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Abstract

Mobility, awareness, and weather are suspected to be causal drivers for new cases of COVID-19
infection. Correcting for possible confounders, we estimated their causal effects on reported case
numbers. To this end, we used a directed acyclic graph (DAG) as a graphical representation of the
hypothesized causal effects of the aforementioned determinants on new reported cases of COVID-19.
Based on this, we computed valid adjustment sets of the possible confounding factors. We collected
data for Germany from publicly available sources (e.g. Robert Koch Institute, Germany’s National
Meteorological Service, Google) for 401 German districts over the period of 15 February to 8 July
2020, and estimated total causal effects based on our DAG analysis by negative binomial regression.
Our analysis revealed favorable causal effects of increasing temperature, increased public mobility
for essential shopping (grocery and pharmacy), and awareness measured by COVID-19 burden, all of
them reducing the outcome of newly reported COVID-19 cases. Conversely, we saw adverse effects
of public mobility in retail and recreational areas, awareness measured by searches for “corona” in
Google, and higher rainfall, leading to an increase in new COVID-19 cases. This comprehensive
causal analysis of a variety of determinants affecting COVID-19 progression gives strong evidence
for the driving forces of mobility, public awareness, and temperature, whose implications need to be
taken into account for future decisions regarding pandemic management.

1. Introduction

As the COVID-19 pandemic progresses, research on mechanisms behind the transmission of
SARS-CoV-2 shows conflicting evidence [62, 9, 24]. While effects of mobility have been extensively
discussed, less is known on other factors such as changing awareness in the population [26, 37, 67]
or the effects of temperature [4, 12, 40]. A limiting factor in many studies is the lack of a causal
approach to assess the causal contributions of various factors [23]. This can lead to distorted
estimates of the causal factors with observational data [23, 53, 57].

With COVID-19, we find ourselves in a situation in which information on the causal contribution
of various influencing factors in the population is urgently needed to inform politicians and health
authorities. On the other hand, trials cannot be carried out for obvious ethical and legal reasons.
Therefore, when assessing the effects of determinants of SARS-CoV-2 spread, special attention must
be paid to strategies for the selection of confounding factors.
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Another problem with assessing the effects of various determinants of SARS-CoV-2 spread is the
heterogeneity of the countries and regions examined for example in the Johns Hopkins University
(JHU) COVID-19 database [7]. The comparison of time series of case numbers from different countries
and observational periods can be strongly distorted by different factors like testing capacities and
regional variations.

Our objective is to provide estimates of the causal effects of the main drivers of the pandemic
with reduced bias. We conducted a scoping review of the available studies regarding signaling
pathways and determinants of the spread of SARS-CoV-2 infections and the reported new COVID-19
cases. Then we integrated the current findings into a directed acyclic graph for the progress of the
pandemic at the regional level. Using the resulting model and the do-calculus we found identifiable
effects without blocked causal paths whose effects can be analyzed with observational data [47]. We
used regional time series data of all German districts (401) from various publicly available sources
to analyze these questions on a regional level. Germany is a good choice in this regard, because it
has ample data on contributing factors on the regional level and has had high testing and treatment
capacities from early on in the pandemic.

2. Causal Model

We used a directed acyclic graph (DAG) [53, 57] as a tool to analyze the causal relationships
between several exposures and SARS-CoV-2 spread. To get an overview on published associations,
a scoping review was conducted from 20th to 22nd of May 2020 within Pubmed and Google
scholar. Restrictions were applied to English and German language and the publication date
in the last one year. The following search terms were applied to abstracts and title in Pubmed
(“COVID-19” OR “COVID19” OR “Corona” OR “Coronavirus” OR “SARS-CoV-2”) and connected
separately in each case with the exposure variables (“mobility”, “public awareness”, “awareness”,
“google trends”,“ambient temperature”, “temperature”). For “mobility”, we analyzed n = 8 studies,
N = 103 were scanned in Pubmed, together with the first ten pages (100 results) in Google
scholar (“awareness”/“public awareness”/“google trends” n = 9, N = 215; “temperature”/“ambient
temperature” n = 16, N = 235). We integrated these findings where possible into the construction
of our DAG, which can be seen in Figure 1.

A number of studies report a strong association of mobility restrictions on the number of new
COVID-19 cases: Restrictive measures (e.g. “stay-at-home” orders, travel bans, or school closures)
are shown to possibly reduce the COVID-19 incidence [8, 9, 18, 34, 36, 39, 42, 65]. However, some
studies point out the combination of various non-pharmaceutical interventions (NPIs) is decisive to
prevent new infections [31, 35].

Google Trends [21] data can be used as a tool to get insights into public interest (awareness) in
the coronavirus disease. Several recent studies imply a connection of relative search volumes (RSV)
indices and reported new COVID-19 cases [3, 16, 26, 37, 38, 41, 60, 67, 68]. Some search terms e.g.
“COVID-19” or “coronavirus” predated newly infected cases/total number of cases by roughly 7
to 14 days for different countries [16, 26, 37, 67]. Additionally, we acknowledged that individual
risk-aware behavior might be a reaction to the current COVID-19 burden (measured as reported
cases at the day of exposure).

Mixed evidence is available regarding the effect of temperature: On the one hand several papers
report an association between increase in temperature and decrease in newly infected COVID-19
cases [4, 12, 40, 50, 54, 55, 58, 61, 63]. On the other hand, also the opposite has been found [2, 64].
Some studies found no association at all [5, 28, 30, 31, 66]. It should be noted that few studies
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Figure 1: DAG of determinants of reported COVID-19 cases on the district level. Unobserved variables are light gray,
variables marked with an asterisk (*) are confounded by weekday/holiday.
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considered other confounding variables than meteorological ones (especially age and population
density among others [5, 31, 63]). In addition, the transferability of results between different climate
zones is questionable. To avoid possible bias caused by weather variables other than temperature,
we included rain, wind, and humidity in our model.

When investigating causal determinants of SARS-CoV-2 infections, a number of confounders
have to be considered. Well-known risk factors for SARS-CoV-2 as well as for other infections
are demographic factors such as age, gender, socio-economic status (SES), population density,
and foreign citizenship/ethnicity [11, 15, 7]. In Germany along with other countries (i.e. Brazil,
USA, or the UK), populist parties or politicians and their electorate tend to be more sceptical
about effects of containment measures than the other part of the electorate [14, 17]. Therefore
we considered both “right-wing populist party votes” and “voter turnout” as possible confounders.
Public health interventions were also taken into account (contact restrictions, school closures etc.),
as their implementation showed strong correlations with controlling the spread of SARS-CoV-2
[10, 31, 35]. To avoid bias due to reporting delay of case numbers we had to include weekday and
German holidays. We include some unobserved variables in our DAG (e.g. “Herd immunity”), too.
Please note that “Exposure to SARS-CoV-2” is itself an unobserved variable: German case numbers
are reported with delay after date of exposure and symptom onset. Exposure to the virus should not
be confused with the formal exposure variables of the DAG (mobility, awareness, temperature).

3. Data

We collected and aggregated data on reported COVID-19 cases, regional socio-demographic
factors, weather, and general mobility on district and state level in Germany for the period of 15
February 2020 to 8 July 2020. Our observation period for the outcome consisted of all dates from
23 February 2020 to 8 July 2020 (T = 137), since we used a lag of 8 days for all confounders. We
did not exclude any states or districts (K = 401). We analyzed the daily reported number of new
cases as outcome (K · T = 54 937 observations). The set of possible predictors was derived from
our causal DAG (see Table 1 and Figure 1). Due to modelling and data limitations, some of the
predictors were unobserved or were modelled as a construct consisting of several variables. For our
causal analysis, we computed adjustment sets in three different scenarios for separate exposures
within the DAG: i) mobility of population, ii) awareness of COVID-19 (i.e. Google searches for
“corona”), iii) weather (i.e. temperature).

3.1. Variables
We downloaded German daily case numbers on district level reported by Robert Koch Institute

(RKI, [52], acquired on 12 July 2020) and aggregated them by date. The number of daily active
cases for day d was derived by subtracting the total number of reported cases on day d and day
d− 14 (14 days as a conservative estimate for the infectious period, which corresponds here to the
required quarantine time in Germany).

To assess the mobility of the German population, we used data publicly available on German state
level from Google [20]. Measurements are daily relative changes of mobility in percent compared to
the period of 3 January 2020 to 6 February 2020. Missing values (25 out of 13 488) were imputed
with value 0 and the state level measurements were passed onto districts within the corresponding
state. Google mobility data was available for six different sectors of daily life (“retail and recreation”,
“grocery and pharmacy”, “parks”, “transit stations”, “workplaces”, “residential”) which means that
“mobility” is a construct consisting of several variables. All variables but “residential” mobility are
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relative changes of daily visitor numbers to the corresponding sectors compared to the reference
period. “Residential” mobility is the relative change of daily time spent at residential areas.

The notion of awareness in the population of COVID-19 describes the general state of alertness
about the new infectious disease. As such, it was hard to measure directly. As a proxy, we used the
relative interest in the topic term “corona” as indicated by Google searches. The daily data was
available on state level [21] and passed onto district level. As a second proxy for awareness, we used
the daily reported number of COVID-19 cases on the day of the exposure: Since media reported
case numbers prominently, we assumed that this could reflect individual awareness, too.

We constructed daily weather from four variables (“temperature”, “rainfall”, “humidity”, “wind”).
Weather data was downloaded from Deutscher Wetterdienst (DWD, [13]) for all weather stations in
Germany below 1000 meters altitude with daily records for our observation period. District level
daily weather data was aggregated per district by averaging the data from the three nearest weather
stations (which includes weather stations inside the district). Missing values were imputed with
mean values (n = 59 for wind).

The reported number of COVID-19 cases varied strongly by day of the week. Thus, we included
“weekday” as a categorical variable. Similarly, the reported cases and the exposure to the virus were
affected by official holidays. Within the observation period, this included among others Good Friday,
Easter Monday, and Labor Day. To correct for effects of these days, we included two variables in the
model, “Holiday (report)” (indicates if the day of the report was a holiday, because governmental
health departments were less likely to be on full duty) and “Holiday (exposure)” (indicates if the
day of exposure to the virus was a holiday, because the population behaves differently on holidays).

For different official and political measures we used one-hot encoded daily variables, i.e. ban of
mass gatherings, school and kindergarten closures and their gradual reopening, contact restrictions,
and mandatory face masks for shopping and public transport.

We included several social, economic, and demographic factors on the district level with direct or
indirect influence on the risk of exposure to SARS-CoV-2 in our analysis. All are readily available
from INKAR database [6]. We used the share of population that is 65 years or older and the share
of population that is younger than 18 years (Age), the share of females in population (Gender), the
population density, the share of foreign citizenships and the share of the population seeking refuge
(Foreign citizenship), the share of low-income households (Socio-economic status), voter turnout,
share of right-wing populist party votes, and the number of nursing (retirement) homes.

All variables but the outcome “Reported new cases of COVID-19” and the offset “Active cases”
were centered for numerical stability. We did not scale variables to unit variance to maintain
interpretability of effects on the original scale of variables. Additionally, we lagged the effect of all
variables (but outcome, offset, and the non-dynamic socio-demographic variables) by 8 days (see
Section 5) which means that we assumed that their effects on the outcome will be visible after 8
days.

4. Methods

4.1. Causal analysis with DAG and adjustment sets
We used a directed acyclic graph as a graphical representation of the hypothesized causal

reasoning that leads to exposure to the SARS-CoV-2 virus, onset of COVID-19, and finally reports
of COVID-19 cases. Every node vi in the graph is the graphical representation of an observed or
unobserved variable xi, a directed edge eij is an arrow from node vi to vj that implies a direct
causal relationship from variable xi onto variable xj . The set of all nodes is denoted by V , the
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Table 1: Observed model variables

variable dynamics level type unit/comment source

Weekday daily national categorical Sat through Thu as
six binary variables,
Fri as baseline

-

Holiday (report) daily national binary - -
Holiday (exposure) daily national binary - -
Mobility

retail and recreation daily state numeric percent change
compared to reference
period

Google [20]

grocery and pharmacy daily state numeric percent change
compared to reference
period

Google [20]

parks daily state numeric percent change
compared to reference
period

Google [20]

workplaces daily state numeric percent change
compared to reference
period

Google [20]

residential daily state numeric percent change
compared to reference
period

Google [20]

transit stations daily state numeric percent change
compared to reference
period

Google [20]

Weather
Rainfall daily district numeric mm (l/sqm) DWD [13]
Temperature daily district numeric °C DWD [13]
Humidity daily district numeric relative humidity (%) DWD [13]
Wind daily district numeric m/s DWD [13]

Policies
Ban of mass gatherings daily national binary - -
School and kindergarten closures daily state numeric 0 for no closure, 1 for

full closure, 0.5 for
partial reopening

-

Contact restrictions daily national binary - -
Mandatory face masks daily district binary - IZA [43]

Socio-demographic
Age constant district numeric 2 variables: share of

population >=65
years & <18 years

INKAR [6]

Gender constant district numeric share of female
population

INKAR [6]

Population density constant district numeric population per sqkm INKAR [6]
Foreign citizens constant district numeric 2 variables: share of

foreign citizens & of
population seeking
refuge

INKAR [6]

Socio-economic status constant district numeric share of households
with low income

INKAR [6]

Turnout constant district numeric voter turnout in last
election

INKAR [6]

Right-wing populist party votes constant district numeric share of votes for AfD
in last election

INKAR [6]

Nursing homes constant district numeric number of nursing
(retirement) homes

INKAR [6]

Awareness
Searches corona daily state numeric percent relative to

other states and
observation period

Google [21]

COVID-19 burden daily district numeric reported cases on day
of exposure

RKI [52]

Case numbers
Reported new cases of COVID-19 daily district numeric - RKI [52]
Active cases daily district numeric active cases on day of

report
RKI [52]

6



set of all edges by E, as such, the complete DAG is the tuple G = (V,E). The seminal works of
Spirtes and Pearl [56, 46] introduce the theory of causal analysis, do-calculus, and how to analyze a
DAG to estimate the total or direct causal effect from a variable xi onto a variable xj . The direct
effect is the effect associated with the edge eij only (if it exists), while the total effect takes indirect
effects via other paths from vi to vj into account, too. Here we estimated total effects only, since
most of our variables were not hypothesized to have a direct effect on the reported number of new
COVID-19 cases. In contrast to prediction tasks, where one would include all variables available, it
is actually ill-advised to use all available variables to estimate causal effects, due to introducing bias
by adjusting for unnecessary variables within the causal DAG. This is why we need to identify a
valid set of necessary variables (an adjustment set) to estimate the proper causal effect [46]. The
“minimal adjustment set” [22] is a valid adjustment set of variables that does not contain another
valid adjustment set as a subset. However, identifying a minimal adjustment set might not be
enough to reliably estimate the causal effect. Thus, we identified the “optimal adjustment set” [25]
as the set of variables which is a valid adjustment set while having the lowest asymptotic variance
in the resulting causal effect estimates.

We analyzed the DAG from Section 2 with the R Software [51] and the R packages dagitty
(formal representation of the graph and minimal adjustment sets [57]) and pcalg (for finding an
optimal adjustment set [32]). For the defined exposures and the outcome “Reported new cases of
COVID-19”, we computed the minimal and optimal adjustment sets. Since it was possible that
these sets contained unobserved variables that needed to be left out of the regression model, we
chose the valid set with the highest pseudo-R2 (see next section) to estimate the final total causal
effect from exposure to outcome.

4.2. Regression with negative binomial model
We can estimate the causal effect from exposure to outcome by regression [46]. Since the outcome

“Reported new cases of COVID-19” is a count variable, one should not employ a linear regression
model with Gaussian errors, but instead we assumed a log-linear relationship between the expected
value of the outcome Y (new cases) and regressors x, as well as a Poisson or negative binomial
distribution for Y :

log(E[Y |x]) = α+
∑
i∈S

βi · xi, (1)

where α is the regression intercept, S is the set of adjustment variables for the exposure i∗
including the exposure variable itself, βi are the regression coefficients corresponding to the variables
xi. As such βi∗ is the total causal effect from exposure variable xi∗ on the outcome Y.

The Poisson regression assumes equality of mean and variance. If this is not the case one
observes so-called overdispersion (the variance is higher than the mean), this indicates one should
use regression with a negative binomial distribution instead to estimate the variance parameter
separately from the mean.

We needed to account for the fact that our outcome is not counted per time unit (one day) only,
but depends on the number of active COVID-19 cases: Holding all other variables fixed, the number
of new cases Y is a constant proportion of the number of active cases A. This was modeled by
including an offset log(A+ 1) in the regression model (1):
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log(E[Y |x]) = α+ log(A+ 1) +
∑
i∈S

βi · xi

⇔ log(E[Y |x]
A+ 1 ) = α+

∑
βi · xi (2)

⇔ E[Y |x]
A+ 1 = exp(α) ·

∏
exp(βi)xi . (3)

Here we added a pseudocount “+1” to ensure a finite logarithm and avoid division by 0.
One can interpret the model as approximating the log-ratio of new cases and active cases by a

linear combination of the regressor variables (2). If all variables xi are centered in (3), we have for the
baseline ∀i xi = 0⇒ E[Y |x = 0] = exp(α) · (A+ 1). In other words, the exponentiated intercept is
the baseline daily infection rate (how many people does one infected individual infect in one day). If
we hold all variables xi fixed (e.g. at baseline 0) in (3) but now increase the exposure variable xi∗ = 0
by one unit to xi∗ + 1 = 0 + 1, we have E[Y |x′] = exp(α) · (A + 1) exp(βxi∗ +1

i∗ )
∏

i 6=i∗ exp(βi)0 =
exp(α) · (A+ 1) exp(βi∗), which means the exponentiated coefficient βi∗ describes the rate change of
the outcome by one unit increase of the exposure.

In practice, given observations of Y and x we estimate the regression coefficients α and βi by
maximum likelihood [27]. Our observational measurements are ykt and xikt, where k indicates the
corresponding district and t the date of measurement.

When we analyzed different adjustment sets given by analysis of the causal DAG (i.e. the minimal
and optimal adjustment sets), we first checked if the set included unobserved variables. If this was the
case for the optimal adjustment set, we discarded the unobserved variables from the set and checked
if it was still a valid adjustment set (function gac in package pcalg [48]). If a minimal adjustment
set contained unobserved variables, we discarded the whole set. We conducted a log-linear regression
(function glm with family=poisson() for Poisson regression, and glm.nb from the MASS package
for the negative binomial regression [59]) for every remaining valid adjustment set as regressors and
calculated a Pseudo-R2 given by 1− Vm/V0, where Vm is the sum of squared prediction errors of
the current model and V0 is the sum of squared prediction errors of the null model (intercept and
offset only). That is, our Pseudo-R2 is 1 minus the fraction of variance unexplained. Finally, we
decided for the model/adjustment set with the highest pseudo-R2. We report the exponentiated
estimated coefficients along with 99 percent confidence intervals of the estimates.

5. Results

Descriptive statistics for the included variables are presented in Table 2.
In the observational period, the number of daily reported COVID-19 cases increased till the

end of March/beginning of April and continually decreased afterwards till the beginning of June
2020 with a slight increase and decrease afterwards (Figure 2A). On the other hand, the (log-)ratio
of reported cases over active cases decreased steeply till the mid of April and increased steadily
afterwards with a slight decrease close to the end of the observation period (Figure 2B). Both figures
examplify a considerable variation among the districts (light blue points are individual district’s
data).

In Germany, we observed a rebound in mobility after the initial political measures, reductions in
incident cases were associated with a diminishing public interest in COVID-19, and temperatures
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Table 2: Descriptive Statistics for observed variables

Variable mean (SD)

n 54937
Mobility

retail and recreation -27.14 (24.59)
grocery and pharmacy -4.04 (23.00)
parks 46.33 (57.94)
workplaces -22.98 (20.56)
residential 8.20 (6.54)
transit stations -29.83 (21.22)

Weather
Rainfall 1.85 (3.98)
Temperature 10.74 (5.27)
Humidity 67.68 (13.10)
Wind 3.64 (1.67)

Policies
Ban of mass gatherings 0.82 (0.38)
School and kindergarten closures 0.54 (0.36)
Contact restrictions 0.74 (0.44)
Mandatory face masks 0.48 (0.50)

Socio-demographic
Age (pop. 65 and older) 22.09 (2.74)
Age (pop. younger 18) 16.17 (1.25)
Gender 0.51 (0.01)
Population density 533.75 (701.84)
Foreign citizens 10.03 (5.14)
Foreign citizens (refugees) 1.88 (1.14)
Socio-economic status 30.64 (6.02)
Turnout 75.08 (3.79)
Right-wing populist party votes 13.39 (5.32)
Nursing homes 36.11 (30.69)

Awareness
Searches corona 27.24 (18.31)
COVID-19 burden 3.55 (10.37)

Case numbers (Outcome and offset)
Reported new cases COVID-19 3.60 (10.39)
Active cases 49.83 (121.96)
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Figure 2: Temporal and district level variation of outcome (log-scale)

were overall increasing (cf. Figure 3); with correlations between temporal progression and mobility
in retail and recreation rA,D = -0.02, awareness (“Searches corona”) rA,C = -0.29, and temperature
rA,B = 0.79.

5.1. Main results
We list the results of our causal analysis for the effects of our variables in Table 3. The estimates

are multiplicative rates of increase/decrease for a one unit increase of the respective variable: Values
above 1 lead to an increase, below 1 to a decrease of the infection rate. To put these estimates
into perspective, Figure 4 shows the relative causal effect of the different exposure variables on the
number of reported COVID-19 cases on a range of sensible values of the exposure variables (95
percent quantiles of data points).

Within our framework, we saw significant effects for mobility in retail/recreational areas and
essential shopping (grocery and pharmacy). For retail/recreation, an increase of 1 percent point
mobility compared to the reference period (03 January to 06 February 2020) leads to an increase
of the daily reported case number by about 0.8 percent. Contrarily, a corresponding increase of 1
percent point for the areas of grocery/pharmacy leads to a decrease in the reported case number
by approximately 0.5 percent. Mobility on workplaces showed a small effect of 0.3 increase in
case numbers for every 1 percent point increase in mobility. Other causal effects of mobility were
insubstantial and not consistent in their direction (99 percent confidence intervals of estimates
include 1). Figure 4 shows the effects of mobility on a range of possible values. Thus, we expect an
increase of daily cases by approximately 23 percent if mobility in retail/recreation reaches baseline
levels of 0 percent difference to the reference period. On the other hand, an increase of mobility for
grocery/pharmacy by 10 percent points compared to the reference period leads to a reduction of the
infection rate by approximately 7 percent.

“Awareness” had two opposite effects on the outcome in our DAG. Awareness measured by
Google searches for corona had a positive effect on the number of reported cases. An one percent
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Figure 3: Temporal variation of outcome and main determinants

Table 3: Causal effect estimates with 99 percent confidence bands

cause effect estimate CI (lower) CI (upper)
Mobility
retail and recreation 1.0076 1.0056 1.0097
grocery and pharmacy 0.9951 0.9938 0.9965
parks 0.9998 0.9994 1.0003
transit stations 0.9975 0.9946 1.0004
workplaces 1.0031 1.0002 1.0059
residential 1.0080 0.9987 1.0174

Awareness
Searches corona 1.0101 1.0085 1.0118
COVID-19 burden 0.9942 0.9932 0.9951

Weather
Temperature 0.9918 0.9879 0.9958
Rainfall 1.0108 1.0066 1.0150
Humidity 1.0022 1.0006 1.0039
Wind 0.9893 0.9802 0.9985
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point increase of the state’s Google searches (relative to other states and the observation period)
leads to an increase of approximately 1 percent. For example, if a district shows 10 percent points
more relative searches for corona than another one, we expect approximately 11 percent more
infections for this district after 8 days. COVID-19 burden (reported number of cases on day of
exposure) affected the outcome negatively, where every additional daily case in the district leads to
a 0.6 percent decrease in newly reported case numbers. The last plot in Figure 4 visualizes this
relationship: For a local outbreak with 25 daily cases as COVID-19 burden, we estimate as total
causal effect a subsequent reduction of infection rate by 11.8 percent.

Within our model, we observed a causal effect of temperature and all other weather variables.
Every increase of 1 degree Celsius in temperature leads to a reduction of the daily reported case
numbers by approximately 0.8 percent. On the other hand, we found an increasing effect of rainfall:
One millimeter (=1 liter per square meter) more rainfall leads to an increase of reported case
numbers by approximately 1.1 percent. We observe effects for humidity and wind as well (higher
humidity leading to more cases, stronger wind leading to less cases). In perspective (Figure 4), with
temperature we expect an increase by approximately 9.2 percent at a daily average temperature of
0◦C. For rainfall, we expect on a rainy day with 10 mm rainfall a corresponding increase of the
infection rate by approximately 9.2 percent.

In all cases we opted to use the reduced optimal adjustment set over the minimal adjustment
sets because of higher pseudo-R2 values (mostly above 0.3), except for mobility, where the minimal
adjustment set had a higher pseudo-R2. Notably, these sets always include most of our socio-
demographic variables as confounders as well as the policy variables (cf. Table 4, with the exception
being COVID-19 burden). We also decided for the lag of 8 days based on the highest pseudo-R2

values compared to other lags on the chosen adjustment sets. Similarly, negative binomial regression
was chosen over Poisson regression, because the latter showed overdispersion and overall lower
pseudo-R2 values.

6. Discussion

6.1. Main findings
Our objective was to identify causal effects for COVID-19 cases. We found that weather affects

the reported number of infections, especially temperature (which has a reducing effect on case
numbers) and rainfall (which increases case numbers). We saw that reports of high case numbers in
districts led to a reduction in new infection numbers, which indicates risk-averse awareness in the
population and/or effective public health measures to suppress a local outbreak. The overall effect
of mobility showed no consistent effect, however, in specific areas significant causal effects could be
measured: Increasing activity in retail and recreational areas increased reported case numbers, while
increased movement for essential shopping (grocery and pharmacy) led to reduced case numbers.

Furthermore, we made a strong case for the use of causal DAGs in epidemiology and a pandemic
like COVID-19: DAGs allow to choose confounders for the analysis in a principled and statistically
correct way while reducing possible causes for bias. Also, the DAG formalization allows for discussion
about the underlying causal assumptions.

6.2. Comparison with previous research
Most research on determinants affecting case numbers of COVID-19 is restricted to single aspects

[18, 37, 54, 61]. To reliably identify causal drivers, one must adjust for confounders. To this end, we
used an integrated model with variables from different aspects like mobility, awareness, weather, or
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Table 4: Final adjustment sets for causal analysis
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Pseudo-R2 0.332 0.151 0.298 0.298 0.286 0.306 0.286
Weekday x x x x x x x
Holiday (report) x x x x x x x
Holiday (exposure) x x x x x x x
Mobility

retail and recreation
grocery and pharmacy
parks
workplaces
residential
transit stations

Weather
Rainfall x x x x x x
Temperature x x x x
Humidity x x
Wind x x x x x

Policies
Ban of mass gatherings x x x x x x
School and kindergarten closures x x x x x x
Contact restrictions x x x x x x
Mandatory face masks x x x x x

Socio-demographic
Age x x x x x x x
Gender x x x x x x x
Population density x x x x x x x
Foreign citizens x x
Socio-economic status x x x x x x x
Turnout x
Right-wing populist party votes x x x x x x
Nursing homes x x x x x x

Awareness
Searches corona x x x x x
COVID-19 burden x x x x x x
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socio-demographics and identified confounders by causal analysis with a directed acyclic graph. A
causal approach is used in another current COVID-19 analysis [19]. There, however, they identify the
causal relationships (reconstruct a DAG), while we estimated causal effects for a given hypothesized
DAG.

Several studies assessing the impact of public health measures on mobility have each observed a
downward trend accompanied by a decrease in the number of newly reported cases [8, 10, 18, 34, 35,
39].

Our findings regarding awareness/Google Trends analysis are in good agreement with the
correlations found by Effenberger et al. [16], Higgins et al. [26], and Yuan et al. [67], who conclude
that alertness to COVID-19 rises several days before the highest number of cases are reported. At
this point it should be noted, that awareness is substantially influenced by public media coverage,
which should be considered, if possible, in future studies [26]. As such, awareness is difficult to
measure and here the number of Google searches for “corona” could only be a proxy for this concept.

In addition, in alignment with other recent published studies, our results confirm evidence which
associated a negative effect of temperature on new COVID-19 cases [4, 12, 40, 50, 54, 55, 58, 61, 63].
It is however controversial to other scientific literature describing no effects [5, 28, 30, 31, 66] or
even converse correlations [2, 64]. The conflicting results might be explained by different climates
and characteristics of the populations under study. While we are confident that our strict causal
analysis resulted in effect estimates as undistorted as possible, there might be unconsidered bias in
those other studies. Further research needs to be done to elucidate the biological characteristics of
the novel virus SARS-CoV-2 regarding its ambient temperature survival and transmission. Finally,
we found a positive causal effect of increment precipitation and a raise in COVID-19 cases, which
supports previous observations [55].

6.3. Limitations and strengths
While use of a causal DAG is itself a strong tool to identify causal effects (and not just statistical

associations), it introduces two limitations: causal assumptions within the graph (depicted by edges)
need to be well justified, and the statistical regression model that calculates total causal effects needs
to be appropriate for the task at hand. We endorse our graph as a basis for discussion on residual
confounding. We did not try to construct the DAG from the available data (cf. [19]). As such,
our proposed DAG is not entirely consistent with the data and there are conditional dependencies
between variables that cannot be dissolved by adding edges to the DAG (e.g. between the policies
like contact restrictions and mandatory face masks). Another way to identify potential problems in
the proposed DAG is to perform a sensitivity analysis of its structure by inspecting its maximal
ancestral graph (MAG) or its Markov equivalence class represented by a complete partially DAG
(CPDAG) and the existence of valid adjustment sets for these generalized graphs [49]. For the
MAG derived from our DAG, only the effects for exposures mobility and searches for corona can
be estimated with valid adjustment sets, while for the Markov equivalence class all exposures but
COVID-19 burden lead to valid adjustments sets. A further analysis of these implications is out of
the scope of this paper.

We observed overdispersion and a substantial increase in model performance with a negative
binomial regression compared to Poisson regression, which is in line with the results on COVID-19
daily case counts of Kraemer et al. [34] and others [40, 4, 29]. We did not model case counts with a
differential equation model like the classic SIR-model [33] and its successors, since these are more
suited to prediction [e.g. 1] while our choice of a negative binomial regression framework allowed us
to estimate the effects of confounders more reliably. There are more advanced statistical methods for
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count data, e.g. zero-inflated models and mixed models. We tested both approaches as extensions to
the negative binomial regression and experienced numerical problems and increased computing time,
along with an insubstantial increase in model performance. Furthermore, our model assumed that
all variables have effects proportional to the size of their measurements. It is possible that some
variables show saturation effects or opposite effects for low, medium, or high values. This could
be modelled with polynomial or other transformations of the variables, which we did not employ
due to limited temporal and spatial data availability. Use of a fixed DAG with effect estimation
via regression assumes that data was generated by the same underlying process for the observation
period. By inclusion of the successive mitigation policies as binary variables we were able to explain
some of the variance caused by the changing dynamics of case numbers (similar to [29]).

We stress the point that our effects were deduced on an aggregate (district) level in the absence
of available data on an individual level. As such, conclusions about effects cannot be transferred
on individuals without the possibility for an ecological fallacy. Furthermore, as we were using
administrative data for our analysis, the results are susceptible to the Modifiable Area Unit Problem
(MAUP) [44]. The MAUP postulates that different regional aggregations of the units of observation
may lead to different results and conclusions. Due to limited available data for the different variables,
there is currently no way to overcome these problems that are inherent to all analyses on aggregated
data level.

Our observation period was restricted to succession from late winter to spring and summer
(February to July). Nevertheless, this transition with increasing temperature was a natural experiment
that allowed clues on weather effects.

We could not include data on health care utilization during the pandemic into our models due to
the lack of available resources. This is planned for a later follow up to this paper since we rank health
care utilization and mobility within health care facilities among the strong factors for COVID-19
progression: personnel in hospitals and private practices is particularly exposed to infection, while
the lack of adequate care for other diseases has severe effects on general health of the population.
At the same time, health care facilities are key for testing and surveillance of COVID-19 patients.

While our analysis focused on Germany and its districts, we assume that results may be
transferred to other countries by adjusting for their respective weather conditions, mobility habits,
socio-demographic characteristics, and other determining factors.

The code and resources for our analysis are available on Github, we invite other researchers to
replicate our analysis with different assumptions using the files provided in the repository1 of the
article.

6.4. Discussion of causal effects
In our analysis, the adverse effect of mobility in retail/recreation and the favorable effect of

mobility in grocery/pharmacy indicate that policies like contact restrictions which limit the number
of individual interactions can lead to reduced infection numbers. This is due to retail/recreational
areas encompassing mostly places of social gatherings like restaurants and bars, malls, sports
and music venues, among others, while if people are doing more of their essential shopping at
supermarkets, they will most likely stay at home with less contact to other people.

The causal effects of awareness measured via searches for “corona” and the COVID-19 burden are
harder to interpret. We assume that within our model, the searches for “corona” are an insufficient

1The repository is located here: https://github.com/zidatalab/causalcovid19

16



proxy for awareness, while the decreasing effect for future case numbers of high daily COVID-
19 burden indicates it affects individual risk-behavior and entails effective non-pharmaceutical
interventions.

Similarly, the effects of temperature and rainfall can be interpreted as causal effects for indoor
and outdoor activities, such that higher temperatures and low rainfall indicate more people spending
time outdoor while lower temperatures and high rainfall result in indoor activities, which lead to
more infections. Current research suggests this to be due to the prevalent airborne and respiratory
droplets and aerosol transmission of the SARS-CoV-2 virus [45]. In this light, we advocate for
precautious measures like increased hygiene, face masks, and air ventilation for unavoidable indoor
activities.

6.5. Conclusions
To the best of our knowledge, this is the most comprehensive analysis of causes for COVID-19

infections which integrates different data sources (all publicly available). Causal reasoning with a
DAG allows us to estimate the causal effects more reliably.

Our findings suggest that the causal effects of mobility, awareness, and weather need to be taken
strongly into account when deciding for mitigation and suppression measures, depending on the
recent and future COVID-19 pandemic development.
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