number of patient data excluded from
the survey and the reason thereof.
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Figure 15: Observations of the length of a hospital stay for patients in cohort
and ICU wards. Overall (gray), if recovered (green), if deceased (red). Residence
times in cohort are shorter than residence times in ICU. In both wards, recovered
patients have longer stays than deceased patients.
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Figure 16: Mortality in cohort (mC, green) and mortality in ICU (mICU, red) per
ten-year age strata. Obtained by bootstrap resampling of the Belgian COVID-19
clincial surveillance on hospitalizations by Van Goethem et al. [40]. Mortality in
both wards increases with patient age, mortality in ICU is higher than mortality
in cohort.
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Table 4: Computed fraction of hospitalized patients remaining in cohort and not transferring to ICU (c), pooled mortality in cohort
and ICU (mC, ICU), mortality in cohort (mC) and mortality in ICU (mICU) per ten-year age strata. Estimates obtained by bootstrap
resampling from the Belgian COVID-19 clincial surveillance on hospitalizations by Van Goethem et al. [40].

Age group n (-) c (%) mC, ICU (%) mC (%) mICU (%)
mean 95% CI mean 95% CI mean 95% CI mean 95% CI

[0, 10[ 404 98.0 97.7 - 98.3 0.0 NA 0.0 NA 0.0 NA
[10, 20[ 169 87.0 86.3 - 87.7 1.2 1.0 - 1.4 0.0 NA 8.9 7.3 - 10.7
[20, 30[ 578 91.1 90.1 - 91.6 1.5 1.3 - 1.8 0.8 0.6 - 1.0 9.5 7.5 - 11.7
[30, 40[ 1042 89.8 89.1 - 90.4 2.7 2.4 - 3.0 1.1 0.9 - 1.4 15.8 13.3 - 18.3
[40, 50[ 1873 85.8 85.1 - 86.5 4.1 3.7 - 4.6 2.1 1.8 - 2.5 16.1 14.0 - 18.2
[50, 60[ 3267 80.9 80.1 - 81.7 8.0 7.4 - 8.6 3.7 3.2 - 4.1 26.4 24.2 - 28.6
[60, 70[ 3952 75.9 75.0 - 76.8 16.4 15.6 - 17.2 7.6 6.9 - 8.2 44.3 42.1 - 46.5
[70, 80[ 4844 78.3 77.4 - 79.2 26.6 25.7 - 27.6 17.2 16.3 - 18.2 60.3 58.1 - 62.6
[80,∞[ 6007 91.8 91.2 - 92.3 40.4 39.4 - 41.5 37.4 36.3 - 38.4 75.3 72.0 - 78.4
Population 22 136 83.8 83.0 - 84.6 21.4 20.6 - 22.3 16.6 15.7 - 17.5 46.3 43.8 - 49.0
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Table 5: Hospital residence time in cohort, irregardless of COVID-19 outcome (dC), residence time in cohort, in case of recovery
(dC,R), residence time in cohort, in case of death (dC,D). Hospital residence time in IC, irregardless of COVID-19 outcome (dICU ),
residence time in IC, in case of recovery (dICU,R), residence time in IC, in case of death (dICU,D) per ten-year age strata. Scale and
shape parameters of Weibull distribution fitted to the residence time data. Estimates obtained by analyzing a subset of data from the
Belgian COVID-19 clincial surveillance on hospitalizations by Van Goethem et al. [40].

Age group dC (days) dC,R (days) dC,D (days)
mean IQR scale shape mean IQR scale shape mean IQR scale shape

[0, 10[ 3.4 2.0 - 4.0 3.66 1.22 3.4 2.0 - 4.0 3.66 1.22 NA NA NA NA
[10, 20[ 6.3 2.0 - 7.0 5.64 0.85 6.3 2.0 - 7.0 5.64 0.85 NA NA NA NA
[20, 30[ 4.9 2.0 - 5.0 4.86 0.98 4.9 2.0 - 5.0 4.86 0.98 5.0 3.5 - 6.0 5.67 2.10
[30, 40[ 5.5 3.0 - 6.0 5.77 1.12 5.5 3.0 - 6.0 5.77 1.12 6.1 2.0 - 11.0 6.38 1.13
[40, 50[ 6.3 3.0 - 8.0 6.81 1.22 6.3 3.0 - 8.0 6.81 1.22 6.8 2.3 - 8.8 6.94 1.03
[50, 60[ 7.6 4.0 - 9.0 8.12 1.16 7.6 4.0 - 9.0 8.07 1.17 9.1 3.0 - 10.0 9.16 1.01
[60, 70[ 10.0 4.0 - 11.0 10.32 1.08 9.9 4.0 - 11.0 10.31 1.10 11.2 3.0 - 14.0 10.32 0.86
[70, 80[ 12.6 5.0 - 14.0 13.11 1.10 12.6 5.0 - 14.0 13.24 1.13 12.6 4.0 - 13.0 12.42 0.97
[80,∞[ 15.6 6.0 - 19.0 16.37 1.13 17.8 8.0 - 22.0 19.1 1.21 11.9 4.0 - 15.0 12.21 1.06
Population 11.0 4.0 - 13.0 9.09 1.21 10.8 4.0 - 12.0 8.72 1.24 11.8 4.0 - 14.0 10.97 1.08

Age group dICU (days) dICU,R (days) dICU,D (days)
mean IQR scale shape mean IQR scale shape mean IQR scale shape

[0, 10[ 6.0 2.0 - 8.3 6.40 1.19 6.7 2.0 - 8.5 7.37 1.37 NA NA NA NA
[10, 20[ 4.9 2.0 - 5.0 5.26 1.25 4.0 2.0 - 5.0 4.44 1.43 16.0 NA NA NA
[20, 30[ 9.6 2.0 - 10.0 8.86 0.87 8.9 2.0 - 10.0 8.34 0.89 18.0 4.5 - 25.5 16.97 0.89
[30, 40[ 10.1 2.0 - 13.3 11.08 1.00 9.4 2.0 - 11.0 8.72 0.87 14.0 5.0 - 20.0 14.86 1.20
[40, 50[ 11.3 3.0 - 14.0 12.75 1.00 10.6 3.0 - 12.0 10.34 0.95 15.1 4.5 - 21.0 16.38 1.30
[50, 60[ 14.1 5.0 - 19.0 1.05 1.00 11.7 4.0 - 15.8 12.02 1.08 19.7 8.5 - 27.0 20.60 1.16
[60, 70[ 14.7 5.0 - 21.0 1.05 1.00 13.2 4.0 - 17.0 13.00 0.97 16.5 6.0 - 23.0 17.52 1.21
[70, 80[ 15.0 5.0 - 21.0 1.05 1.00 14.6 4.0 - 21.0 14.47 0.98 15.2 6.0 - 21.0 15.83 1.12
[80,∞[ 10.8 3.0 - 14.0 12.58 1.00 7.9 2.0 - 9.0 7.54 0.92 11.7 3.0 - 15.0 11.25 0.92
Population 13.6 4.0 - 19.0 11.41 1.21 12.0 3.0 - 15.0 12.32 0.98 15.2 5.0 - 21.0 13.77 1.10
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Table 6: Hospital residence time for a recovery stay in cohort, after a stay in ICU (dICU,rec),
time from symptom onset to hospitalization (dhospital) per ten-year age strata. Scale and
shape parameters of Weibull distribution fitted to the residence time data. Estimates ob-
tained by analyzing a subset of data from the Belgian COVID-19 clincial surveillance on
hospitalizations by Van Goethem et al. [40].

Age group dICU,rec (days) dhosp (days)
mean IQR scale shape mean IQR scale shape

[0, 10[ 9.9 0.5 - 3.0 3.18 0.40 2.2 0.0 - 2.0 0.86 0.43
[10, 20[ 3.4 3.0 - 4.0 2.99 0.70 5.6 2.0 - 6.0 4.69 0.73
[20, 30[ 8.4 3.0 - 10.8 8.18 0.94 6.0 2.0 - 7.0 5.33 0.75
[30, 40[ 6.6 2.0 - 7.0 5.88 0.80 6.7 3.0 - 9.0 6.78 1.02
[40, 50[ 8.2 3.0 - 8.0 7.97 0.94 7.4 4.0 - 9.0 7.69 1.14
[50, 60[ 10.1 4.0 - 11.0 10.02 0.99 7.5 4.0 - 10.0 7.73 1.08
[60, 70[ 11.5 4.0 - 14.0 11.58 1.01 6.9 3.0 - 9.0 6.87 0.97
[70, 80[ 15.2 6.0 - 20.0 15.29 1.02 6.6 2.0 - 8.0 5.72 0.75
[80,∞[ 13.3 6.0 - 16.0 14.11 1.23 5.0 1.0 - 7.0 3.62 0.59
Population 11.2 4.0 - 13.0 8.39 1.40 6.4 2.0 - 8.0 10.11 0.63

908
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Figure 17: Inferred effectivity parameters at home (Ωhome), in the workplace
(Ωwork), in schools (Ωschools) and for the sum of leisure activities, other activities
and public transport (Ωrest), for the first COVID-19 wave (blue) and for the sec-
ond COVID-19 wave (black). The effectivity of contacts in schools could not be
deduced during the first COVID-19 wave because schools remained practically
closed until July 1st, 2020. However, a high effectivity of contacts in schools
could be deduced during the second COVID-19 wave. The effectivity of work
contacts was roughly the same during both 2020 COVID-19 waves. The effectiv-
ity of leisure contacts was estimated to be lower during the second COVID-19
wave, however, leisure policies were not varied (yet) during the second COVID-
19 wave, so the estimate must be taken with a grain of salt. Home contacts were
deemed more effective by the model during the second COVID-19 wave.
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