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Abstract: This research investigated if pandemic of SARS-COV-2 follows the Earth seasonality   10 

comparing countries cumulative daily new infections incidence over Earth periodic time of 11 

interest for north and south hemisphere. It was found that no seasonality in this form   occurs 12 

as far as a seasonality forcing behavior    assumes most of the influence in SARS-COV-2 13 

spreading patterns.  Putting in order    of influence, there were identified three main forms of 14 

SARS-COV-2 of transmission behavior: during epidemics growth, policies are the main stronger 15 

seasonality forcing behavior of the epidemics followed by secondary and weaker 16 

environmental and urban spaces driving patterns of transmission. At outbreaks and control 17 

phase, environmental and urban spaces are the main seasonality forcing behavior due to 18 

policies/ALE limitations to address heterogeneity and confounding scenario of infection. Finally 19 

regarding S and R compartments of SIR model equations, control phases are the most reliable 20 

phase to predictive analysis. 21 

These seasonality forcing behaviors cause environmental driven seasonality researches 22 

to face hidden or false observations due to policy/ALE interventions for each country and 23 

urban spaces characteristics. And also, it causes policies/ALE limitations to address urban 24 

spaces and environmental seasonality instabilities, thus generating posterior waves or 25 

uncontrolled patterns of transmission (fluctuations). 26 

All this components affect the SARS-COV-2 spreading patterns simultaneously being 27 

not possible to observe environmental seasonality not associated intrinsically with policies/ALE 28 

and urban spaces, therefore conferring to these three forms of transmission spreading 29 

patterns, specific regions of analysis for time series data extraction. 30 

 31 

Keywords: COVID-19; policies and ALE preventive methods; forced seasonality; Fourier 32 

transforms; environmental driven factors; urban spaces heterogeneity. 33 

 34 

1) Introduction 35 

The main focus of this research is to point, as noted in Grassly and Fraser [1], the 36 

consequences of seasonality for endemic    stability in order to understand and obtain an 37 

endemic equilibrium for COVID-19 involving mixing patterns such as environmental driving 38 

factors, policies interventions and urban spaces [3-8]. These three variables might pose a 39 

challenging outcome for predictive analysis [9] of SARS-COV-2 spreading patterns since the 40 

time series data of cumulative daily new cases are highly influenced by it in terms of 41 

quantitative outcomes day by day, fluctuations and mainly random outcomes that comes 42 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.15.20154823doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

mailto:charlestelles@seed.pr.gov.br
https://doi.org/10.1101/2020.07.15.20154823
http://creativecommons.org/licenses/by-nd/4.0/


2 
 

influenced by different aspects of local epidemics behavior. In order to correct and address 43 

this later point, we might be observing data that should be divided in three phases of 44 

epidemics that is the outbreak, peak and control followed by its main seasonality drivers found 45 

in this research in sequence that is the environmental variables (Earth seasons and 46 

atmospheric conditions), policies and ALE interventions and urban spaces (local indoor and 47 

outdoor spaces for transit and social interactions being public or private with natural physical 48 

features on it). By observing time series data of cumulative daily new cases worldwide [10], 49 

these three sequences of epidemics phases present different results for each sample (country) 50 

of observation and many delays in order to obtain a normality for epidemic curve are found as 51 

well as attractive behavior of the outcomes over time. These constraints give the formation of 52 

false observations of phenomenon to predictive analysis based on SIR models and derivations 53 

[11], policies interventions and the main role of environmental variables towards outbreaks 54 

and waves restarting periods. 55 

Following this late paragraph statements, this research divided the world data of 56 

cumulative daily new cases for COVID-19 in three regions of data extraction in the linear time 57 

series, designed to organize the confounding data of analysis, prediction and accuracy for 58 

fields of research. This will bring more robust understanding for the scientific convergence of 59 

results and worldwide strategies to reduce SARS-COV-2 spreading patterns of infection. 60 

 61 

2) Methodology 62 

2.1 Earth seasons: undefined time intervals of analysis for periodic oscillations 63 

To put COVID-19 under the Earth seasons aspect of analysis the endemic free-64 

equilibrium need to be under the view of Floquet Theory as it is current in many other 65 

infectious diseases with defined periodic   behavior (Earth seasonal ( )) and we need to meet 66 

a periodic oscillation to predict    under      criteria in time-varying environments with no 67 

heterogeneity forces, thus assuming a force of infection as          
 

 
  in order to be 68 

possible to establish a reasonable   
  periodical stability for COVID-19 as observed by Bacaër 69 

[12] as defined in [12] as        (         )    , being   the spectral matrix and      70 

the confounding environment (ecological variables such as biotic and abiotic) of compartments 71 

S, I and R of SIR model. At this point the seasonality of COVID-19 at S, I and R compartments is 72 

assumed to be dependent on deterministic outcomes for immunity, healthcare interventions 73 

and public policies under atmospheric triggering conditions (Earth seasons  ) as found, for 74 

example, in common flu. If considering this condition, the ODE could be easily observed in 75 

linear time series as pointed in Sietto [13] as           ∑   
 
        ∑   

 
        76 

    , where the proposition of periodicity   as linear in time as             would be 77 

possible and consistent in its fluctuations in terms of daily new infections with seasonal 78 

sinusoidal patterns as                      [14], and also stochastic over time factor 79 

considering seasonal fluctuations defined as Hidden Markovians chains as        80 

    |                                         [13] and its many 81 

derivations, found in many researches, as examples [15-17], of the same event worldwide that 82 

would lead to the seasonal Fourier transform fluctuations of COVID-19 outbreaks and over 83 

defined time behavior. If each epidemics is universally assumed as equal towards   worldwide, 84 

then Fourier analysis would be possible to be performed considering time periodic fluctuations 85 

as noted in Mari et al [14] and therefore, the use of Markovian chains to obtain the phase 86 

shifts of regularities would be a true approach to predict how SARS-COV-2 spreading patterns 87 
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are formed. The main problem we face here is when the stochastic process      assumes a 88 

lack of synchrony due to random delays [8,18,19] worldwide, hence generating a stochastic 89 

form with unknown seasonality of infection as defined in [18] as      ∫       
 

 
, and 90 

therefore, not assuming a seasonality for   and the outbreak of local epidemics. At this point 91 

we have several discrepant (heterogeneous) time series of the exponential behavior of daily 92 

new cases infection in countries that were in winter season (figure 1) and also comparing 93 

countries that are entering winter at south hemisphere and entering summer at north 94 

hemisphere (figure 1). There is no strong difference between Earth seasonality influencing 95 

those localities in its virus spreading patterns. 96 

 97 

 98 

 99 

 100 

 101 

 102 

 103 

 104 

 105 

 106 

 107 
Figure 1. Selected countries from December 31, 2019 to June 25, 2020 from continents Asia, Europe, South and 108 

North America, Africa and Australia were displayed interpolating Earth seasons and number of cumulative daily new 109 
infections. Source: Our World in Data. 110 

 111 

 This lack of pattern formation as found in common flu [20] (figure 2 and 3) creates an 112 

undefined   over defined      as well as mean   (figure 2) over periodicity   criteria (figure 3) 113 

as a pre assumption of analysis in the view of Fourier transform and therefore confirming an 114 

unexpected seasonality forcing behavior    in which each sample (countries, regions, places,…) 115 

presents a different SARS-COV-2 spreading pattern not only concerning the Earth seasonality, 116 

but other components of    as presented in the introduction section. 117 

 118 

  119 

 120 

 121 

 122 

 123 

 124 

 125 
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Figure 2. Seasonality of Influenza common species by 2019 and 2020 at North Hemisphere. Source: WHO. 126 

 127 

 128 

 129 

 130 

 131 

 132 

 133 

 134 

 135 
Figure 3. Seasonality of Influenza common species by 2019 and 2020 at South Hemisphere. Source: WHO. 136 

 137 

2.2 Seasonality forcing behavior beyond Earth seasons and sinusoidal approaches 138 

What we are observing clearly or maybe apparently at many results [2], is an 139 

asymptotic unstable behavior of SARS-COV-2 towards atmospheric conditions dictated by 140 

temperature, humidity, UV (ultraviolet) and wind speed as those results don’t present 141 

consistent indication of how atmospheric events have strong influence in the SARS-COV-2 142 

spreading patterns of transmission as seasonal environmental drivers. 143 

One might understand that north hemisphere had its first wave because of 144 

atmospheric conditions such as Earth season periods and for that in its turn, the south 145 

hemisphere as entering in winter will present exactly the same epidemics behavior presented 146 

at the first wave impact as observed in north regions. One important observation over it refers 147 

to the high amount of infection in north hemisphere in some countries under the summer 148 

season in contrast to the same amount of infection in south hemisphere under winter season 149 

that is occurring nowadays. 150 

Both planet regions presented similar daily new infections at both seasons, therefore, 151 

not differing in the transmission spreading patterns of infection. Following this path, no 152 

periodic criterion was met for basic reproductive number    stability for an endemic 153 

equilibrium. We are facing daily new cases worldwide (figure 4) and the reason for the north 154 

hemisphere for European and Asian countries reduces its spreading patterns in the end of 155 

winter season is rather a coincidence over time that was caused mainly due to policies and ALE 156 

over population and individual behavior [3-8].  157 

 158 

 159 

 160 

 161 

 162 

 163 

 164 

 165 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 16, 2020. ; https://doi.org/10.1101/2020.07.15.20154823doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.15.20154823
http://creativecommons.org/licenses/by-nd/4.0/


5 
 

Figure 4: This graph mainly is focused in the comparison of north and south hemisphere countries such as Europe 166 
that decreased epidemics due to policies intervention and south and North America countries that were hit by first 167 

wave and policies were applied in different perspectives if compared to Europe. Source: Our World in Data. 168 

 169 

If no seasonality of atmospheric conditions was found, we can observe still a 170 

seasonality forcing behavior, which was very well shaped by contact rates frameworks [4] 171 

based on policies and ALE actions [6] as represented in Figure 5. Bell shaped curve scheme. 172 

This overall scenario of pandemics could be very well observed in late March and starting April 173 

when at that time China and South Korea were the countries with the most lower rates of 174 

exponential growth of infection while Europe was in its growing pattern fully active and also in 175 

later June, many other researches pointed to the importance and role of policies and ALE 176 

towards pandemic control rather than atmospheric patterns of infection spreading worldwide 177 

[2-9]. 178 

 179 

 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 
Figure 5: China and South Korea policies intervention effect over COVID-19 spreading pattern in late March and 192 

April, followed by other countries patterns. This was proved to be true [2-8] over time of pandemic outbreak 193 
regarding policies and SARS-COV-2 spreading patterns data. 194 

  195 

But it does not mean that environmental variables such as atmosphere properties or 196 

Earth seasonality present no causation on the event (this will not be demonstrated and it is 197 

only theoretically assumed for the long-term expression of the pandemics, of which we don’t 198 

have still a visible glance of it). It means exactly that policies and ALE influence the 199 

phenomenon in different degree of seasonal forcing behavior than was expected to be 200 

addressed to the environmental factors, since we already have these outcomes available in 201 

worldwide data.  202 

And also, not mentioned yet, the urban spaces found in every city, present specific 203 

potential to influence the local epidemics for the S and R compartments of SIR models, since it 204 

affects the capability of each country/city/locality to deal with the outcomes of susceptibility, 205 

immunity and public health control measures, therefore, making COVID-19 predictive models 206 

to assume data that are not perfectly real. And for each predictive model that fails to address 207 

urban spaces heterogeneity, policies and ALE interventions subjectivity and environmental 208 

non-homology of data, uncertainty degree grows making SARS-COV-2 emerge under unknown 209 

patterns of contagion as observed in Billings et al [19] and with a similar example of measles in 210 

Grenfell et al [21]. 211 
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2.2 Seasonality forcing behavior 212 

The unexpected seasonality under heterogeneity forcing behavior    might confer to 213 

the exponential behavior of infection spreading patterns among countries an unpredictable 214 

sinusoidal expression like                  as pointed by Buonuomo et al [22] of Fourier 215 

transforms considering finite time lengths of analysis (seasons) equally distributed over time 216 

period   within samples (countries). This can be better understood because of the data series 217 

of cumulative daily new cases present high-amplitude noise and this is often related to the 218 

lower spectral density and lower frequency in which makes the analysis imprecise as a 219 

sinusoidal behavior in the basis form of Earth seasonality as∫ |    |    
  

  
. In this sense, the 220 

sinusoidal behavior does not exist in terms of how countries might present default oscillations 221 

within seasonal periods of Earth as represented schematically in figure 6.  222 

 223 

 224 

 225 

 226 

 227 

 228 

 229 

 230 

 231 

 232 

 233 

 234 

Figure 6. General framework of covid-19 seasonality under the view of Fourier transforms limitations. 235 

 236 

And following this path, this leads to the observation that each sample can be 237 

understood as the lack of forming patterns towards confident interval and standard deviation 238 

under default time periods   from December 31, 2019 to June 25, 2020, resulting into a 239 

stochastic maximum exponential form of cumulative daily new infections as      change over 240 

time as showed in figure 7 samples.  241 

 242 

 243 

 244 

 245 

 246 

  247 

 248 
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Figure 7. Some countries spreading patterns since outbreaks until June 25, 2020. Source: Outbreak.info. 249 

 250 

However, despite of this scheme pointing to the weaker Earth seasonality forcing 251 

behavior of SARS-COV-2 spreading patterns, they can still be influencing the overall pattern of 252 

transmission with a hidden pattern due to policies/ALE interventions, environmental driven 253 

seasonality and urban spaces. 254 

This point can be addressed to the pattern formation of    confounding forced seasonality 255 

for S and R compartments over time [1,23-29], environmental driven factors [30-32] and 256 

policies/ALE intervention [3-8]. It is possible to observe (figure 1, 3 and 7) that each country 257 

dimension might respond differently to the same initial conditions, influenced by these three 258 

components, thus generating multiple patterns formation over time   for SARS-COV-2 259 

transmission and periodicity. 260 

Concerning a theoretical desired worldwide normal distribution that most mathematical 261 

models implies for infection spreading patterns with shape behavior     or     (Weinbull 262 

parameterization) of exponential “irregular” distributions of SARS-CoV-2 infection within time 263 

intervals   with defined periodicity   (seasonality among countries) [33], the defined original 264 

form of   compartment is given as 
  

  
  

  

 
   . However, the high asymptotic instability 265 

behavior [23-29] of   lead us to redefine the equation basic fundaments and it can be 266 

understood as   (
 

 
)
 

 (1), where the infected   is influenced by unpredictable scale of 267 

infection   ( ) with inconsistent behavior of variables transition rate (   ) defined as  , and is 268 

not assumed for    in the original form of R, that there are a normal distribution output for 269 

this virus spreading patterns. This new pattern formation of the epidemic behavior was well 270 

pointed by Duarte et al [34] when contact rate do not take in account weather conditions and 271 

time-varying aspects of epidemics. Therefore it was used an unpredictable shape   (close to 272 

reality shapes), mainly defining this shape caused   and   asymptotic instabilities generated 273 

by S and R compartments over time [1,23-29], environmental driven factors [30-32] and 274 

policies/ALE intervention [3-8]. This equation represents the presence of confounding and 275 

heterogeneous environmental variables   with unknown predictive scale of      or 276 

maximum likelihood estimator for   due to nonlinear inputs for S and R (urban spaces), policies 277 

and environmental conditions influence, and therefore generating nonlinear outputs   278 

(asymptotic instability) [35,36]. If we consider that most models are searching for a normality 279 

behavior among countries, hence, implying that the   distributions are non-complex and not 280 

segmented by its partitions, therefore resulting into a linearity for the virus infection   over 281 

     and  , then the overall equation as described by Dietz                     [35] 282 

would be not reachable for any given time period of analysis considering the seasonality 283 

forcing behavior of SARS-CoV-2. 284 

The outputs with heteroscedasticity and non-homologous form for   and   can be 285 

modified to reach stable points of analysis in as modeled by Dietz                     286 

for each of the three seasonality forces influencing SARS-CoV-2 spreading patterns, that is 287 

regions where Fourier transforms and other methods of predictive analysis based on SIR 288 

models and derivations, policies interventions and the main role of environmental variables 289 

towards outbreaks and waves restarting periods can be found. These stable points of 290 

asymptotic convergence can be observed in the scheme of figure 8. 291 

 292 
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 293 

 294 

 295 

 296 

 297 

 298 

 299 

 300 

 301 
Figure 8. Concerning the apparent exclusion of Earth well defined seasonality, the external forcing behavior of SARS-302 
COV-2  spreading patterns can be now filtered and stated as presenting three phases of expression, that is the S and 303 
R compartments constraints to modeling aspects, environmental driven and confounding variables and policies/ALE 304 
interventions conferring to the modeling aspects of prediction, undesirable uncertainty degree not only for 305 
outbreaks, second waves.  306 

 307 

In order to remove heteroscedasticity and non-homologous form for   and   from 308 

occurring, as far as the     Weibull parameterization aspect [37] (Bell curve shape) of 309 

distribution be elected as the most reliable region of analysis (attractive orientation) for any 310 

given   periods within samples (countries cumulative daily new cases time series), it is 311 

necessary to modify the first equation (1) to   (
    

 
)
    

 

 
 (

 

 
)
 

 (2), hence with the new 312 

SIR model proposition as         , where   is asymptotic to    and S and R considered in 313 

its original form                      [14]. This is a mandatory redesign since many 314 

scientific breakthroughs are pointing to policies as the best approaches to reduce COVID-19 315 

nowadays [3-8]. Starting with this redesign of equation we might find one of the first region of 316 

analysis and stability, which is policies intervention, found in the slope (peak) of daily 317 

cumulative cases over time. 318 

Let’s address this persistence homology briefly for this research, where this desired mean 319 

function      of topological space     over                     indicated at (2) can 320 

be found as a persistence diagram existence [38] by mapping each adjacent pair to the point 321 

(            ) minimum and maximum observations, resulting in critical points of      322 

function over time   not in adjacent form globally but regionally triangularly space as 323 

             ‖    ‖  [39] with a given mean region, thus expressing random critical 324 

values defined by   (
 

 
)
 

 in the original form of observation of the event. But since we need 325 

to filter              unstable critical points (oscillatory instability of seasonality for S and R 326 

policies/ALE and environmental driven variables) to an attractive minimum behavior with 327 

normal distribution, then this region of analysis must be situated between           
 

 
 for 328 

every        asymptote periods. Following this path, we going to have a roughly speaking 329 

the mean as the size of persistence diagram and triangulable diagonal ( ) like           330 

∑   
  

       
 

 
 with multiplicity pairing regions (    ) for each desired triangulation as 331 

          , resulting in the general equation for any assumed region as   
   332 

        

          

          

   
  

         

   
  

 [39]. Note that each mean function   
   will be 333 

given by regions defined as                    , being      the covariance function  of 334 

seasonality forcing behavior        , therefore without a global mean value for the event in 335 
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terms of infection and time. Further derivations and formulations regarding this persistence 336 

diagram won’t be addressed for this research, but it is highly suggested that future researches 337 

keep these formulation defined for predictive and monitoring analysis of epidemic seasonality 338 

forcing behavior. 339 

Also, it is necessary to understand that this new design of seasonality regions can be 340 

properly adapted to Fourier transform analysis under the amplitude of waves with the 341 

equation                           where angular momentum was drawn in the limits of 342 

                   , giving            
 

 
  and generally defining it with sinusoidal 343 

reduced form as       ∫              
  

  
 in order to reach a sinusoidal approach of time 344 

series data extraction and analysis over time periods and regions of analysis. 345 

Also beyond the limitation of time periods for predictive analysis and monitoring as a 346 

Gaussian Process, this design also introduces one main point of analysis that is the lack of a 347 

mean and covariance function         over fluctuations as a global homomorphism and a 348 

decomposition form of wave signals similar to Fourier transforms where persistent homology 349 

can be found for       Weibull reliability to be situated in the oscillations pairing region of 350 

          and           for   desired coordinates of fluctuations in              of 351 

stability with     continuous form as          ∫  ∑         
 
 

 

   [9], thus assuming the 352 

shape and limit to     as small partitions to the desired analysis or without a derivative form 353 

for the overall analysis within the period defined. For the discretized view of      as pointed in 354 

[9] results, it is possible to obtain a sample mean as  ̅  
 

 
∑     

 
 . Further results of this 355 

approach can be visualized at [9] reference. 356 

 At this point, by rejecting the persistence diagram unstable critical points generated, a 357 

local minimum of the event as an average mean can be obtained by having      with the 358 

higher number of samples   (daily infections) that finds a condition roughly described in the 359 

nonlinear oscillations within the exponential growth epidemic behavior of event as limited 360 

between local maximum growth defined by 
 

 
 by its half curvature oscillations   as a local 361 

minimum being non periodic as    in a global homomorphism sense due to    . In this 362 

sense, the new sinusoidal approach offers new mean function as an angular momentum of 363 

           
 

 
. This scheme can be observed for policies/ALE intervention on SARS-CoV-2 364 

spreading patterns [23] in figure 9. 365 

 366 

 367 

 368 

 369 

 370 

 371 

 372 

 373 

 374 

 375 

 376 
Figure 9. Policies/ALE stable region of analysis on SARS-CoV-2 spreading patterns. Image data source: Worldometer 377 

– Italy on 08 July 2020. 378 

 379 
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 Therefore        assumes the desired oscillations samples and region condition like 380 

         
 

 
 where persistent homology can be found for       to be situated in the 381 

oscillations pairing region of           and              for        desired coordinates 382 

               of stability with     as             ∫  ∑         
 

 

 

   or vice-versa for 383 

      ∫  ∑         
 

 

 

    , thus assuming the shape and limit to    . Then concerning 384 

time lengths of samples, it is designed as                ∑            starting from 385 

             
 

 
  results in the desired data distribution with a conditional shape of Weibull 386 

parameterization     for the analysis with a normal distribution, therefore rejecting any 387 

critical value beyond             and under            , being     the seasonality forcing 388 

behavior of policies intervention over SARS-CoV-2 among countries data sets. 389 

Now, considering that the S and R compartments of SIR model are needed to 390 

predictive analysis of infection spreading patterns, these compartments might work properly 391 

under the third region of time series data, that is the urban spaces     seasonality. To achieve 392 

these results with high reduction of uncertainty, it is necessary to conceive S and R as in its 393 

most stable region of analysis, that should be influenced in a posterior scenario where     394 

(policies/ALE) and     (environmental seasonality) already took effect. This is mandatory since 395 

as far as policies are assumed in models or estimated with unreal quantitative parameters they 396 

promote uncertainty growth, and also they face limitations to track real patterns within an 397 

urban space features for S and R as a causation relation. For urban spaces seasonality forcing 398 

behavior, it is considered that inside and outside spaces promotes limitations to policies/ALE 399 

due to limiting action that it can face within these urban spaces (not all policies/ALE can 400 

survive in some urban spaces as it was designed to be). And also environmental seasonality 401 

can be present at this phase influencing with urban spaces the limitation of policies/ALE 402 

actions, therefore,     might find a spot to grow within inside and outside urban spaces 403 

beyond     normalization (more explanation of this causation effect will be given in results 404 

section). 405 

Considering unexpected seasonal forcing     roughly defined as           406 

             
 

 
  [9] in a complex network model, where non periodic oscillation 407 

(sinusoidal) are to be found in discrete form with  (       )  ∫                
  

  
, we might 408 

assume a rupture of the         , leaving the region the pre assumed linearity           409 

           for S and R in the overall metrics of time series data   within one sample or among 410 

countries and understand each iteration of the event as unconnected to the previous and 411 

future data if considering multiple time series comparisons (among countries) or even in the 412 

same time series if considering long-term analysis. In true, since the    is asymptote to    , 413 

then     is limited by     on   , but not necessarily fully stable in terms of     present total 414 

control over environmental seasonality due to urban spaces features. This statement is 415 

understood as far as policies/ALE interventions are the strongest attractive point of the 416 

phenomenon and therefore, compartment models find its limitation over how policies are 417 

implemented and how urban spaces can be convergent to policies/ALE interventions. Is is 418 

possible to check that most of these SIR models are constructed based on these     seasonality 419 

behaviors [40]. From this phase on, urban spaces and policies/ALE interventions might present 420 

high influence on the outcomes due to unpredictability of S and R patterns to design 421 
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appropriate contact rate and that is still a limitation for the SIR model methods nowadays [23-422 

29], however, it is still the most desirable region of analysis for data extraction. 423 

Concerning urban spaces, due to huge diversity of public health infrastructure buildings 424 

design, outdoor and indoor building designs and natural physical features such as rivers, lakes, 425 

snow,…, it influences the environmental driven pattern on the region and not only policies. 426 

Therefore, it is reasonable to understand that any assumption on S and R during epidemic 427 

phase in its full curvature is much more closed to uncertainty measures than ever.  428 

In this sense, countries might diverge seriously in the urban space and therefore, and S 429 

and R compartments finds limitations to calculate it during peak curvature and also it is 430 

contradictory since policies are not even fully developed or had the time to take effect while 431 

these models uses policies as the basis of modeling patterns. For this reason, the most reliable 432 

region of analysis for these compartments and where most of the models are 433 

situated/functioning actually, remains at the control phase of epidemics, that is when 434 

exponential behavior reaches asymptotic stability towards SARS-CoV-2 reduction, and of 435 

course, caused by policies interventions mostly. However, fluctuations still may occur 436 

worldwide due to the type of policy/ALE features and urban spaces features. In sense, no 437 

perfect prediction can be achieved still, but it is the most stable region for predictive analysis. 438 

Now let’s assume that uncontrolled environmental driven factors     are the main cause 439 

of outbreaks and posterior waves of infection in a coupling relation with urban spaces and 440 

policies/ALE limitations, with unknown spreading pattern. This assumption can be confirmed 441 

since at this phase for the initial outbreak among countries, no policies intervention was 442 

existent or ALE features vary a lot among countries and also, as far as countries relax their 443 

policies [4,6,8], policies present urban spaces limitations and urban spaces promotes 444 

environmental seasonality, new waves of infection occur. In this sense, the environmental 445 

seasonality drivers as the main cause of aperiodic and unstable behavior for SARS-COV-2 446 

spreading patterns worldwide. 447 

Extracting the patterns of transmission of SARS-COV-2 at this point is challenging in 448 

terms of identify how outbreaks and positive control of epidemics occurs. It is possible to 449 

address to the outbreaks the main cause of environmental drivers of seasonality for SARS-450 

COV-2 when we understand that no policies/distinct ALE are influencing the phenomenon at 451 

this phase. And also at this point of analysis, second or other waves of infection have its main 452 

focus for researchers since that, as outbreaks, waves can be very closed related to the 453 

environmental variables and urban spaces rather than any other form of seasonality forcing 454 

behavior. 455 

The uncertainty growth of epidemics patterns worldwide within the outbreaks need to 456 

be understood excluding the policies intervention region of analysis, since this region present a 457 

stronger seasonality forcing behavior for SARS-COV-2 and therefore at this point, the 458 

environmental drivers and urban spaces will be hidden on its potential to influence the disease 459 

dynamics. Following this statement, the most reliable region to investigate environmental 460 

seasonality remains at the outbreak and control phases while urban space seasonality remain 461 

at control phase. This can be very useful for policies and ALE approaches since the 462 

fluctuations/instability present at this region is caused mainly by these two forcing behaviors 463 

and therefore, new strategies and measurements need to be adopted in order to keep 464 

economy and prevention with similar power. 465 
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It was observed lately that China presented a second wave of infection, as far as, it 466 

reduced some types of policies intervention, and therefore, it presented the urban spaces and 467 

environmental driving factor for SARS-COV-2 spreading patterns, being it the remaining 468 

infected citizens, environmental active virus, urban spaces outside scope of adopted policies or 469 

even the atmospheric influence for the disease transmission in any of these variables such as 470 

humidity, temperature, aerosols, wind, UV, etc. 471 

If we could be capable of analyzing the outbreaks for first or second waves, we could 472 

be able to understand how SARS-COV-2 is influenced by urban and environmental seasonality 473 

comparing each country or region/locality with specific patterns for the environmental and 474 

urban variables. In this point, this research addresses new reformulations of urban and 475 

environmental variables influence and COVID-19 data sets under the view of cause and effect 476 

in the specific outbreaks region of analysis as showed in figure 10. 477 

 478 

 479 

 480 

 481 

 482 

 483 

 484 

 485 

 486 

 487 

 488 
Figure 9. Considering the observation of figure 10, it is showed the asymptotic strong seasonality force of 489 

policies/ALE (   ) intervention and the narrow and instable region (outbreak and control) of analysis for 490 

environmental and urban driving factors of seasonality (       ). Also regarding comportments S and R, the phase 491 
where control is reached by policies intervention remain as the most stable region of analysis for this SIR model 492 

equation compartments despite of instabilities cause by     and    . 493 

  494 

3) Results 495 

The overall scenario of transmission and spreading patterns can be visualized by the 496 

scheme of figure 10, where seasonality forcing behavior assumes the following topological 497 

spaces. Considering all the possible seasonality types,  (       )  ∫                
  

  
, in 498 

continuous form of observation, and therefore, needing to be discretized within causal roots of 499 

analysis due to heterogeneity and confounding environment of analysis, therefore, each 500 

seasonality form can be understood as                   (   ) , hence it can be also 501 

wrote as,                       ( (  
 ))  as a control phase of local epidemics. 502 

However, this phase might present high instability (fluctuations) worldwide due to 503 

heterogeneity and confounding behavior of      and     . And since, SIR models need stable 504 

points for S and R, therefore                         , resulting into a stable 505 

asymptotic convergence only if                       ( (  
 )) . And since the 506 

outbreak might find unknown patterns for     ,      and     , then this region need to be 507 

carefully considered, and therefore environmental seasonality can be found as         508 
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              (    
  )  or it is also possible to assume                , being   the 509 

undefined patterns of environmental driven new infections for Earth seasonality or 510 

atmospheric factors. 511 

 512 

 513 

 514 

 515 

 516 

 517 

 518 

 519 

 520 

 521 

 522 

 523 

 524 

 525 

 526 
Figure 10. Schematically represented, the seasonality forcing behavior might assume the following behaviors: 527 

during the local epidemics, environment and urban spaces can be defined by policies/ALE until a limit; 528 
compartmental models are influenced by policies/ALE, environment and urban spaces; at control phase, 529 

policies/ALE finds its limitation by environment and urban spaces and finally, at outbreak, environmental factors 530 
present outcomes caused by the existing policies/ALE and urban spaces. 531 

 532 

Note that there are a great different between environment driven seasonality being 533 

caused by urban spaces influenced by policies/ALE limitations or otherwise caused by Earth or 534 

other natural (atmospheric) seasonality forcing behavior at outbreaks. This should be carefully 535 

considered when investigating Earth seasonality among countries. The compartmental models 536 

are mostly in the control phase region and they lose efficacy at outbreaks where no specific 537 

parameters are given and environmental seasonality is not yet discovered in its true patterns. 538 

Also, compartments models present high uncertainty during policies/ALE interventions phase 539 

and they work properly with empirical adopted policies (control phase) rather than pre 540 

assumed theoretical simulations. Another points is regarding control phase where instabilities 541 

occur as far as urban spaces creates a scenario where policies/ALE face limitations and 542 

therefore, environmental seasonality find suitable place to grow in its patterns. 543 

Due to uncertainty growth over time and the lack of mean for defined intervals of   544 

over   normal distribution shape for the whole data, Earth seasons   loses its effect gradually 545 

as can be seen in figure 9 and 10 and the random delays observed for each country of analysis 546 

(sample) can be attributed by different patterns in which outbreak occurs since existing 547 

policies/ALE are found within world cultures, science and education. Earth seasonality should, 548 

for now, be addressed in terms of how it can influence transmission rather than seasonality 549 

patterns due to very limited overview of the event over time. 550 

Also assuming the last researches on the field [3-8], policies and ALE are the most 551 

strong seasonality force influence the behavior of epidemics at second and third phase of time 552 

series data, while environmental factors are hidden in terms of transmission power at 553 

outbreaks and control phase giving unobserved and possible wrong results concerning this 554 
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type of research. Another point of environmental convergence to SARS-COV-2 spreading 555 

patterns remains in the inside and outside of urban spaces where variables assume nonlinear 556 

forms of inputs and outputs and confounding outcomes with policies/ALE limitations, thus 557 

misleading the true behavior of infection spreading patterns under atmospheric parameters 558 

analysis (environmental seasonality). In this sense, it is very possible that environmental driven 559 

seasonality results found in many researches are in true, policies/ALE and urban spaces results. 560 

More detailed research need to be conducted. Inside and outside urban spaces are very 561 

important variables that can drive environmental research during all epidemics and concerning 562 

policies/ALE at the control phase and finally, possibly influencing with high uncertainty the 563 

compartment models for the susceptible and removed. For environmental seasonality 564 

evidences and complete description of atmospheric events influencing SARS-COV-2 565 

transmission an artificial environment would be the best initial approach to reach that 566 

discover. This is because in the natural environment, the confounding variables involving 567 

transmission, presented as three phases in this research, can hide the true patterns of 568 

transmission considering UV, humidity, wind, temperature and other factors. 569 

Therefore, having policies and ALE as the most convergent and stable interaction with 570 

the SARS-COV-2 spreading patterns, environmental and urban factors are presented as 571 

secondary influence which makes difficult for outside analysis to perform confident measures 572 

of its influencing power. The same happens for SIR models predictive analysis when it 573 

considers worldwide equal adopted policies or no environmental influence for the outbreak or 574 

control phases. Though secondary, it assumes a major importance at control phase, since it is 575 

the main cause of policies/ALE limitations to reduce or even end the transmission complex 576 

network. 577 

One more seasonality forcing behavior that could be researched is about infodemics. 578 

This was not addressed in this research as a defined region within the time series data, since it 579 

is unpredictable in terms of empirical expression concerning individual and collective behavior 580 

phenomena. In other words, infodemics of subjective reasoning is something that occur 581 

momentaneously and independent of time or other static parameters. However it is 582 

predictable when it is adopted by policies as it occurred in some countries. Also it can be 583 

predictable if detected within a community by local authorities. 584 

 585 

5) Conclusion 586 

This research modeled patterns of SARS-COV-2 spreading by redesigning time series 587 

data extraction. This approach opened a new scenario where seasonality forcing behavior was 588 

introduced to understand SARS-COV-2 nonlinear dynamics due to heterogeneity and 589 

confounding scenario of epidemics where actual SIR models might find high degree of 590 

uncertainty. To overcome this limitation it was proposed the division of epidemics curvatures 591 

into regions where compartments of SIR models could be better understood and scientifically 592 

analyzed as well as pointing to the type of seasonality forcing behavior COVID-19 present 593 

worldwide. 594 

Regarding curvature features, this research pointed to regions of analysis where 595 

seasonality forcing behavior of SARS-COV-2 finds it is most fitting causality for policies and ALE 596 

interventions, environmental driven factors and urban spaces. These regions were pointed as 597 

the most effective data for monitoring, control and predictive analysis. 598 
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Concerning the regions of analysis, not only Earth seasons, but atmospheric conditions 599 

(environmental driving seasonality) and urban spaces can present a transmission dynamics 600 

that is hidden in its pattern due to policies/ALE interventions worldwide, thus influencing 601 

predictive analysis of SIR models with uncertainty. However policies and ALE can be the 602 

strongest stable point of seasonality, it can find itself limited at control phase, depending on 603 

the region/country/locality given. This dynamics can be observed briefly, for the moment, in 604 

the random distributions of exponential behavior of countries where outbreaks of first and 605 

second waves are occurring as well as heteroscedasticity form of time series data worldwide. 606 

Also, to overcome this hidden patterns scenario, it was found that seasonality forcing 607 

behavior can be tracked by new mathematical tools concerning data extraction among 608 

countries and within countries time period of infection. These tools can reveal new patterns 609 

formation regarding seasonality and therefore contributing to the future use of Fourier 610 

transforms in order to extract periodic phases of SARS-COV-2 transmission under specific set of 611 

parameters. Therefore, following these statements, it is very encouraged that researches in 612 

future adopt this angular momentum (regions of data extraction) of analysis for the 613 

environmental, policies/ALE and urban spaces patterns of transmission. 614 
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