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Abstract  
 
 
We analyze how measures of adiposity – body mass index (BMI) and waist-hip ratio (WHR) – 
causally influence rates of hospital admission. Conventional analyses of this relationship are 
susceptible to omitted variable bias from variables that jointly influence both hospital 
admission and adipose status. We implement a novel quasi-Poisson instrumental variable 
modelsin a Mendelian Randomization framework, identifying causal effects from random 
perturbations to germline genetic variation. We estimate the individual and joint effects of BMI, 
WHR, and WHR adjusted for BMI. We also implement multivariable instrumental variable 
methods in which the causal effect of one exposure is estimated conditionally on the causal 
effect of another exposure.  Data on 310,471 participants and over 550,000 inpatient 
admissions in the UK Biobank were used to perform one-sample and two-sample Mendelian 
Randomization analyses. The results supported a causal role of adiposity on hospital 
admissions, with consistency across all estimates and sensitivity analyses. Point estimates were 
generally larger than estimates from comparable observational specifications. We observe an 
attenuation of the BMI effect when adjusting for WHR in the multivariable Mendelian 
Randomization analyses, suggesting that an adverse fat distribution, rather than a higher BMI 
itself, may drive the relationship between adiposity and risk of hospital admission.   
 
. 
 
Keywords:  Body mass index; BMI; waist-hip-ratio; WHR; hospital admissions; Mendelian 
randomization; instrumental variables; Poisson models.  
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Introduction  

Individuals with higher adiposity, as indexed by measures such as body mass index (BMI) and 
waist hip ratio (WHR), attend hospital more frequently than others (Buys et al., 2014; Chen, 
Jiang, & Mao, 2007; Han et al., 2009; Korda et al., 2015; Migliore et al., 2013; O'Halloran, 2020; 
Reeves, Balkwill, Cairns, Green, & Beral, 2014). Establishing the causal impact of adiposity on 
hospital admissions is an important step in understanding the impacts of adverse weight 
profiles on the health system. This importance stems from a number of considerations.  
 
In the first instance, BMI (a marker of overall body fat) and WHR (a marker of regional 
adiposity) have been shown to be associated with increased incidence of various diseases 
(Corbin et al., 2016; Dale et al., 2017; Dalton et al., 2003; Folsom et al., 2000; Hu et al., 2007; 
Lyall et al., 2017; Staiano et al., 2012; Timpson et al., 2009) and all-cause and cause-specific 
mortality (Srikanthan, Seeman, & Karlamangla, 2009; Staiano et al., 2012; Wade, Carslake, 
Sattar, Davey Smith, & Timpson, 2018). Moreover, the incidence of adverse adiposity profiles is 
also increasing across the world. World Health Organization statistics identified 39% of men and 
40% of women as overweight (BMI>25kg/m2) and 11% of men and 15% of women as obese 
(BMI>30kg/m2) worldwide (World Health Organization, 2016) in 2016. A positive association 
between BMI and healthcare costs has also been demonstrated (J. Cawley, 2015a; P. Dixon, 
Davey Smith, & Hollingworth, 2019; P. Dixon, Hollingworth, Harrison, Davies, & Davey Smith, 
2020; Finkelstein, 2011; Kent, Fusco, et al., 2017; Kent, Green, et al., 2017; Withrow & Alter, 
2011). 
 
However, observational assessments of the association between adiposity and hospital 
attendance are challenged by endogeneity attributable to unobserved confounding and reverse 
causation, precluding accurate causal inference 
 (Auld & Grootendorst, 2011; J. Cawley, 2015a, 2015b; John Cawley & Meyerhoefer, 2012)  
 
In this paper, we introduce the first Mendelian Randomization analysis to use hospital 
admissions as an outcome.  We used UK Biobank data from over 300,000 adults aged 39-72, 
with over 550,000 in-patient hospital admissions in relation to three 
three related exposures: BMI, WHR and WHR adjusted for BMI (WHRadjBMI). 
 

Mendelian randomization is an instrumental variable approach that allows for the robust 
estimation of the causal effect of an exposure or treatment variable (e.g., BMI) on an outcome 
(e.g., hospital admissions) (G. Davey Smith & Hemani, 2014; Haycock et al., 2016). The 
identifying assumption of Mendelian Randomization is the quasi-random perturbation of 
germline genetic variation that occurs at conception. Elements of this variation are known to 
associate with traits such as BMI and waist-hip ratio, and may be used as instrumental variables 
in causal analysis relating the effects of these adiposity-related exposure variables to hospital 
admission outcomes.   
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Mendelian Randomization reduces or eliminates problems of confounding and other types of 
bias common to conventional studies of the associations between measures of adiposity and 
healthcare-related resource use. For example, Mendelian Randomization can rule out reverse 
causation, since germline variants are determined at conception, and, in principle, should not 
be affected by confounding from unmeasured variables, given the quasi-random allocation of 
variants from parents to offspring at conception. 
 

 
We implement three broad classes of estimator to assess these causal associations. We first 
implemented a generalized linear model (GLM) version of the familiar two-stage least squares 
(2SLS) estimator. Our outcome was hospital admission counts for subjects observed for varying 
lengths of time, reflecting the duration of follow-up available in our outcomes data accounting 
for time of recruitment and censoring due to end of follow-up or death. As Poisson regression 
models are linear on the logarithmic scale, the second stage of the standard 2SLS instrumental 
variable estimator was replaced by a Poisson regression. These models were just identified, 
utilizing a genetic risk score (a single summary measure indicating genetic liability to the 
exposure of interest) as a single instrumental variable.  
 
Valid instrumental variables are associated with the exposure of interest, are conditionally 
independent of known and unknown omitted variables, and affect the outcome only via their 
effect on the exposure (the exclusion restriction). The most likely source of violation of these 
assumptions in Mendelian Randomization is the exclusion restriction, and for that a reason a 
variety of estimators were employed to test the robustness of our results to the presence and 
consequences of any violations of this assumption. The second broad class of estimators 
therefore involved over-identified models that allow that exclusion restriction to be relaxed for 
some or all variants, at the cost of other assumptions that we set out below.    
 
Finally, in addition to testing the direct, individual effect of these exposures on admissions, we 
also implemented multivariable instrumental variable models, in which the causal effect on one 
exposure is estimated conditional on the causal effect of another exposure. This permits 
evaluation of whether the causal effect of one exposure on admissions is mediated by another 
exposure. For example, this approach allows for estimation of the direct effect of BMI on 
hospital admissions that is not mediated via the indirect effect of BMI on waist hip ratio, and 
(simultaneously) the direct of effect of waist hip ratio that is not mediated by the indirect effect 
of BMI on this outcome.  
 
The rest of the paper is set out as follows. Below, we briefly introduce the idea of genetic 
variants as instrumental variables. We then introduce the data used for our analysis. We 
describe in detail our methods for estimating the direct and indirect effect of these exposures 
on admissions, before concluding with our interpretation of these results. Our results indicate 
that the effect of various measures of adiposity on admission may be larger than conventional 
observational analysis would indicate, and that regional adiposity (as indexed by WHR) may 
play a particularly important role in influencing the rate of hospital admissions.  
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1.1 Genetic variants as instrumental variables  

Many introductions to MR are available both in general (George Davey Smith & Ebrahim, 2003; 
Haycock et al., 2016; Pingault et al., 2018) and in relation to health economic outcomes (P. 
Dixon et al., 2019; Padraig Dixon, Davey Smith, von Hinke, Davies, & Hollingworth, 2016; 
Harrison et al., 2020; von Hinke Kessler Scholder, Smith, Lawlor, Propper, & Windmeijer, 2011; 
Von Hinke, Davey Smith, Lawlor, Propper, & Windmeijer, 2016).  Here we briefly review the 
instrumental variable assumptions in the context of Mendelian Randomization.  
 
Certain parts of the genome are subject to variation between individuals in a population. At 
each of these points of variation, offspring inherit an allele – the specific form of genetic 
variation – from each of their parents according to Mendel’s first and second laws of 
inheritance. Mendel’s first law describes random segregation of alleles from parents to 
offspring. Mendel’s second law describes the independent assortment for different traits of 
these alleles. Together, the two laws imply that offspring have an equal chance of inheriting an 
allele from either parent and that these alleles are inherited independently from one another. 
The allocation of these variants is therefore random, conditional on parental genomes.  
 
It is this form of conditionally random allocation and its use as an identification mechanism in 
instrumental variable analysis that is known as Mendelian Randomization (George Davey Smith 
& Ebrahim, 2003). Mendelian Randomization may therefore be interpreted as a type of natural 
experiment, in which individuals or groups of individuals are allocated to groups indicating 
higher or lower genetic liability to (for example) higher BMI or WHR. Under the assumptions of 
instrumental variable analysis, this quasi-random allocation can be used to make causal claims 
about the effect of these types of exposures on hospital admissions.      
 
We study single nucleotide polymorphisms (SNPs), which are one form of genetic variation 
(amongst others) that are subject to inheritance under Mendel’s first and second laws. A SNP 
refers to single change in one of the nucleotides that make up the code of the genome. 
Nucleotides in DNA are in turn made up in part of the nucleobases (adenine (A), cytosine (C), 
guanine (G) or thymine (T) which comprise this code.  A SNP will therefore involve a substation 
of one of these “letters” in the genetic code for another. The possible versions of the SNP at a 
specific point are the alleles for that location in the genome. Some SNPs are associated with the 
expression of particular traits or phenotypes, including several adiposity-related phenotypes 
such as BMI and WHR.  
 
The association of SNPs with phenotypes, together with their conditionally random allocation 
from parents to offspring, indicate the potential for their analysis as instrumental variables. 
Humans are diploid, meaning that they have two copies of each chromosome. We may 
therefore treat SNPs as count variables – humans may have a SNP on both chromosomes (n=2), 
only on one (n=1) or on neither chromosome (n=0).  
 
Valid instrument variables are associated with the exposure of interest, are independent of all 
confounding omitted variables (whether measured or unmeasured) and affect the outcome 
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only via the exposure of interest. We briefly unpack these requirements in relation to 
Mendelian Randomization. 
 
Relevance – the requirement that instruments are not independent of exposures – can be 
determined from genome wide association studies (GWASs), which trawl the genome for 
signals of association between a predefined exposure and regions of potential genetic variation 
(McCarthy et al., 2008). Replicated evidence of association from large, well-powered GWASs 
are the most robust means of establishing the relevance criterion for specific SNPs. 
 
The second requirement, that of independence from confounding omitted variables, is 
sometimes interpreted as the requirement that the instrument be “as good as randomly 
assigned” (J. Angrist & Pischke, 2009). As genetic variation is determined at conception, it 
necessarily occurs before many later life circumstances and events such as socioeconomic 
status, education level, and the local environment. This ensures independence from most 
potential confounding variables.   
 
Nevertheless, there are a few different means by which this assumption might be violated. 
Events that are connected with the time of conception, such as year of birth and sex, may 
confound this association. This requirement will also be violated if there are differences in 
subgroups defined by allele frequencies that also differ in disease or trait susceptibility. For 
example, allele frequencies differ by ancestry, and environments are not necessarily the same 
between groups of different ancestry. Allele subgroups may become correlated with the 
environment for other reasons. For instance, assortative mating describes the mating of 
genetically similar individuals. Over time, this will tend to lead to a non-random clustering of 
alleles, potentially violating this assumption.   
 
The third requirement for instrumental variable analysis, the exclusion restriction, may be 
violated through two principal mechanisms in Mendelian Randomization analysis. The first is via 
so-called linkage disequilibrium, which refers to the fact that SNPs in close physical proximity 
tend to be inherited together. Use of one of these SNPs may therefore also reflect the effect of 
other SNPs not intended to be included in the analysis. 
 
The second and more challenging potential violation of this assumption is via pleiotropy 
(Hemani, Bowden, & Davey Smith, 2018). Pleiotropy is the effect of a genetic variant on more 
than one phenotype. The exclusion restriction will be violated if a SNP associated with (for 
example) BMI also affects the outcome through a BMI-independent channel. This is known as 
horizontal pleiotropy  (G. Davey Smith & Hemani, 2014). The exclusion restriction will not be 
violated if the other phenotype does not affect the outcome, or if the other phenotype is 
intermediate between the exposure of interest and the outcome (the latter is known as vertical 
pleiotropy). 
 
Below, in the Methods section, we describe the ways in which we attempted to account for the 
requirements for valid instrumental variable analysis.   
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Data  

UK Biobank data 
The UK Biobank study is a resource of phenotypic, genetic, electronic health record and death 
registry data, collected from over 500,000 individuals, from 2006 to 2010 (Bycroft et al., 2018; 
Collins, 2012; Sudlow et al., 2015). Participants were aged 39-72 years at recruitment and were 
predominantly of White British ethnicity (Sudlow et al., 2015). The UK Biobank received ethical 
approval from the North West-Haydock Research Ethics Committee (reference 11/NW/0382).  
 
For 465,373 participants, information on hospital inpatient admissions was available through 
linked Hospital Episode Statistics (HES) data. Inpatient admisisons involve a patient occupying a 
bed for some period, but does not necessarily imply an overnight hospital stay. From this set, 
310,471 participants were considered eligible for analysis (Figure 1). Participants were removed 
when admission information was incorrect, when the genetic data did not meet the standard of 
a documented in-house quality control procedure (Mitchell, 2019), and when BMI and/or WHR 
measurements were absent. All analyses (both observational and instrumental variable models) 
were restricted to individuals of White British ancestry to avoid confounding by differential 
ancestry under the second instrumental variable assumption. Participants matching one or 
more of the exclusion criteria were removed (N=154,902) (Figure 1).  
 
Figure 1. Participant inclusion diagram 
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NOTES TO FIGURE: Eight exclusion categories are shown with the corresponding numbers of participants per 
category. On removal of duplicates a total of 154902 unique participants are considered ineligible for analysis. a) 
admissions prior to study start date, post death/censoring date or registered death prior to study start; b) 
individuals that have a mismatch between genetically inferred and reported gender,  individuals with sex 
chromosome types putatively different from XX or XY and individuals that are outliers in heterozygosity and 
missing rate; c) individuals related to more than 200 other participants; d) on exclusion a maximal set of unrelated 
individuals is retained; e) not genotyped for the exposures of interest (BMI, WHR, WHRadjBMI) 
 
Adiposity measures 
Measures on weight, bio-impedance, height, waist circumference and hip circumference were 
collected at the baseline UK Biobank assessment. Weight and bio-impedance were measured 
using the Tanita BC-418MA body composition analyzer. Standing height was measured using a 
Seca 202 height measure. BMI was calculated as weight divided by height squared (kg/m2), and 
using electrical impedance. When the first measure was unavailable, values were 
supplemented with the latter. WHR was calculated by dividing waist circumference by hip 
circumference, measured with a Wessex non-stretchable spurring tape measure (UK Biobank, 
2011). 
 
Hospital admission counts 
Hospital admission count was derived using electronic health records (“Hospital Episode 
Statistics”) linked to the UK Biobank study. For a given hospital admission, a patient may have 
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multiple “episodes” of care. Admissions were therefore defined where an individual had 
episodes starting on separate dates, excluding incomplete episodes, episodes with inconsistent 
or overlapping start and end dates and accounting for patient transfers. Code to define the 
admissions variable is available from https://github.com/pdixon-econ/admissions-biobank.  
 
Genetic variants  
Estimates for 77 genetic variants associated with BMI at a genome-wide significance level 
(p<5x10-8) in the largest genome-wide association study meta-analysis of a combined number 
of up to 322,154 individuals of European descent (not including UK Biobank) were obtained 
from the Genetic Investigation of Anthropometric Traits (GIANT) consortium (Locke et al., 
2015). Individual-level genetic data of sufficient quality (Mitchell, 2019) 34 was available from 
UK Biobank for 76 of these 77 SNPs. Genetic variants associated with WHR and WHRadjBMI 
were also obtained from the GIANT consortium, with 39 and 48 SNPs, respectively, identified in 
relation to WHR at p<5x10-8, in a meta-analysis of up to 210,088 individuals (Shungin et al., 
2015). 
 

Methods 

This section describes our approach to modelling the association between healthcare costs and 
the three measures of adiposity. We implement both conventional observational models and 
instrumental variable models. Both types of model implement versions of Poisson regression. 
 
Poisson modelling of admissions data 
 
A Poisson regression model applies a generalized linear model with a logarithmic link function 
under the assumption that the response variable is Poisson distributed and that the logarithm 
of the expected value μ can be expressed in a linear combination of k parameters (see Formula 
1 below).   
 
   log 𝜇 = 	𝛽! ∗ 𝑥! +	𝛽" ∗ 𝑥" +⋯+ 𝛽# ∗ 𝑥#           (1) 
 
UK Biobank participants were recruited between 2006 and 2010 and for each participant 
hospital admissions were counted from recruitment to study censoring with the latter given by 
either death or 31 March 2015, the date at which the linked Hospital Episode Statistic data 
were censored for this analysis. We ignore emigration, which is estimated to occur at low rates 
(0.3%) in this cohort (Fry et al., 2017). 
 
To correct for the varying times on study, the logarithm of observed person-years t is added to 
the linear equation as an offset (Formula 2).  
 

log 𝜇 = log 𝑡 + 𝛽! 	 ∗ 𝑥! +	𝛽" ∗ 𝑥" +⋯+ 𝛽# ∗ 𝑥#   (2) 
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The modeled outcome can now be interpreted as a rate rather than a count, as becomes 
apparent when restructuring equation (2) to equation (3). 
 

log $
%
=	𝛽! ∗ 𝑥! +	𝛽" ∗ 𝑥" +⋯+ 𝛽# ∗ 𝑥#   (3) 

 
Let x1 and β1 represent the exposure BMI and the corresponding parameter estimated from the 
Poisson regression. Then with t in years and BMI in kg/m2 the exponent of the coefficient 
exp(β1) is the factor by which the mean value of the outcome is multiplied for a 1 kg/m2 
increase in BMI. More generally, with the remaining variables are held constant, the yearly 
hospital admission rate increases with a factor exp(β1)n for every n unit increase in BMI. Values 
of the coefficient >1 indicate an increase in admission rate and values <1 indicate a decrease.  
 
Multivariable observational analyses 
Observational estimates were obtained by regressing each exposure on the outcome in a 
conventional (i.e. without instrumental variables) Poisson regression, with time in UK Biobank 
as the offset. Unadjusted estimates were obtained alongside estimates adjusted for age at 
study entry, sex, and a number of categorical variables. To make full use of the available data, 
we imputed missing values in a 10-fold imputation approach and pooled the resulting 
coefficients and standard errors using Rubin’s rules (Rubin, 1996). 
 
Instrumental variable Poisson models 
 
Mendelian Randomization methods are traditionally applied to continuous or binary outcome 
data, whereas count data such as hospital admission data is frequently modeled using Poisson 
regression. Here, the outcome was given by hospital admission counts for subjects that were 
observed for varying lengths of time. As the Poisson model is linear on the logarithmic scale, 
the second stage of the Mendelian Randomization regression that estimates the gene-outcome 
association can be replaced by a Poisson regression.  
 
We conducted both one- and two-sample Mendelian Randomization analyses. In a one-sample 
framework, a single sample of individual-level genetic and phenotypic data is used to obtain 
estimates of both the gene-exposure association (bexp) and the gene-outcome association (bout). 
External weightings from the GIANT consortium were used for the gene-exposure associations.  
 
The ratio of the coefficients (the Wald ratio) gives the causal IV estimate: 𝛽&' =		

(!"#
($%&

.  When a 

single instrument is used in a linear model, the Wald ratio is identical to the 2SLS estimator. 
Here, we implement a generalized linear model version of this estimator to allow for a Poisson 
model in the second stage.    
 
Note that the numerator and the denominator in the Wald ratio need not come from the same 
sample (J. D. Angrist & Krueger, 1992). In a two-sample Mendelian Randomization framework, 
the exposure and outcome coefficients are obtained from separate, independent samples from 
similar populations (G. Davey Smith & Hemani, 2014; Haycock et al., 2016). This approach may 
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offer better efficiency than a one-sample approach if larger sample sizes are available when 
using data from more than one sample . A further important advantage is that the two-sample 
approach particularly facilitates methods to test the sensitivity of results to possible violations 
of the exclusion restriction, as we discuss below.  
 
We therefore implemented both one- and two-sample Mendelian Randomization models. For 
both the one- and two-sample analyses we implemented a model where the second stage 
linear regression of the outcome Yadm on the respective SNPs is replaced by a Poisson 
regression with the person years on study t as offset. Let βexp be the exposure coefficient 
obtained from a linear regression of the exposure Yexp on the genetic instrument or risk score G 
(see Formula 4), and βout the outcome coefficient on the logarithmic scale obtained from a 
Poisson regression of the outcome Yout on the genetic instrument G (see Formula 5). 
 

  𝑌)*+	~	𝛽)*+ ∗ 𝐺      (4) 
 
    log(𝑌,-%)~ log(𝑡) + 𝛽,-% ∗ 𝐺    (5) 
 
 
As the Poisson model is linear on the log scale, the two coefficients are compatible and a valid 
ratio can be obtained, with the final IV estimate βIV of the rate coefficient given by the 
exponent of this ratio (6).  
 
                   𝛽&' = exp	((!"#

('()
)      (6)  

 
The coefficient 𝛽&'  is the factor by which the yearly hospital admission rate increases for each 
unit of exposure, again with values >1 indicating an increase in admission rate and values <1 
indicating a decrease. 
 
The Poisson model assumes an outcome distribution such that the outcome mean is equal to 
the outcome variance. As the hospital admission count variance (55.3) was greater than the 
mean hospital admission count (1.89), we instead used a quasi-Poisson model (Ver Hoef & 
Boveng, 2007). Standard errors for the causal IV estimates were estimated using Taylor series 
expansions (Thomas, Lawlor, & Thompson, 2007).  
 
One-sample just-identified Mendelian randomization 
 
Weighted genetic risk scores (GRS)s were constructed for BMI (76 SNPs) (Locke et al., 2015), 
WHR (39 SNPs) (Shungin et al., 2015) and WHRadjBMI (48 SNPs) (Shungin et al., 2015). To 
ensure a meaningful interpretation of the score, the exposure-increasing allele for each genetic 
variant was chosen as the effect allele (Wade et al., 2018). For each study participant, the 
dosage for each relevant genetic variant was extracted from the UK Biobank genetic data and 
weighted with the effect size reported by the GIANT consortium. Following this, the weighted 
dosages were summed and divided by the sum of all effect sizes, giving a single GRS for each 
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exposure representing an estimate for the average number of exposure-increasing alleles. 
Estimates were adjusted for age, sex and the first 40 genetic principal components (PCAs) to 
comply with the second instrumental variable assumption of conditional independence (“as 
good as randomly assigned”).   
 
To estimate the effect of WHRadjBMI on hospital admissions, we generated the residuals of a 
regression of WHR on BMI as an exposure, which gave an estimate for the predictive 
performance of the WHR component that cannot be linearly predicted by BMI.   
 
We also considered the effects of BMI and WHR when estimated in a joint model, using a 
multivariable Mendelian Randomization approach. Multivariable Mendelian Randomization 
aims to estimate the causal effect of multiple exposures simultaneously. In contrast to 
univariable Mendelian Randomization, which estimates the total effect of an exposure on the 
outcome, Multivariable Mendelian Randomization estimates the direct effect of each exposure 
conditioning on the causal effects of the SNPs on the other exposure (Sanderson, Davey Smith, 
Windmeijer, & Bowden, 2019). We regressed BMI and WHR separately on the full combined set 
of SNPs and regressed the fitted values of both on hospital admission count in a Poisson 
regression with time as the offset. Standard errors were obtained through a 10,000-fold full-
sample bootstrap (Efron & Tibshirani, 1993).  
 
For BMI, estimates of hospital admission rates per year were obtained per BMI unit (1 kg/m2) 
and per BMI standard deviation (SD). For WHR, WHRadjBMI, and the WHR residuals, estimates 
were obtained per 0·10 WHR unit and per WHR SD. The relevant SDs were calculated directly 
from the UK Biobank data, yielding SDs of 4·74 kg/m2 and 0·09 for BMI and WHR, respectively. 
 
Two-sample over-identified summary Mendelian randomization 
 
We employed a variety of over-identified methods to assess the causal association between 
adiposity and hospital admissions in two-sample Mendelian Randomization analysis. Four two-
sample Mendelian Randomization approaches were used to investigate the effect of BMI, WHR 
and WHRadjBMI on yearly hospital admission rate: 1) the random effects exact weights inverse-
variance weighted (IVW) estimator (Bowden et al., 2019); 2) the random effects Mendelian 
Randomization Egger estimator (Bowden, Davey Smith, & Burgess, 2015); 3) the penalized  
median estimator (Bowden, Davey Smith, Haycock, & Burgess, 2016); 4) the weighted mode 
estimator (Hemani, Bowden, et al., 2018). 
 
All of these approaches make distinct assumptions about whether and how the exclusion 
restriction might be violated. Precise technical details are available in the respective references. 
Here, we provide an overview of these details and some intuition for their implementation.  
 
A useful starting point is to approach this type of instrumental variable analysis from the 
perspective of meta-analysis (Bowden & Holmes, 2019). If each SNP is treated as the outcome 
of a natural experiment occurring at conception, then an overall effect estimate across many 
SNPs may be obtained by performing meta-analysis.  For example, for the random effects 
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models, Wald ratios are estimated for each SNP separately and combined using a random 
effects meta-analysis approach. The traditional IVW estimator uses weights derived from the 
inverse variance of the SNP-outcome coefficient. The exact weights IVW estimator derives 
weights in a slightly different way, using a limited information maximum-likelihood (LIML) 
approach in which the weight term is allowed to be a function of the causal-effect parameter. 
This approach therefore also ensures the estimator is naturally robust against regression-
dilution bias (Bowden et al., 2019).  
 
This approach assumes either that there is no horizontal pleiotropy in violation of the exclusion 
restriction, or that any horizontal pleiotropy balances out such that point estimates of effect 
are not biased. Violations of the exclusion restriction induced by horizontal pleiotropy may be 
apparent if the effect of a SNP or set of SNPs is large relative to the mean effect of all SNPs. 
 
Heterogeneity of this type was assessed in two related ways. The first was via Cochran’s Q 
statistic, the two-sample analogue of the Sargan test for overidentification. Heterogeneity can 
be assessed by comparing the Q statistic (Formula 7) to the critical values of a chi-squared 
distribution:  
 

𝑄 = ∑ !
.*+
, (𝛽7/ − 𝛽7&'0)"

1
/2!    (7)  

 
This assumes up to J SNPs; 𝛽7/  and 𝛽7&'0  measure respectively the effect estimates for SNP j and 
the overall inverse variance (IVW) weighted effect over all J SNPs. The variance of the SNP-
outcome association is 𝜎3+

" .   
 
The second, related means of assessing heterogeneity was based on Rucker’s Q’ statistic 
(Bowden, Hemani, & Davey Smith, 2018), which first requires a discussion of the Mendelian 
Randomization-Egger approach. The random effects IVW model constraints the overall IVW-
regression line to pass through the origin; if this were not the case, then some or all variants 
would be violating the exclusion restriction since the causal effect (absent violations of the 
exclusion restriction) is determined only by the Wald ratio. The random effects Mendelian 
Randomization-Egger model does not constrain the intercept to zero. The Mendelian 
Randomization-Egger regression intercept can be interpreted as the average pleiotropic effect 
of all variants. Verifying whether the observed intercept is statistically different from zero 
serves as a test for horizontal pleiotropy (Bowden et al., 2015).  
 
In essence, this amounts to testing and then conditioning on any horizontal pleiotropy, at the 
cost of further assumptions concerning the association between instrument strength and the 
direct pleiotropic effect of variants – on this assumption, see further detail in (Bowden et al., 
2015; Stephen Burgess & Thompson, 2017). Rucker’s Q’ statistic may be calculated by 
estimating the Mendelian Randomization-Egger model, adjusting for any mean pleiotropic 
effect, and then testing if any residual heterogeneity is present.  
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The third estimator is the median estimator, which is given by the median ratio estimate of 
ordered Wald ratios. The intuition for this estimator is that a consistent estimate will be 
obtained from the median estimate if at least 50% of the SNPs are valid; invalid estimates will 
contribute no weight to the overall estimate provided that at least this proportion of SNPs are 
valid.  The penalized weighted median estimator will be consistent when at least 50% of the 
weights come from valid instruments. We report results from the penalized weighted median 
estimator, in which Cochran’s Q statistic is used to quantify heterogeneity and more 
heterogeneous, outlying variants are down-weighted (Bowden et al., 2016).  

 

The mode estimate is given by the mode of the Wald ratio estimates and will consistently 
estimate the causal effect even if more than half of the SNPs are invalid, provided the largest 
homogeneous cluster of SNPs is valid. Both the weighted median and mode estimators use 
weights derived from the inverse variance of the ratios of the gene-outcome and gene-
exposure association estimates and are, under different assumptions, robust to outliers and 
invalid instruments (Hemani, Bowden, et al., 2018). 
 
Gene-exposure association coefficients for the two-sample Mendelian Randomization analyses 
were obtained from the GIANT consortium (Locke et al., 2015; Shungin et al., 2015) and gene-
outcome association coefficients from the UK Biobank data (Bycroft et al., 2018; Collins, 2012; 
Sudlow et al., 2015). 
 
Two-sample Mendelian Randomization estimates were obtained for BMI, WHR and WHRadjBMI 
individually and for BMI and WHR jointly in a multivariable two-sample Mendelian 
Randomization IVW analysis (Sanderson et al., 2019). For BMI, estimates of hospital admission 
rates per year were obtained per BMI unit (1 kg/m2) and SD. For WHR and WHRadjBMI 
estimates were obtained per 0·10 WHR unit and SD. SDs were calculated by taking the median 
SD across all studies used to obtain the summary measures, giving SDs of 4·60 kg/m2 and 0·07 
for BMI and WHR, respectively. Plots of the two Q (Cochran’s Q and Rucker’s Q’) statistics were 
calculated for each SNP in a leave-one-out analysis and were used for the visual identification of 
outliers, which were removed in a sensitivity analysis with the purpose of verifying estimator 
consistency. 
 
A threshold of R2<0·001 to account for linkage disequilibrium (LD) was employed for the two-
sample Mendelian Randomization analyses. Post LD-correction, 64, 34 and 45 SNPs were 
retained for BMI, WHR and WHRadjBMI, respectively. For the multivariable two-sample 
Mendelian Randomization analysis, 70 SNPS were retained after a joint LD adjustment for BMI 
and WHR.  
 
All analyses were performed in R version 3.6.1 (R Development Core Team, 2014). R packages 
TwoSampleMendelian Randomization (Hemani, Zheng, et al., 2018), RadialMendelian 
Randomization (J. Bowden et al., 2018), and MVMendelian Randomization (Sanderson et al., 
2019)  were used for the two-sample summary Mendelian Randomization analyses and Amelia 

(Honaker, 2019) was used for the multiple imputation performed in the conventional 
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multivariable analyses. An R code appendix documenting all analytical steps taken is provided in 
the supplementary materials.  
 
 

Results  

This section sets out the results of the analysis described above. We begin with a summary of 
descriptive statistics and any missingness in these variables. We then introduce results from our 
observational analysis, which serve as a useful benchmark against which to judge the 
Mendelian Randomization instrumental variable models. We then present the results from the 
one-sample Mendelian Randomization using the GRS instruments, before considering the over-
identified two-sample models that test potential violations of the exclusion restriction.  
 
Descriptive statistics 
The 310,471 participants included in the analysis sample had an average age of 57·40 years (SD: 
7·99), with a BMI of 27.38kg/m2 (SD: 4·74) and WHR of 0.87 (SD: 0·09). Of these participants, 
53·66% were female. Average follow-up time was 6·05 years (SD: 0·91). BMI, WHR, sex and age 
distributions were comparable across the UK Biobank and the GIANT consortium populations 
(Bycroft et al., 2018; Locke et al., 2015; Shungin et al., 2015). Demographics for the UK Biobank 
participants are given in Table 1. 
 
Table 1. Patient demographics at baseline for N=310471 patients. For continuous variables mean and standard deviation are given, for 
categorical variables counts and percentages per category. 

Characteristic  N / mean (SD)  %  Characteristic  N  %  
Age at entry  57.402 (7.988)  100  Qualifications    

   Missing  0  0     A levels/AS levels or equivalent  35268  11.4  
Sex       College or University degree  96670  31.1  
   Female  166610  53.7     CSEs or equivalent  17714  5.70  
   Male  143861  46.3     NVQ or HND or HNC or equivalent  20418  6.60  
   Missing  0  0     O levels/GCSEs or equivalent  69815  22.5  

BMI  27.385 (4.743)  100     Other professional qualifications eg:  
   nursing, teaching  15821  5.10  

   Missing  0  0     Missing  54765  17.6  
WHR  0.872 (0.09)  100  Employment    

   Missing  0  0     Doing unpaid or voluntary work  1298  0.40  
Alcohol frequency       Full or part-time student  544 0.20  

   Daily or almost daily  67391  21.7     In paid employment or self- 
   employed  175679  56.6  

   Never  19900  6.4     Looking after home and/or family  8042 2.60  
   Once or twice a week  81161  26.1     Retired  109314  35.2  
   One to three times a 
   month  34254  11.0     Unable to work because of sickness  

    or disability  9043  2.90  

   Special occasions only  32382  10.4     Unemployed  4212  1.40  
   Three or four times a  
   week  75173  24.2     Missing  2339  0.80  

   Missing  210  0.10 Townsend deprivation    

Days exercise       1st Quint. (-6.258, -4.014]  62055  20.0  
   0 days 110190  35.5     2nd Quint. (-4.014, -2.945]  62002  20.0  
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   1 day 42722  13.8     3rd Quint. (-2.045, -1.683]  62028  20.0  
   2 days 47400  15.3     4th Quint. (-1.683, 0.709]  62030  20.0  
   3 days 40976  13.2     5th Quint. (0.709, 10.588]  62016  20.0  
   4 days 19061  6.10    Missing  341  0.10  
   5 days 19800  6.40     

   6 days 5758  1.90     

   7 days   10315  3.30     

   Missing  14249  4.60     

BMI = body mass index, SD = standard deviation, WHR = waist-hip-ratio 

  
A total of 588,147 in-patient hospital admissions was recorded, with 79% of participants 
admitted twice or less, and 47% without a single admission. Table 2 gives an overview of 
hospital admission counts across BMI categories, WHR quantiles, age quantiles and gender.  
 
Table 2. Hospital admission counts for 310471 patients per WHR quantiles, age quantiles, BMI categories and across gender. Shown are 
the 1st quantile, median, 3rd quantile, mean and SD. 
 Hospital admission count 

 1st quantile median 3rd quantile  mean  SD 
WHR       

    1st quant [0.45-0.82)  0  0  2  1.55  6.45  
    2nd quant [0.82-0.87)  0  1  2  1.75  6.01  
    3rd quant [0.87-0.92)  0  1  2  1.9  6.9  
    4th quant [0.92-2.13)  0  1  3  2.38  9.78  
BMI       

    <18.5  0  1  2  2.18  10.9  
     [18.5-20)  0  0  2  1.63  4.6  
     [20-22.5)  0  0  2  1.54  5.79  
     [22.5-25)  0  0  2  1.68  9.71  
     [25-27.5)  0  1  2  1.78  6.53  
     [27.5-30)  0  1  2  1.96  7.01  
     [30-35)  0  1  2  2.16  6.43  
    >35  0  1  3  2.66  8.33  
Age       

    1st quant [40-51)  0  0  1  1.24  7.41  
    2nd quant [51-59)  0  0  2  1.67  8.2  
    3rd quant [59-64)  0  1  2  2.03  6.13  
    4th quant [64-73)  0  1  3  2.64  7.77  
Sex       

    Female  0  1  2  1.84  7.28  
    Male  0  1  2  1.96  7.62  

 
 
Observational multivariable analyses 
 
Poisson multivariable regression models provided evidence that BMI and WHR were associated 
with an increase in yearly hospital admission rate (Table 3).   
 

Table 3. Observational multivariable analysis of the effect of BMI on yearly hospital admission rate per year in 
UK Biobank participants of White British ancestry (N=310,471).  
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 Observational (unadjusted)  Observational (adjusteda)  
 Rate       95%CI Rate       95%CI 
BMI (unit)  1.030 (1.027-1.032)  1.016 (1.013-1.018)  
BMI (SD)  1.148 (1.133-1.163)  1.077 (1.065-1.091)  
WHR (0.1 unit)  1.221 (1.203-1.240)  1.182 (1.160-1.203)  
WHR (SD)  1.197 (1.181-1.214)  1.162 (1.144-1.182)  
WHRadjBMI (0.1 unit)  1.173 (1.153-1.194)  1.157 (1.133-1.182)  
WHRadjBMI (SD)  1.155 (1.137-1.173)  1.141 (1.120-1.163)  
WHR~BMI residuals  
(0.1 WHR unit)c 1.174 (1.154-1.194) 1.138 (1.114-1.162) 

WHR~BMI residuals (WHR SD)c 1.156 (1.136-1.176) 1.123 (1.102-1.145) 

NOTES TO TABLE: Estimates are provided per unit (BMI), per 0.1 unit (WHR) and per exposure SD (SDBMI=4.74 
and SDWHR=0.090).  
BMI = body mass index, CI = confidence interval, SD = standard deviation, WHR = waist-hip-ratio, WHRadjBMI = 
waist-hip-ratio adjusted for BMI 
a) Adjusted for sex (categorical), age at study entry, alcohol frequency (categorical, from on a daily basis to never), 
employment (categorical), qualifications (categorical), Townsend deprivation score (categorical in quintiles, where 1 is 
not deprived and 5 is very deprived), and days of exercise per week (categorical, from 1 to 7). The WHRadjBMI 
observational analyses also include BMI as a predictor. 
 

Observational analyses regressing the outcome on both exposures simultaneously resulted in 
attenuated associations, with a 1·03-fold increase per BMI SD (95% CI: 1·02, 1·04) and a 1·14-
fold increase (95% CI: 1·12, 1·16) per WHR SD, respectively (Table 5).  
 
Table 4  Observational multivariable of the effect of BMI and WHR on yearly hospital admission rate 
 
 Observational (unadjusted)  Observational (adjusteda)  
 Rate       95% CI Rate       95% CI 
BMI (per unit)  1.017 (1.014-1.020)  1.006 (1.003-1.009)  
BMI (per SD)  1.084 (1.068-1.100)  1.029 (1.015-1.043)  
WHR (per 0.1 unit)  1.173 (1.153-1.194)  1.158 (1.134-1.182)  
WHR (per SD)  1.155 (1.137-1.173)  1.141 (1.120-1.163)  

NOTES TO TABLE: Observational multivariable of the effect of BMI and WHR on yearly hospital admission 
rate in UK Biobank participants of White British ancestry (N=310471). Rates and 95% confidence intervals (95% 
CI) are given. Estimates are provided per unit (BMI), per 0.1 unit (WHR) and per exposure SD (SDBMI=4.74 and 
SDWHR=0.090). 
BMI = body mass index, CI = confidence interval, SD = standard deviation, WHR = waist-hip-ratio 
a) The observational analysis regresses the outcome directly on the exposures BMI and WHR simultaneously. The 
Poisson regression is adjusted for sex (categorical), age at study entry, alcohol frequency (categorical, from on a 
daily basis to never), employment (categorical), qualifications (categorical), Townsend deprivation score 
(categorical in quintiles, where 1 is not deprived and 5 is very deprived), and days of exercise per week 
(categorical, from 1 to 7); 
Estimates (with corresponding 95% CIs) represent the fold increase in yearly hospital admission rate per BMI unit 
(1 kg/m2) and SD (4.74 kg/m2) and per 0.1 WHR unit and SD (0.090) 

 
For all exposures, estimates derived from adjusted models were lower than those from 
unadjusted models, but with overlapping confidence intervals.  
 
Association between GRS and exposures  
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Table 5 shows the associations between BMI and WHR and the BMI GRS, the WHR GRS, and the 
WHRadjBMI GRS, comprising 76, 39 and 48 SNPs, respectively.  The first stage F statistics were 
large in all cases.  
 
Table 5. Association between weighted GRS for BMI, WHR and WHRadjBMI with BMI and WHR in UK Biobank 
participants of White British ancestry (N=310471). Effect estimates are provided per unit (BMI), per 0.1 unit (WHR) and per 
SD (SDBMI=4.74 and SDWHR=0.090). 

 Effect estimate (95% CI)a  P-value R2 %  F 
   BMI GRS (76 SNPs)  
BMI (unit)  0.112        (0.109 – 0.115)  <5 x 10-324  1.69  5326 
BMI (SD)  0.0236      (0.023 – 0.0243)  <5 x 10-324  1.69  5326 
WHR (0.1 unit)  0.0075      (0.0069 – 0.0081)  <4.04 x 10-144  0.210  654.1 
WHR (SD)  0.0084      (0.0077 – 0.009)  <4.04 x 10-144  0.210  654.1 
     
   WHR GRS (39 SNPs)  
BMI (unit)  0.0297      (0.0256-0.0337)  <2.33 x 10-46  0.066  204.4 
BMI (SD)  0.0060      (0.005-0.007)  <2.33 x 10-46  0.066  204.4 
WHR (0.1 unit)  0.0140     (0.0132 – 0.0148)  <6.40 x 10-277  0.406  1267 
WHR (SD)  0.0156     (0.0147 – 0.0164)  <6.40 x 10-277  0.406  1267 
     
   WHRadjBMI GRS (48 SNPs)  
BMI (unit)  -0.024      (-0.0278 – -0.0202)  <2.41 x 10-35  0.050  154 
BMI (SD)  -0.005      (-0.006 – -0.004)  <2.41 x 10-35  0.050  154 
WHR (0.1 unit)  0.0141     (0.0134 – 0.0148)  <1.88 x 10-322  0.474  1477 
WHR (SD)  0.0157     (0.0149 – 0.0165)  <1.88 x 10-322  0.474  1477 
 
NOTES TO TABLE: BMI = body mass index, CI = confidence interval, GRS = genetic risk score, SD = standard deviation, 
WHR = waist-hip-ratio, WHRadjBMI = waist-hip-ratio adjusted for BMI 
a) Effect estimate, and corresponding P-value represent the change in BMI in units (kg/m2) and SD units (4.74 kg/m2)  and the 
change in WHR in 0.1 units and SD units (0.090) per BMI increasing allele (BMI GRS) and WHR increasing allele (WHR 
GRS, WHRadjBMI GRS) 
  

In UK Biobank participants of White British ethnicity, each unit increase in BMI GRS was 
associated with a 0·11kg/m2 higher BMI (95% CI: 0·11, 0·12), with the GRS explaining 1·69% of 
the variance. Each unit increase in WHR GRS was associated with a 0·01 higher WHR on the 
0·10 unit scale (95% CI: 0·01, 0·01), explaining 0·41% of the variance, while each unit increase in 
WHRadjBMI GRS was associated with a 0·01 increase in WHR on the 0·10 unit scale (95% CI: 
0·01, 0·02), explaining 0·47% of the variance. F-statistics indicated that each GRS was a strong 
instrument for Mendelian Randomization analyses (Table 5), with all F-statistics > 1,267. 
 
One-sample Mendelian Randomization analyses 
One-sample Mendelian Randomization estimates of the effect of BMI, WHR and WHRadjBMI on 
hospital admission rates were obtained per exposure SD and unit increase. The IV regressions 
(Table 6), adjusted for age, sex and the first 40 genetic PCAs, yielded a 1·13-fold increase per 
BMI SD (95% CI: 1·02, 1·27) and a 1·26-fold increase per WHR SD (95% CI: 1·00, 1·58). Using the 
WHRadjBMI SNPs yielded a 1·22-fold increase per WHR SD (95% CI: 1·01, 1·47). Adjusting for 
BMI in the WHR regression, by using the residuals from a linear regression of WHR on BMI as an 
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exposure, resulted in a reduced effect of 1·16 (95% CI: 0·97, 1·39) per SD. We include the 
adjusted observational estimates from Table 3 for comparison 
 

Table 6. One-sample MR analyses of the effect of BMI (76 SNPs), WHR (39 SNPs) WHRadjBMI (48 SNPs) on 
yearly hospital admission rate per year in UK Biobank participants of White British ancestry (N=310471). Rates 
and 95% confidence intervals (95% CI) are given. Estimates are provided per unit (BMI), per 0.1 unit (WHR) 
and per exposure SD (SDBMI=4.74 and SDWHR=0.090). 

 Observational (adjusteda)  IV (adjustedb) 
 Rate       95%CI Rate       95%CI 
BMI (unit)  1.016 (1.013-1.018)  1.027 (1.003-1.051)  
BMI (SD)  1.077 (1.065-1.091)  1.134 (1.015-1.267)  
WHR (0.1 unit)  1.182 (1.160-1.203)  1.287 (0.997-1.661)  
WHR (SD)  1.162 (1.144-1.182)  1.255 (0.997-1.580)  
WHRadjBMI (0.1 unit)  1.157 (1.133-1.182)  1.242 (1.010-1.529)  
WHRadjBMI (SD)  1.141 (1.120-1.163)  1.216 (1.009-1.466)  
WHR~BMI residuals  
(0.1 WHR unit)c 1.138 (1.114-1.162) 1.180 (0.965-1.442) 

WHR~BMI residuals (WHR SD)c 1.123 (1.102-1.145) 1.161 (0.968-1.391) 

BMI = body mass index, CI = confidence interval, IV = instrumental variable, SD = standard 
deviation, WHR = waist-hip-ratio, WHRadjBMI = waist-hip-ratio adjusted for BMI 
a) Adjusted for sex (categorical), age at study entry, alcohol frequency (categorical, from on a daily basis to 
never), employment (categorical), qualifications (categorical), Townsend deprivation score (categorical in 
quintiles, where 1 is not deprived and 5 is very deprived), and days of exercise per week (categorical, from 1 to 
7). The WHRadjBMI observational analyses also include BMI as a predictor. 
b) Adjusted for sex, age at study entry, and 40 PCAs 
c) Residuals from linear WHR on BMI regressions are used as an exposure with the WHRadjBMI SNPs as 
instruments 

 
 
The multivariable one-sample Mendelian Randomization analysis (Table 7) showed no strong 
evidence for an independent effect of BMI on hospital admissions, with a fold increase of 1·04 
(95% CI: 0·93, 1·15) per BMI SD, when controlling for WHR. Again, we include the adjusted 
observational effect estimates (from Table 4) for comparison.   
 
Table 7.  Observational multivariable and one-sample multivariable MR analyses of the effect of BMI and 
WHR on yearly hospital admission rate in UK Biobank participants of White British ancestry (N=310471). 
Rates and 95% confidence intervals (95% CI) are given. Estimates are provided per unit (BMI), per 0.1 unit 
(WHR) and per exposure SD (SDBMI=4.74 and SDWHR=0.090). 
 Observational (adjusteda)  IV (adjustedb) 

 Ratec       95%CI Ratec       95%CI 
BMI (per unit)  1.006 (1.003-1.009)  1.007 (0.985-1.031)  
BMI (per SD)  1.029 (1.015-1.043)  1.035 (0.930-1.153)  

WHR (per 0.1 unit)  1.158 (1.134-1.182)  1.354 (1.041-1.761)  
WHR (per SD)  1.141 (1.120-1.163)  1.314 (1.037-1.665)  

BMI = body mass index, CI = confidence interval, GRS = genetic risk score, SD = standard deviation, WHR = 
waist-hip-ratio 
a) The observational analysis regresses the outcome directly on the exposures BMI and WHR simultaneously. 
The Poisson regression is adjusted for sex (categorical), age at study entry, alcohol frequency (categorical, from 
on a daily basis to never), employment (categorical), qualifications (categorical), Townsend deprivation score 
(categorical in quintiles, where 1 is not deprived and 5 is very deprived), and days of exercise per week 
(categorical, from 1 to 7); 
b) Adjusted for sex, age at study entry, and 40 PCAs 
c) Estimates (with corresponding 95% CIs) represent the fold increase in yearly hospital admission rate per BMI 
unit (1 kg/m2) and SD (4.74 kg/m2) and per 0.1 WHR unit and SD (0.090) 
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Conversely, there was evidence for an independent effect of WHR on hospital admissions, with 
a fold increase of 1·31 (95% CI: 1·04, 1·67) per WHR SD. Instrument strength, as assessed using 
the conditional Sanderson-Windmeijer F-statistic (Sanderson et al., 2019), was sufficient for the 
multivariable Mendelian Randomization analysis, with F-statistics for BMI of 38·50 and for WHR 
of 22·89.  
 
Two-sample Mendelian Randomization analyses 
The IVW estimator showed evidence for a causal effect of all three exposures on hospital 
admissions (Table 8), at magnitudes consistent with the just-identified one-sample Mendelian 
Randomization results.  

Table 8. Two-sample MR analysis of hospital admission rate per year in UK Biobank 

   MR-Egger   

    
IVW (random 
effects, exact 
weights) 

   Intercept    Slope 
Penalized 
weighted 
median 

Weighted 
mode 

BMI (unit) Ratea  
(95% CI)  

1.020  
(1.002-1.038) 

1.001  
(0.999-1.002) 

0.994  
(0.943-1.048) 

1.020  
(0.986-1.055) 

1.019  
(0.981-1.059) 

BMI (SD) Ratea  
(95% CI)  

1.098  
(1.009-1.194) 

1.004  
(0.997-1.011) 

0.973  
(0.759-1.247) 

1.095  
(0.930-1.290) 

1.095  
(0.915-1.312) 

WHR (0.1 unit) Ratea 

 (95% CI)  
1.223 

(1.062-1.407) 
1.000 

(0.987-1.014) 
1.208 

(0.648-2.253) 
1.265 

(0.982-1.630) 
1.229 

(0.864-1.748) 

WHR (SD) Ratea 

 (95% CI)  
1.199 

(1.054-1.364) 
1.000 

(0.987-1.014) 
1.185 

(0.676-2.079) 
1.236 

(0.985-1.550) 
1.204 

(0.867-1.167) 
WHRadjBMI 

(0.1 unit) 
Ratea  

(95% CI)  
1.168 

(1.030-1.326) 
1.008 

(0.995-1.021) 
0.857 

(0.506-1.453) 
1.138 

(0.933-1.389) 
1.084 

(0.798-1.475) 

WHRadjBMI 
(SD) 

Ratea 

 (95% CI)  
1.151 

(1.028-1.287) 
1.008 

(0.995-1.021) 
0.870 

(0.541-1.400) 
1.124 

(0.941-1.343) 
1.076 

(0.819-1.414) 
NOTES TO TABLE: MR-Egger (random effects), IVW (random effects, exact weights), weighted median and 
weighted mode analyses of BMI (64 SNPs), WHR (34 SNPs) and WHRadjBMI (45 SNPs) on hospital admission rate 
per year in UK Biobank participants of White British ancestry. SNPs with an LD R2 < 0.001 have been retained. Rates 
are given per exposure unit and exposure SD (SDBMI=4.6, SDWHR=0.07) and 95% confidence intervals (95% CI) are 
provided. 
BMI = body mass index, CI = confidence interval, IVW = inverse variance weighted, MR = Mendelian randomization, 
SD = standard deviation, WHR = waist-hip-ratio, WHRadjBMI = waist-hip-ratio adjusted for BMI 
a) Adjusted for sex, age and the first 40 genetic principle components. Estimates (with corresponding 95% CIs) 
represent the fold increase in yearly hospital admission rate per BMI unit (1 kg/m2) and SD (4.6 kg/m2) and per 0.1 
WHR unit and SD (0.07) 
 

 
For BMI, we observed a fold increase of 1·10 (95% CI: 1·01, 1·19) per SD, for WHR a fold 
increase of 1·20 (95% CI: 1·05, 1·36) per SD and for WHRadjBMI a fold increase of 1·15 (95% CI: 
1·03, 1·29) per SD. The penalized weighted median and weighted mode yielded near identical 
point estimates, albeit with wider confidence intervals that included the null.  
 
The widest confidence intervals were observed for the Mendelian Randomization-Egger 
estimates, as is usually the case given the lower power of this estimator since it estimates twice 
the number of parameters (both the intercept and the slope coefficient) compared to the other 
estimates. For WHR, the Mendelian Randomization-Egger point estimate was comparable to 
the previous estimates, it was markedly lower for BMI and WHRadjBMI. The Mendelian 
Randomization-Egger intercept indicated no directional pleiotropy.  
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Heterogeneity was assessed using Rücker’s Q (QR) and Cochran’s Q (QC) For all three exposures, 
the Q-statistics were smaller than the number of SNPs used for estimation (QR,BMI=51.29, 
QC,BMI=52.06, QR,WHR=28.64, QC,WHR=28.92, QR,WHRadj=43.80, QC,WHRadj=44.01). Despite the lack of 
substantial heterogeneity, we performed a sensitivity analysis to investigate the potential 
presence of pleiotropy driven by outlying SNPs. Individual SNPs were identified in a visual 
inspection of leave-one-out plots (Figures S1-S3) and removed, with 3, 4 and 4 SNPs excluded 
for BMI, WHR, and WHRadjBMI, respectively. The two-sample MR analyses were repeated 
using the reduced set of SNPs, yielding comparable point estimates and confidence intervals 
overlapping with those from the original analyses (Table S2). 
 
 
A multivariable two-sample IVW analysis of BMI and WHR simultaneously (Table 10) yielded no 
strong evidence for an association of BMI and the yearly hospital admission rate, with a fold 
increase of 0·99 per BMI SD (95% CI: 0·85, 1·14), but indicated a strong association between 
WHR and hospital admission rate, with a fold increase of 1·30 per WHR SD (95% CI: 1·02, 1·65).     

Table 10. Multivariable two-sample MR IVW estimates for the effect of BMI and WHR (70 SNPs) on yearly hospital admission rate in UK Biobank 
participants of White British ancestry.  

 Rate  95% CI  
BMI (unit) 0.997 (0.966-1.029) 
BMI (SD) 0.986 (0.850-1.143) 
WHR (0.1 unit) 1.335 (1.024-1.739) 
WHR (SD) 1.297 (1.022-1.647) 
 
NOTES TO TABLE: SNPs with an LD R2 < 0.001 were retained.  Rates are given per exposure unit and exposure SD (SDBMI=4.6, SDWHR=0.07) and 
95% confidence intervals (95% CI) are provided. 
BMI = body mass index, CI = confidence interval, IVW = inverse variance weighted, LD = linkage disequilibrium, MR = Mendelian randomization, 
SD = standard deviation, WHR = waist-hip-ratio 
a) Adjusted for sex, age and the first 40 genetic principal components. Estimates (with corresponding 95% CIs) represent the fold increase in yearly 
hospital admission rate per BMI unit (1 kg/m2) and SD (4.6 kg/m2) and per 0.1 WHR unit and SD (0.07) 
 

 
The gene-exposure associations and gene-outcome associations for the univariable two-sample 
Mendelian Randomization analyses are given in Supplementary Tables S10, S11 and S12 for 
BMI, WHR, and WHRadjBMI, respectively. The same quantities are provided for the 
multivariable two-sample analysis in Supplementary Table S13. 
 
Comparison across methods 
Figure 2 summarizes the effect of each exposure on yearly hospital admission rate, as 
estimated from traditional multivariable analyses, and one- and two-sample Mendelian 
Randomization analyses.  
 
Figure 2. Estimates from multivariable observational analyses, one-sample Mendelian Randomization analyses and 
two-sample Mendelian Randomization IVW analyses for exposures BMI, WHR and WHRadjBMI per SD unit.  
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NOTES TO FIGURE: Shown are point estimates alongside 95% CIs for the effect of exposure on yearly hospital 
admission rate. The results are plotted on the log scale, to ensure symmetrical CIs and comparability of magnitude 
across estimates. Rate estimates and x-axis values are given on the rate scale. All Mendelian Randomization 
analyses were adjusted for age, sex and the first 40 genetic PCAs. The multivariable observational analyses were 
adjusted for a range of baseline patient characteristics (Table S2). 
 
 
For all exposures, we observed a higher point estimate for the one-sample Mendelian 
Randomization analyses when compared to the traditional analyses. On the whole, the 
estimated effects were consistent across estimators, with overlapping confidence intervals, and 
comparatively wider confidence intervals for WHR and WHRadjBMI.   
 
A similar pattern is observed in Figure 3, which summarizes the multivariable estimator results. 
Once more, the confidence intervals for both exposures overlapped, but with the BMI point 
estimates grouped more closely. In contrast to the univariable analyses summarized in Figure 2, 
the one- and two-sample BMI estimate confidence intervals now included the null.  
 
Figure 3. Estimates from multivariable observational analyses, multivariable one-sample Mendelian Randomization 
analyses and multivariable two-sample Mendelian Randomization IVW analyses for exposures BMI and WHR per 
SD unit.  
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NOTES TO FIGURE: Shown are point estimates alongside 95% CIs for the effect of exposure on yearly hospital 
admission rate. The results are plotted on the log scale, to ensure symmetrical CIs and comparability of magnitude 
across estimates. Rate estimates and x-axis values are given on the rate scale. Mendelian Randomization analyses 
were adjusted for age, sex and the first 40 genetic PCAs. The multivariable observational analyses were adjusted 
for a range of baseline patient characteristics (Table S2), with the BMI estimate adjusted for WHR and vice versa. 
 
 

Discussion  

To our knowledge, this is the first time all-cause hospital admissions have been modeled using 
Mendelian Randomization methods, a methodology less affect by omitted variable bias and 
reverse causation than other methods SEARCH (G. Davey Smith & Hemani, 2014; Haycock et al., 
2016). Our Mendelian Randomization results, based on analysis of more than 550,000 hospital 
admissions measured in over 300,000 UK Biobank participants, supported the presence of 
causal effect of a higher BMI, WHR and WHRadjBMI on an increased hospital admission risk 
using one- and two-sample Mendelian Randomization methods, in both a univariable and 
multivariable Mendelian Randomization framework.  
 
In the multivariable one-sample and two-sample Mendelian Randomization analysis, a 
relatively stronger positive effect was observed for WHR than for BMI, suggesting that the 
relationship between adiposity and hospital admissions may be driven by a detrimental 
distribution of fat and adipose tissue rather than by BMI itself. WHR has been little investigated 
previously in the context of hospital admissions, and our results emphasize the relevance of 
considering WHR as a measure of adiposity in addition to BMI in this context. Results from 
sensitivity analyses that relaxed the exclusion restriction were broadly concordant across 
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methods relying on different assumptions, suggesting that the same causal effect was being 
identified.  
 
A positive association of BMI and all-cause hospital admissions has previously been shown in 
observational studies investigating populations from the UK (Kent, Green, et al., 2017; 
O'Halloran, 2020), Australia (Korda et al., 2015), Canada (Chen et al., 2007), Italy (Migliore et al., 
2013), and the USA (Buys et al., 2014; Han et al., 2009). An observational study of 
approximately 1·09 million UK women found a yearly hospital admission rate increase of 1·12 
(95% CI: 1·12, 1·13) for every 5kg/m2 increase in BMI (Reeves et al., 2014). In just over 300,000 
individuals, we observed estimates amounting to rate coefficients of 1·025 = 1·08 (95% CI: 1·07, 
1·10), 1·14 (95% CI: 1·02, 1·28) and 1·10 (95% CI: 1·01, 1·21) from the multivariable 
observational, one-sample Mendelian Randomization and two-sample Mendelian 
Randomization analyses, respectively, giving effect estimates of a magnitude comparable to 
those observed previously in UK women from observational studies.  
 
Another observational study, examining the association between BMI and hospital admissions 
in 451,320 UK Biobank participants, found increases in yearly hospital admission rates, 
measured per 2kg/m2 BMI, of 1·06 (95% CI: 1·05, 1·07) and 1·06 (95% CI: 1·05, 1·07) for male 
and female never-smokers, respectively (O'Halloran, 2020). We observed comparable 
estimates, with increases across both genders, per 2kg/m2 BMI, of 1·022=1·03 (95% CI: 1·03, 
1·04), 1·05 (95% CI: 1·01, 1·11), and 1·04 (95% CI: 1·00, 1·08), for the multivariable 
observational, one-sample Mendelian Randomization and two-sample Mendelian 
Randomization analyses, respectively.  
 
While the effect of BMI/WHR on hospital admission rate has not previously been studied in this 
context, the effect of BMI on hospital cost was examined in a two-sample Mendelian 
Randomization analysis, using data from UK Biobank, which largely overlaps with our own study 
population (P. Dixon et al., 2020). A positive causal effect of BMI on hospital cost was found in 
that study, in line with our own observation of increased hospital admissions for higher BMI.  
 
 

Limitations  

Mendelian Randomization methods make it possible to avoid certain biases common to 
traditional epidemiological studies, but also face limitations, both in terms of interpretation and 
in terms of potential alternative sources of bias.  When interpreting the results, it should be 
noted that Mendelian Randomization does not estimate an average treatment effect, but 
rather a local average treatment effect (LATE) instead, under the assumption that the effect of 
IV on treatment for all IVs is in the same direction for all subjects – the condition of 
monotonicity (Von Hinke et al., 2016). In context of this particular study, this means that we 
estimate the effect of WHR and BMI in those subjects whose WHR/BMI exposure values differ 
on varying the levels of the respective IVs, under the condition that the change occurs in the 
same direction for all participants. This is probably a reasonable assumption.  
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As the IVs are comprised of genetic markers, which are ‘assigned’ at conception, the estimated 
LATE is a measure of the effects of a lifelong exposure to BMI-increasing alleles/WHR-increasing 
alleles. Additionally, we should note that, for all three exposures, a relatively modest 
percentage of variance is explained by the genetic variants, reducing statistical power for 
detecting the effect of a change in BMI/WHR and consequently less precise (Haycock et al., 
2016) (albeit potentially less biased) estimates.   
 
A key interpretive assumption of Mendelian Randomization is that of gene-environment 
equivalence: that genetically influenced BMI and WHR will have the same effect on hospital 
admission risk as, for example, adiposity modified by diet and/or exercise.  The included SNPs, 
however, may not meet the stable unit treatment assumption (SUTVA) (S. Burgess & 
Thompson, 2015) and as such, our estimates of the effect of BMI and WHR will not necessarily 
be representative of the increase or reduction in hospital admission rate when adiposity is 
altered through interventions.   
 
We were limited to inpatient hospital admissions as the source of hospital data linked to UK 
Biobank at the time of writing. It is possible that other forms of hospital and primary care may 
substitute for inpatient care, in which case our estimates may overstate the effect of adiposity 
on overall healthcare admissions and care episodes. On the other hand, if inpatient care is 
complementary to other forms of care, then we may have understated effect sizes. In practice, 
both influences may be present. Our results are best interpreted in relation to our outcome of 
inpatient admissions.   
 
While UK Biobank is a unique and high-quality source, the underlying demographic structure of 
the data imposes various restrictions in terms of generalizability. The UK Biobank sample is 
healthier and wealthier than the population from which it is drawn and consequently is likely to 
not be representative of the wider UK. Indeed, we observed lower rates of mortality than in the 
general population (Bycroft et al., 2018), better health-related behaviour and a higher level of 
education (Fry et al., 2017).  
 
As less healthy individuals are less likely to participate in the study, the observed sample may 
be subject to selection bias (Glymour, 2006; Munafò, Tilling, Taylor, Evans, & Davey Smith, 
2018; Spirtes, Glymour, & Scheines, 1993), which will impact the estimates obtained from both 
conventional multivariable analyses and Mendelian Randomization analyses – where estimates 
obtained may even be an underestimation of the effect of adiposity on hospital admissions in 
the general population. It should also be noted that current analyses have been limited to 
individuals of White British ancestry, and as such the results will not necessarily generalize to 
other ancestral groups.  
 
A potential further limitation is the possibility of cohort effects. UK Biobank participants are 
aged 39-72 years, giving rise to range of birth cohorts in our data sample. There is some 
evidence from other sources to suggest that SNPs exert a greater influence on BMI for those 
born in more recent decades, possibly because of an increasingly obesogenic environment 
(Hartwig, Davies, & Davey Smith, 2018; Walter, Mejía-Guevara, Estrada, Liu, & Glymour, 2016). 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted March 5, 2021. ; https://doi.org/10.1101/2020.07.14.20153742doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.14.20153742
http://creativecommons.org/licenses/by/4.0/


 24 

In this case, our estimates may under-estimate the impact of adiposity on hospital admissions, 
other things being equal.  
 
Additional sources of bias that should be considered in the context of Mendelian 
Randomization and the UK Biobank data are assortative mating (Hartwig et al., 2018; Jacobson, 
Torgerson, Sjöström, & Bouchard, 2007; Morris, Davies, Hemani, & Davey Smith, 2019; Tenesa, 
Rawlik, Navarro, & Canela-Xandri, 2016), confounding due to population stratification bias 
(Brumpton et al., 2020; Haworth et al., 2019; Koellinger & de Vlaming, 2019; Morris et al., 2019) 
and the presence of dynastic effects (Brumpton et al., 2020; Fletcher, 2011; Morris et al., 2019), 
which have all been implicated with respect to BMI previously. While we attempted to 
minimize the impact of population stratification with the inclusion of 40 genetic principle 
components, latent data structure may still exist for some exposures such as BMI (Haworth et 
al., 2019). Within-family analysis may address some of these issues (Brumpton et al., 2020; 
Davies et al., 2019), although statistical power for this form of modelling is limited given 
relatively modest available sample sizes of related individuals in UK Biobank (Howe et al., 2020).  
 

Conclusion 

This study describes the first Mendelian Randomization analysis to estimate the causal effect of 
BMI, WHR and WHRadjBMI on yearly hospital admission rates. Results supported the causal 
role of greater adiposity in increasing the risk of hospital admissions. Causal point estimates 
were larger than those obtained from conventional observational models, further emphasizing 
the necessity of exploring policies intended to address adverse adiposity profiles.  
 
Multivariable Mendelian Randomization analyses suggested that the effect of BMI on hospital 
admission rates may be mediated by WHR and that an unfavourable fat distribution may drive 
the relationship between increased adiposity and higher hospital admission rates. Additionally, 
we demonstrate that a non-standard outcome like hospital admission counts can be 
successfully modeled using Mendelian Randomization methods, both in a one-sample and two-
sample framework, by replacing the second stage regression (modeling the gene-outcome 
association) with a Poisson regression. 
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