Vitamin D supplementation to prevent acute respiratory infections: systematic review and meta-analysis of aggregate data from randomised controlled trials

David A Jolliffe¹,²†
Carlos A Camargo Jr³
John D Sluyter⁴
Mary Aglipay⁵
John F Aloia⁶
Peter Bergman⁷
Camilla T Damsgaard⁹
Gal Dubnov-Raz⁹
Susanna Esposito¹⁰
Davaasambuu Ganmaa¹¹
Clare Gilham¹²
Adit A Ginde¹³
Cameron C Grant¹⁴
Christopher J Griffiths¹,²
Anna Maria Hibbs¹⁵,¹⁶
Wim Janssens¹⁷
Anuradha Vaman Khadilkar¹⁸
Ilkka Laaksi¹⁹
Margaret T Lee²⁰
Mark Loeb²¹
Jonathon L Maguire⁵
David T Mauger²²
Paweł Majak²³
Semira Manaseki-Holland²⁴
David R Murdoch²⁵
Akio Nakashima²⁶
Rachel E Neale²⁷
Christine Rake¹²
Judy R Rees²⁸
Jenni Rosendahl²⁹
Robert Scragg⁴

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
Dheeraj Shah30
Yoshiki Shimizu31
Steve Simpson-Yap32,33
Geeta Trilok Kumar34
Mitsuyoshi Urashima26
Adrian R Martineau1,2†

1Institute for Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
2Asthma UK Centre for Applied Research, Queen Mary University of London, London, UK
3Department of Emergency Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
4School of Population Health, University of Auckland, Auckland, New Zealand
5Department of Pediatrics, St Michael's Hospital, Toronto, Ontario, Canada
6Bone Mineral Research Center, Winthrop University Hospital, Mineola, NY, USA
7Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
8Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
9Exercise, Lifestyle and Nutrition Clinic, Edmond and Lily Safra Children's Hospital, Tel Hashomer, Israel
10Pediatric Clinic, Pietro Barilla Children's Hospital, Department of Medicine and Surgery, University of Parma, Parma, Italy
11Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
12Department of Non-Communicable Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK
13Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, USA
14Department of Paediatrics: Child & Youth Health, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
15Department of Pediatrics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
16University Hospitals Rainbow Babies and Children's Hospital, Cleveland, OH, USA
Universitair ziekenhuis Leuven, Leuven, Belgium
Hirabai Cowasji Jehangir Medical Research Institute, Maharashtra, India
Faculty of Medicine and Health Technology, University of Tampere, Tampere, Finland
Division of Pediatric Hematology/Oncology/Stem Cell Transplantation, Columbia University Medical Center, New York, NY USA
Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
Department of Statistics, The Pennsylvania State University, Hershey, PA, USA
Department of Pediatric Pulmonology, Medical University of Lodz, Lodz, Poland
Department of Public Health, Epidemiology and Biostatistics, Institute of Applied Health Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
Department of Pathology, University of Otago, Christchurch, New Zealand
Jikei University School of Medicine, Tokyo, Japan
Population Health Department, QIMR Berghofer Medical Research Institute, Queensland, Australia
Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
Children's Hospital, Pediatric Research Centre, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
Department of Paediatrics, University College of Medical Sciences, Delhi, India
FANCL Research Institute, FANCL Corporation, Yokohama, Japan
Neuroepidemiology Unit, Melbourne School of Population & Global Health, The University of Melbourne, Melbourne, VIC, Australia
Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
Institute of Home Economics, University of Delhi, New Delhi, India

† To whom correspondence should be addressed at the Institute for Population Health Sciences, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, 58 Turner St, London E1 2AB, UK
Abstract

Objectives: To assess the overall effect of vitamin D supplementation on risk of acute respiratory infection (ARI), and to identify factors modifying this effect.

Design: We conducted a systematic review and meta-analysis of data from randomised controlled trials (RCTs) of vitamin D for ARI prevention using a random effects model. Pre-specified sub-group analyses were done to determine whether effects of vitamin D on risk of ARI varied according to baseline 25-hydroxyvitamin D (25(OH)D) concentration or dosing regimen.

Data Sources: MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, ClinicalTrials.gov and the International Standard RCT Number (ISRCTN) registry from inception to May 2020.

Eligibility Criteria for Selecting Studies: Double-blind RCTs of supplementation with vitamin D or calcidiol, of any duration, were eligible if they were approved by a Research Ethics Committee and if ARI incidence was collected prospectively and pre-specified as an efficacy outcome.

Results: We identified 40 eligible RCTs (total 30,956 participants, aged 0 to 95 years). Data were obtained for 29,841 (96.5%) of 30,909 participants in 39 studies. For the primary comparison of vitamin D supplementation vs. placebo, the intervention reduced risk of ARI overall (Odds Ratio [OR] 0.89, 95% CI 0.81 to 0.98; P for heterogeneity 0.009). No statistically significant effect of vitamin D was seen for any of the sub-groups defined by baseline 25(OH)D concentration. However, protective effects were seen for trials in which vitamin D was given using a daily dosing regimen (OR 0.75, 95% CI 0.61 to 0.93); at daily dose equivalents of 400-1000 IU (OR 0.70, 95% CI 0.55 to 0.89); and for a duration of ≤12 months (OR 0.82, 95% CI 0.72 to 0.94). Vitamin D did not influence the proportion of participants experiencing at least one serious adverse event (OR 0.94, 95% CI 0.81 to 1.08). Risk of bias within individual studies was assessed as being low for all but two trials. A funnel plot showed asymmetry, suggesting that small trials showing non-protective effects of vitamin D may have been omitted from the meta-analysis.
Conclusions: Vitamin D supplementation was safe and reduced risk of ARI, despite evidence of significant heterogeneity across trials. The overall effect size may have been over-estimated due to publication bias. Protection was associated with administration of daily doses of 400-1000 IU vitamin D for up to 12 months. The relevance of these findings to COVID-19 is not known and requires investigation.

Systematic Review Registration: CRD42020190633
Summary Box

What is already known on this subject?

- A previous individual participant data meta-analysis from 10,933 participants in 25 randomised controlled trials (RCTs) of vitamin D supplementation for the prevention of acute respiratory infection (ARI) demonstrated an overall protective effect (number needed to treat to prevent one ARI [NNT]=33).
- Sub-group analysis revealed most benefit in those with the lowest vitamin D status at baseline and not receiving bolus doses.

What this study adds

- We updated this meta-analysis with trial-level data from an additional 14 placebo-controlled RCTs published since December 2015 (i.e. new total of 39 studies with 29,841 participants).
- An overall protective effect of vitamin D supplementation against ARI was seen (NNT=36).
- A funnel plot revealed evidence of publication bias, which could have led to an over-estimate of the protective effect.
- No statistically significant effect of vitamin D was seen for any of the sub-groups defined by baseline 25(OH)D concentration.
- Strongest protective effects were associated with administration of daily doses of 400-1000 IU vitamin D for ≤12 months (NNT=8).
Introduction

Interest in the potential for vitamin D supplementation to reduce risk of acute respiratory infections (ARI) has increased since the emergence of the COVID-19 pandemic. This stems from findings of laboratory studies, showing that vitamin D metabolites support innate immune responses to respiratory viruses, together with observational studies reporting independent associations between low circulating levels of 25-hydroxyvitamin D (25(OH)D, the widely accepted biomarker of vitamin D status) and increased risk of ARI caused by other pathogens. Randomised controlled trials (RCTs) of vitamin D for the prevention of ARI have produced heterogeneous results, with some showing protection, and others reporting null findings. We previously meta-analysed individual participant data from 25 RCTs and showed a protective overall effect that was stronger in those with lower baseline 25(OH)D levels, and in trials where vitamin D was administered daily or weekly rather than in more widely spaced bolus doses. Since the date of the final literature search performed for that study (December 2015), fifteen RCTs with 19,569 participants fulfilling the same eligibility criteria have been completed and analysed. We therefore sought data from these more recent studies for inclusion in an updated meta-analysis of aggregate (trial-level) data to determine whether vitamin D reduced ARI risk overall, and to evaluate whether effects of vitamin D on ARI risk varied according to baseline 25(OH)D concentration and/or dosing regimen (frequency, dose size, and trial duration).
Methods

Protocol, Registration and Ethical Approvals

Methods were pre-specified in a protocol that was registered with the PROSPERO International Prospective Register of Systematic Reviews (https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=190633). Research Ethics Committee approval to conduct this meta-analysis was not required in the UK; local ethical permission to contribute data from primary trials was required and obtained for studies by Camargo et al. (The Ethics Review Committee of the Mongolian Ministry of Health), Murdoch et al. (Southern Health and Disability Ethics Committee, ref. URB/09/10/050/AM02), Rees et al. (Committee for the Protection of Human Subjects, Dartmouth College, USA; Protocol # 24381), Tachimoto et al. (Ethics committee of the Jikei University School of Medicine, ref 26-333: 7839), Tran et al. (QIMR Berghofer Medical Research Institute Human Research Ethics Committee, P1570) and Urashima et al. (Ethics committee of the Jikei University School of Medicine, ref 26-333: 7839).

Patient and Public Involvement (PPI)

PPI representatives were not involved in the conduct of this study.

Eligibility Criteria

Randomised, double-blind, trials of supplementation with vitamin D₃, vitamin D₂ or 25(OH)D of any duration, with a placebo or low-dose vitamin D control, were eligible for inclusion if they had been approved by a Research Ethics Committee and if data on incidence of ARI were collected prospectively and pre-specified as an efficacy outcome. The latter requirement was imposed in order to minimise misclassification bias (prospectively designed instruments to capture ARI events were deemed more likely to be sensitive and specific for this outcome). Studies reporting results of long-term follow-up of primary RCTs were excluded.

Study Identification and Selection
Two investigators (ARM and DAJ) searched MEDLINE, EMBASE, the Cochrane Central Register of Controlled Trials (CENTRAL), Web of Science, ClinicalTrials.gov and the International Standard Randomized Controlled Trials Number (ISRCTN) registry using the electronic search strategies described in the Methods Section of Supplementary Material. Searches were regularly updated up to and including 1st May 2020. No language restrictions were imposed. These searches were supplemented by searching review articles and reference lists of trial publications. Collaborators were asked if they knew of any additional trials. Three investigators (DAJ, CAC and ARM) determined which trials met the eligibility criteria.

\textit{Data Collection Processes}

Summary data from trials which contributed to our previous meta-analysis of individual participant data30 were extracted from our central database, with permission from the Principal Investigators. Summary data relating to the primary outcome (overall and by sub-group) and secondary outcomes (overall only) from newly identified trials were requested from Principal Investigators. On receipt, they were assessed for consistency with associated publications. Study authors were contacted to provide missing data and to resolve any queries arising from these consistency checks. Once queries had been resolved, clean summary data were uploaded to the study database, which was held in STATA IC v14.2 (StataCorp, College Station, TX).

Data relating to study characteristics were extracted for the following variables: study setting, eligibility criteria, 25(OH)D assay and levels, details of intervention and control regimens, trial duration, case definitions for ARI and number entering primary analysis (after randomisation). Follow-up summary data were requested for the proportions of participants experiencing one or more ARI during the trial, both overall and stratified by baseline serum 25(OH)D concentration, where this was available. We also requested summary data on the proportions of participants who experienced one or more of the following events during the trial: upper respiratory infection (URI); lower respiratory infection (LRI); Emergency Department attendance and/or hospital admission for ARI; death due to ARI or respiratory failure; use of antibiotics to treat an ARI; absence from work or school due to ARI; a serious adverse event; death due to any cause; and potential adverse reactions to vitamin D (hypercalcaemia and renal stones).
Risk of Bias Assessment for Individual Studies

We used the Cochrane Collaboration Risk of Bias tool46 to assess the following variables: sequence generation, allocation concealment, blinding of participants, personnel and outcome assessors, completeness of outcome data, evidence of selective outcome reporting and other potential threats to validity. Study quality was assessed independently by two investigators (ARM and DAJ), except for the five trials for which DAJ and/or ARM were investigators, which were assessed by CAC. Discrepancies were resolved by consensus.

Definition of outcomes

The primary outcome of the meta-analysis was the proportion of participants experiencing one or more ARIs, with the definition of ARI encompassing events classified as URI, LRI and ARI of unclassified location (i.e. infection of the upper and/or lower respiratory tract). Secondary outcomes were incidence of URI and LRI, analysed separately; incidence of Emergency Department attendance and/or hospital admission for ARI; death due to ARI or respiratory failure; use of antibiotics to treat an ARI; absence from work or school due to ARI; incidence of serious adverse events; death due to any cause; and incidence of potential adverse reactions to vitamin D (hypercalcaemia and renal stones).

Synthesis Methods

Data were analysed by DAJ; results were checked and verified by JDS. Our meta-analysis approach followed published guidelines.47 The primary comparison was of participants randomised to vitamin D vs. placebo: this was performed for all of the outcomes listed above. For trials that included higher-dose, lower-dose and placebo arms, data from higher-dose and lower-dose arms were pooled for analysis of the primary comparison. A secondary comparison of participants randomised to higher vs. lower doses of vitamin D was performed for the primary outcome only. A log odds ratio and its standard error was calculated for each outcome within each trial from the proportion of participants experiencing one or more events in the intervention vs.
control arm. These were meta-analysed in a random effects model using the Meta-analyses in a random effects model using the Metan package within STATA IC v14.2 to obtain a pooled odds ratio with a 95% confidence interval and a measure of heterogeneity summarized by the I^2 statistic and its corresponding P value. The number needed to treat for an additional beneficial outcome (NNT) was calculated using the Visual Rx NNT calculator (http://www.nntonline.net/visualrx/) where meta-analysis of dichotomous outcomes revealed a statistically significant beneficial effect of allocation to vitamin D vs. placebo.

Exploration of variation in effects

To explore reasons for heterogeneity of effect of the intervention between trials we performed a stratified analysis according to baseline vitamin D status (serum 25(OH)D <25 vs. 25-49.9 vs. 50-74.9 vs. ≥75 nmol/L) and sub-group analyses according to vitamin D dosing regimen (administration of daily vs. weekly vs. monthly or less frequent doses), dose size (daily equivalent <400 IU vs. 400-1000 IU vs. 1001-2000 IU vs. >2,000 IU) and trial duration (≤12 months vs. >12 months). The thresholds for baseline 25(OH)D concentration used in sub-group analyses were selected *a priori* on the basis that they represent cut-offs that are commonly used to distinguish profound vitamin D deficiency (<25 nmol/L), moderate vitamin D deficiency (25-49.9 nmol/L) and sub-optimal vitamin D status (so-called ‘vitamin D insufficiency’, 50-74.9 nmol/L). An exploratory analysis restricted to studies with optimal frequency, dose size and duration was also performed.

To investigate factors associated with heterogeneity of effect between subgroups of trials, we performed multivariable meta-regression analysis on trial-level characteristics, namely, dose frequency, dose size and trial duration, to produce an adjusted odds ratio, a 95% confidence interval and a P value for interaction for each factor. Independent variables were dichotomised to create a more parsimonious model (serum 25(OH)D of <25 vs. ≥25 nmol/L; administration of daily vs. non-daily doses; daily equivalent of ≤1000 IU vs. >1000 IU; and trial duration of ≤12 vs. >12 months). The meta-regression analysis excluded data from one trial that included higher-dose, lower-dose and placebo arms, since the higher-dose and lower-dose arms spanned the 1,000 IU/day cut-off, rendering it unclassifiable for the purposes of this analysis.
Quality Assessment Across Studies

For the primary analysis, the likelihood of publication bias was investigated through the construction of a contour-enhanced funnel plot.50 We used the five GRADE considerations (study limitations, consistency of effect, imprecision, indirectness and publication bias)51 to assess the quality of the body of evidence contributing to analyses of the primary efficacy outcome and major secondary outcomes of our meta-analysis.

Sensitivity analyses

We conducted two exploratory sensitivity analyses for the primary comparison of the primary outcome: one excluded RCTs where risk of bias was assessed as being unclear; the other excluded RCTs in which incidence of ARI was not the primary or co-primary outcome.

Role of the funding source

This study was conducted without external funding.
Results

Study selection and data obtained

The study selection process is illustrated in Figure 1. Our search identified a total of 1,519 unique studies that were assessed for eligibility; of these, 40 studies with a total of 30,956 randomised participants fulfilled eligibility criteria, of which 31 compared effects of a single vitamin D regimen vs. placebo only, \(^5\)\(^-\)\(^17\) \(^19\) \(^20\) \(^22\) \(^23\) \(^25\)\(^-\)\(^28\) \(^31\) \(^33\) \(^36\) \(^38\)\(^-\)\(^40\) \(^42\)\(^-\)\(^45\); \(^4\) compared effects of higher-dose, lower-dose and placebo arms, \(^18\) \(^21\) \(^24\) \(^41\) and \(^5\) compared effects of higher- vs. lower-dose regimens of vitamin D only. \(^29\) \(^32\) \(^34\) \(^35\) \(^37\) Aggregate data were sought and obtained for all but 1 study. \(^45\) Data for the primary outcome (proportion of participants with one or more ARI) was obtained for 29,841 (96.5%) of 30,909 participants in 39 studies. Reasons for excluding potentially relevant studies are presented in Table S1.

Study and participant characteristics

Characteristics of the 39 studies contributing data to this meta-analysis and their participants are presented in Table 1. Trials were conducted in 17 different countries on 4 continents, and enrolled participants of both sexes from birth to 95 years of age. Baseline serum 25(OH)D concentrations were determined in 32 of 39 trials: mean baseline 25(OH)D concentration ranged from 18.9 to 90.9 nmol/L (to convert to ng/ml, divide by 2.496). Thirty-eight studies administered oral vitamin D\(_3\) to participants in the intervention arm, while 1 study administered oral 25(OH)D. Vitamin D was given as monthly to 3-monthly bolus doses in 12 studies; as weekly doses in 5 studies; as daily doses in 20 studies; and as a combination of bolus and daily doses in 2 studies. Trial duration ranged from 8 weeks to 3 years. Incidence of ARI was primary or co-primary outcome for 21 studies, and a secondary outcome for 18 studies.

Risk of Bias Within Studies

Details of the risk of bias assessment are provided in supplementary Table S2. Two trials were assessed as being at unclear risk of bias due to high loss to follow-up. In the trial by Laaksi and colleagues, \(^8\) 37% of randomised participants were lost to follow-up.
up. In the trial by Dubnov-Raz and colleagues, 52% of participants did not complete all symptom questionnaires. All other trials were assessed as being at low risk of bias for all seven aspects assessed.

Overall Results, Primary Outcome

For the primary comparison of vitamin D vs. placebo control, supplementation resulted in a statistically significant reduction in the proportion of participants experiencing at least one ARI (Odds Ratio [OR] 0.89, 95% Confidence Interval [CI] 0.81 to 0.98; 27,815 participants in 34 studies; Figure 2, Table 2; Cates Plot, Figure S1). Heterogeneity of effect was moderate (I^2 40.0%, P for heterogeneity 0.009). The associated NNT was 36 (95% CI 20 to 206).

For the secondary comparison of higher- vs. lower-dose vitamin D, we observed no statistically significant difference in the proportion of participants with at least one ARI (OR 0.86, 95% CI 0.71 to 1.04; 2,889 participants in 9 studies; I^2 8.0%, P for heterogeneity 0.37; Figure S2).

Sub-group analyses, Primary Outcome

To investigate reasons for the observed heterogeneity of effect for the primary comparison of vitamin D vs. placebo control, we stratified this analysis by one participant-level factor (baseline vitamin D status) and by three trial-level factors (dose frequency, dose size, and trial duration). Results are presented in Table 2 and Figures S3-S6. No statistically significant effect of vitamin D was seen for participants with baseline 25(OH)D <25 nmol/L (OR 0.78, 95% CI 0.53 to 1.16; 3,617 participants in 19 studies), 25-49.9 nmol/L (OR 1.03, 95% CI 0.91 to 1.17; 9,128 participants in 27 studies), 50-74.9 nmol (OR 0.90, 95% CI 0.75 to 1.07; 5,303 participants in 28 studies), or ≥75 nmol/L (OR 0.97, 95% CI 0.81 to 1.16; 2,978 participants in 24 studies; Figure S3). With regard to dosing frequency, a statistically significant protective effect was seen for trials where vitamin D was given daily (OR 0.75, 95% CI 0.61 to 0.93; 4,005 participants in 18 studies), but not for trials in which it was given weekly (OR 0.97, 95% CI 0.88 to 1.06; 12,562 participants in 5 studies), or monthly to 3-monthly (OR 1.00, 95% CI 0.91 to 1.09; 11,248 participants in 11 studies; Figure
S4). Statistically significant protective effects of the intervention were also seen in trials where vitamin D was administered at daily equivalent doses of 400-1000 IU (OR 0.70, 95% CI 0.55 to 0.89; 2,305 participants in 10 studies), but not <400 IU (OR 0.65, 95% CI 0.31 to 1.37; 2,308 participants in 2 studies), 1001-2000 IU (OR 0.96, 95% CI 0.87 to 1.06; 15,702 participants in 14 studies), or >2000 IU (OR 1.05, 95% CI 0.84 to 1.31; 6,906 participants in 7 studies; Figure S5). Statistically significant protective effects were also seen for trials with a duration of ≤12 months (OR 0.82, 95% CI 0.72 to 0.94; 9,061 participants in 28 studies) but not in those lasting >12 months (OR 1.03, 95% CI 0.95 to 1.11; 18,754 participants in 6 studies; Figure S6). An exploratory analysis restricted to placebo-controlled trials investigating effects of daily dosing at doses of 400-1000 IU/day with duration ≤12 months showed a statistically significant reduction in the proportion of participants experiencing at least one ARI (OR 0.58, 95% CI 0.45 to 0.75; 1,232 participants in 8 studies; Figure S7; Cates Plot, Figure S1). Heterogeneity of effect was low (I² 0.0%, P for heterogeneity 0.67). The associated NNT was 8 (95% CI 6 to 15).

Multivariable Meta-Regression Analysis

Multivariable meta-regression analysis of trial-level sub-groups did not identify a statistically significant interaction between allocation to vitamin D vs. placebo and dose frequency, size or trial duration (Table S3).

Secondary outcomes

Meta-analysis of secondary outcomes was performed for results of placebo-controlled trials only; results are presented in Table 3. Overall, without consideration of participant- or trial-level factors, vitamin D supplementation did not have a statistically significant effect on the proportion of participants with one or more URI, LRI, courses of antimicrobials for ARI, work/school absences due to ARI, hospitalisations or emergency department attendances for ARI, serious adverse events of any cause, death due to ARI or respiratory failure, death due to any cause, or episodes of hypercalcaemia or renal stones.
Risk of bias across studies

A funnel plot for the proportion of participants experiencing at least one ARI showed left-sided asymmetry, raising the possibility that small trials showing non-protective effects of vitamin D may not have been included in the meta-analysis (Figure S8). An Egger’s regression test for publication bias confirmed asymmetry (P=0.002). Accordingly, the quality of the body of evidence contributing to analyses of the primary efficacy outcome and major secondary outcomes was downgraded to moderate (Table S4).

Sensitivity Analyses

Results of exploratory sensitivity analyses are presented in Table S5. Meta-analysis of the proportion of participants in placebo-controlled trials experiencing at least one ARI, excluding 2 studies assessed as being at unclear risk of bias, revealed protective effects of vitamin D supplementation consistent with the main analysis (OR 0.91, 95% CI 0.83 to 0.997; 27,626 participants in 32 studies). Sensitivity analysis for the same outcome, excluding 17 placebo-controlled trials that investigated ARI as a secondary outcome, did not show a statistically significant protective effect (OR 0.89, 95% CI 0.77 to 1.03; 7,343 participants in 17 studies).

Discussion

This updated meta-analysis of RCTs of vitamin D supplementation for the prevention of ARI includes data from an additional 18,908 participants in 14 studies published since December 2015, when we performed the final literature search for our prior individual participant data meta-analysis. For expediency during the COVID-19 pandemic, we used a trial-level approach for this update, which includes data from a total of 29,841 participants in 39 trials. Overall, we report a modest statistically significant protective effect of vitamin D supplementation, as compared with placebo (OR 0.89, 95% CI 0.81 to 0.98). As expected, there was significant heterogeneity (P=0.009) across trials, which might have led to an under-estimate of the protective effect. On the other hand, a funnel plot revealed evidence of publication bias, which might have led to an over-estimate of the protective effect. In contrast to findings of our
previous meta-analysis,30 we did not observe enhanced protection in those with the lowest 25(OH)D levels at baseline. However, there was evidence that efficacy of vitamin D supplementation varied according to dosing regimen and trial duration, with protective effects associated with daily administration of doses of 400-1000 IU vitamin D given for \leq12 months. An exploratory analysis restricted to data from 8 trials fulfilling these design criteria revealed a larger protective effect (OR 0.58, 95% CI 0.45 to 0.75) without significant heterogeneity across trials (P for heterogeneity 0.67).

The magnitude of the overall protective effect seen in the current analysis (OR 0.89, 95% CI 0.81 to 0.98) is similar to the value reported in our previous meta-analysis of individual participant data (adjusted OR 0.88, 95% CI 0.81 to 0.96).30 In keeping with our previous study, the point estimate for this effect was lower among those with baseline 25(OH)D <25 nmol/L than in those with higher baseline vitamin D status. However, in contrast to our previous finding, a statistically significant protective effect of vitamin D was not seen in those with the lowest 25(OH)D concentrations. This difference reflects the inclusion of null data from three new RCTs in which vitamin D was given in relatively high doses at weekly or monthly intervals over 2-3 years.40,42,44 Null results of these studies contrast with protective effects reported from earlier trials in which smaller daily doses of vitamin D were given over shorter periods.8-10,13,16 These differing findings suggest that the frequency, amount and duration of vitamin D supplementation may be key determinants of its protective efficacy. In keeping with this hypothesis, statistically significant protective effects of vitamin D were seen for meta-analysis of trials where vitamin D was given daily; where it was given at doses of 400-1000 IU/day; and where it was given for 12 months or less. When results of trials that investigated daily administration of 400-1000 IU over \leq12 months were pooled in an exploratory meta-analysis, a protective effect was seen (OR 0.58, 95% CI 0.45 to 0.75) with low heterogeneity (I^2 0.0%, P for heterogeneity 0.67) and a NNT of 8 (95% CI 6 to 15).

The current study has several strengths: it contains the very latest RCT data available in this fast-moving field, including findings from a soon-to-be published very large trial conducted using directly-observed, higher-dose, weekly vitamin D supplementation in very deficient children.42 The inclusion of additional studies allowed us to analyse results of placebo-controlled studies vs. high-dose / low-dose studies separately, and
gave us the power to investigate reasons for heterogeneity of effect observed across trials. For example, we could distinguish the effects of daily vs. weekly dosing, which were previously pooled.30

Our work also has limitations. Given the need to generate a rapid update of our previous work in the context of the COVID-19 pandemic, we meta-analysed aggregate (trial-level) data, rather than individual participant data; this allowed us to proceed rapidly, without the delays introduced by the need to establish multiple data sharing agreements. However, we did contact authors to get unpublished estimates of effect that were stratified by pre-defined baseline 25(OH)D levels, harmonised across studies: thus, we were able to provide accurate data for the major participant-level effect-modifier of interest. Despite the large number of trials overall, relatively few compared effects of lower- vs. higher-dose vitamin D: our power for this secondary comparison was therefore limited. We lacked the individual participant data to investigate race/ethnicity and obesity as potential effect-modifiers. We also could not account for other factors that might influence the efficacy of vitamin D supplements for ARI prevention (e.g., taking the supplement with or without food) or secular trends that would influence trials, such as the increased societal use of vitamin D supplements; 53 concurrent use of standard dose vitamin D supplements or multivitamins in the “placebo” group would effectively render these as high- vs. low-dose trials and potentially drive results toward the null. A final limitation relates to the funnel plot, which suggests that the overall effect size may have been over-estimated due to publication bias.

In summary, this updated meta-analysis of data from RCTs of vitamin D for the prevention of ARI showed a statistically significant overall protective effect of the intervention. The number needed to treat to prevent one ARI was 36. The protective effect was heterogenous across trials; it also may have been over-estimated due to publication bias. In contrast to findings of our previous meta-analysis of individual participant data, we did not see a protective effect of vitamin D supplementation among those with the lowest baseline vitamin D status. The vitamin D dosing regimen of most benefit was daily and used standard doses (e.g., 400 to 1000 IU) for up to 12 months. The relevance of these findings to COVID-19 is not known and requires investigation.
Acknowledgements

This study was conducted without external funding. DAJ is supported by a Barts Charity Lectureship (ref MGU045). ARM is supported by the United Kingdom Office for Students. The views expressed are those of the authors and not necessarily those of Barts Charity or the Office for Students. Sources of support for individual trials are detailed in Supplementary Material. We thank Dr Emma C Goodall (GlaxoSmithKline plc) for contributing data. We also thank all the people who participated in primary randomised controlled trials, and the teams who conducted them.

Author Contributions

DAJ and ARM wrote the study protocol and designed statistical analyses. DAJ, CAC and ARM assessed eligibility of studies for inclusion and performed risk of bias assessments. Statistical analyses were done by DAJ; results were checked and verified by JDS. DAJ and ARM wrote the first draft of the report. All authors revised it critically for important intellectual content, gave final approval of the version to be published, and agreed to be accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work were appropriately investigated and resolved.

Competing Interests

All authors have completed the ICMJE uniform disclosure form. No author has had any financial relationship with any organisations that might have an interest in the submitted work in the previous three years. No author has had any other relationship, or undertaken any activity, that could appear to have influenced the submitted work.

Transparency Declaration

DAJ and ARM are the manuscript’s guarantors and they affirm that this is an honest, accurate, and transparent account of the study being reported and that no important aspects of the study have been omitted. All analyses were pre-specifed in the study protocol, other than the exploratory analyses whose results are presented in Table S5 and Figure S7.

Data Sharing: the study dataset is available from d.a.jolliffe@qmul.ac.uk.
<table>
<thead>
<tr>
<th>Study first author, year</th>
<th>Setting</th>
<th>Participants</th>
<th>Mean age, years (s.d.)</th>
<th>Male: Female</th>
<th>25(OH)D assay, EGA scheme</th>
<th>Mean baseline 25(OH)D, nmol/L (s.d.)</th>
<th>Baseline 25(OH)D <25 nmol/L (%)</th>
<th>Mean attained 25(OH)D, intervention arm, nmol/L (s.d.)</th>
<th>Intervention: Control (total)</th>
<th>Oral dose of vitamin D, intervention arm</th>
<th>Control</th>
<th>Trial duration</th>
<th>ARI definition</th>
<th>ARI primary or secondary outcome?</th>
<th>N contributing data / N randomised</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-Ng 2009†</td>
<td>USA</td>
<td>Healthy adults</td>
<td>57.9 (13.6)</td>
<td>34:128</td>
<td>RIA (DiaSorin), DEQAS</td>
<td>63.7 (25.5)</td>
<td>3/150 (2.0)</td>
<td>88.5 (23.2)</td>
<td>84.78 (162)</td>
<td>50 µg daily</td>
<td>Placebo</td>
<td>3 mo</td>
<td>URI: ARI symptoms in absence of allergy</td>
<td>Primary</td>
<td>172/162 (96.9)</td>
</tr>
<tr>
<td>Urashima 2010†</td>
<td>Japan</td>
<td>Schoolchildren</td>
<td>10.2 (2.3)</td>
<td>242:188</td>
<td>Not determined</td>
<td>Not determined</td>
<td>Not determined</td>
<td>Not determined</td>
<td>217:213 (430)</td>
<td>30 µg daily</td>
<td>Placebo</td>
<td>6 mo</td>
<td>URI: influenza A/B diagnosed by RIDT or RIDT-negative ILI</td>
<td>Primary</td>
<td>334/430 (77.7)</td>
</tr>
<tr>
<td>Manasek-Holland 2010 †, Laakso 2010 †, Majak 2011</td>
<td>Afghanistan</td>
<td>Pre-school children with pneumonia</td>
<td>1.1 (0.8)</td>
<td>27/196</td>
<td>Not determined</td>
<td>Not determined</td>
<td>Not determined</td>
<td>Not determined</td>
<td>224:229 (458)</td>
<td>2.5 mg bolus once</td>
<td>Placebo</td>
<td>9 mo</td>
<td>URI: recent episode of pneumonia – age-specific oronasal without wheeze ARI</td>
<td>Secondary</td>
<td>42/42 (100)</td>
</tr>
<tr>
<td>Finland</td>
<td>Military conscripts</td>
<td>19.1 (0.6)</td>
<td>164:0</td>
<td>EIA (IDS OCTEIA) RIA (BioSource Europe), RIQAS</td>
<td>75.9 (18.7)</td>
<td>0/73 (0.0)</td>
<td>71.6 (22.9)</td>
<td>80.84 (164)</td>
<td>10 µg daily</td>
<td>Placebo</td>
<td>6 mo</td>
<td>URI: medical record diagnosis</td>
<td>Secondary</td>
<td>164/164 (100)</td>
<td></td>
</tr>
<tr>
<td>Poland</td>
<td>Children with asthma</td>
<td>10.9 (3.3)</td>
<td>32:16</td>
<td>LC-MS/MS, DEQAS</td>
<td>88.9 (38.2)</td>
<td>0/48 (0.0)</td>
<td>37.6 (13.1)</td>
<td>24:24 (48)</td>
<td>12.5 µg daily</td>
<td>Placebo</td>
<td>6 mo</td>
<td>URI: self-report</td>
<td>Secondary</td>
<td>48/48 (100)</td>
<td></td>
</tr>
<tr>
<td>Tric- Kumar 2011</td>
<td>India</td>
<td>Low birthweight infants</td>
<td>8.1 (0.9)</td>
<td>970:1109</td>
<td>–</td>
<td>Not determined</td>
<td>Not determined</td>
<td>Not determined</td>
<td>55.0 (22.5)</td>
<td>35 µg weekly</td>
<td>Placebo</td>
<td>6 mo</td>
<td>URI: medical record diagnosis</td>
<td>Secondary</td>
<td>2064/2079 (99.3)</td>
</tr>
<tr>
<td>Lehouck 2012</td>
<td>Belgium</td>
<td>Adults with COPD</td>
<td>67.9 (8.3)</td>
<td>145:37</td>
<td>RIA (DiaSorin), DEQAS</td>
<td>49.8 (29.2)</td>
<td>31/182 (17.0)</td>
<td>130.0 (44.7)</td>
<td>91.91 (182)</td>
<td>2.5 mg bolus monthly</td>
<td>Placebo</td>
<td>1 yr</td>
<td>URI: self-report</td>
<td>Secondary</td>
<td>179/182 (96.2)</td>
</tr>
<tr>
<td>Manasek-Holland 2012 †, Camargo 2012</td>
<td>Afghanistan</td>
<td>Infants</td>
<td>3.0 (0.3)</td>
<td>1591:1465</td>
<td>–</td>
<td>Not determined</td>
<td>Not determined</td>
<td>Not determined</td>
<td>1524:1522 (3046)</td>
<td>2.5 mg bolus 3-monthly</td>
<td>Placebo</td>
<td>1.5 yr</td>
<td>URI: pneumonia confirmed by chest radiograph</td>
<td>Primary</td>
<td>2011/3046 (98.9)</td>
</tr>
<tr>
<td>Mongolia</td>
<td>3rd grade schoolchildren</td>
<td>10.0 (0.9)</td>
<td>129:118</td>
<td>LC-MS/MS, DEQAS</td>
<td>18.9 (9.7)</td>
<td>192:245 (78.4)</td>
<td>49.1 (15.1)</td>
<td>143:104 (247)</td>
<td>7.5 µg daily</td>
<td>Placebo</td>
<td>7 wk</td>
<td>URI: parent-reported ‘chest infections or colds’ ARI</td>
<td>Secondary</td>
<td>244/247 (98.8)</td>
<td></td>
</tr>
<tr>
<td>New Zealand</td>
<td>Healthy adults</td>
<td>48.1 (9.7)</td>
<td>81:241</td>
<td>LC-MS/MS, DEQAS</td>
<td>72.1 (22.1)</td>
<td>5:322 (1.6)</td>
<td>123.6 (27.5)</td>
<td>161:161 (322)</td>
<td>2 x 5 mg bolus monthly then 2.5 mg bolus monthly</td>
<td>Placebo</td>
<td>1.5 yr</td>
<td>URI: ARI with symptom score</td>
<td>Secondary</td>
<td>156/156 (100)</td>
<td></td>
</tr>
<tr>
<td>Bergman 2012</td>
<td>Sweden</td>
<td>Adults with increased susceptibility to ARI</td>
<td>53.1 (13.8)</td>
<td>38:102</td>
<td>CLA (DiaSorin), DEQAS</td>
<td>49.3 (23.2)</td>
<td>15:131 (11.45)</td>
<td>94.9 (38.1)</td>
<td>70.70 (140)</td>
<td>100 µg daily</td>
<td>Placebo</td>
<td>1 yr</td>
<td>URI: assessed with symptom score</td>
<td>Secondary</td>
<td>124/140 (88.6)</td>
</tr>
<tr>
<td>Marchisio 2013</td>
<td>Italy</td>
<td>Children with recurrent acute otitis media</td>
<td>2.8 (1.0)</td>
<td>64:52</td>
<td>CLA (DiaSorin), DEQAS</td>
<td>65.3 (17.3)</td>
<td>2:116 (1.7)</td>
<td>90.3 (21.1)</td>
<td>58.58 (116)</td>
<td>25 µg daily</td>
<td>Placebo</td>
<td>6 mo</td>
<td>URI: doctor-diagnosed acute otitis media</td>
<td>Primary</td>
<td>116/116 (100)</td>
</tr>
<tr>
<td>Rees 2013</td>
<td>USA</td>
<td>Adults with previous colorectal adenoma</td>
<td>61.2 (6.6)</td>
<td>438:321</td>
<td>RIA (IDS), DEQAS</td>
<td>62.5 (21.3)</td>
<td>3:759 (0.0)</td>
<td>186.9 (455.1)</td>
<td>399:360 (759)</td>
<td>25 µg daily</td>
<td>Placebo</td>
<td>13 mo (average)</td>
<td>URI: assessed from daily symptom diary</td>
<td>Secondary</td>
<td>759/759 (100)</td>
</tr>
<tr>
<td>Tran 2014</td>
<td>Australia</td>
<td>Healthy older adults</td>
<td>71.7 (6.9)</td>
<td>343:301</td>
<td>CLA (DiaSorin), DEQAS</td>
<td>41.7 (13.5)</td>
<td>86:643 (10.3)</td>
<td>71.0 (19.6)</td>
<td>430:214 (644)</td>
<td>0.75 mg bolus vs. 1.5 mg bolus monthly</td>
<td>Placebo</td>
<td>1 yr</td>
<td>URI: self-reported cold</td>
<td>Secondary</td>
<td>594/644 (92.2)</td>
</tr>
<tr>
<td>Goodall 2014†</td>
<td>Canada</td>
<td>Healthy university students</td>
<td>19.6 (2.2)</td>
<td>218:382</td>
<td>CLA (DiaSorin), DEQAS</td>
<td>41.5 (13.3)</td>
<td>11:213 (5.2)</td>
<td>11.0 (3.1)</td>
<td>221:94 (49)</td>
<td>0.25 mg weekly/ factorially with gargling</td>
<td>Placebo</td>
<td>8 wk</td>
<td>URI: self-reported cold</td>
<td>Primary</td>
<td>492/600 (82.0)</td>
</tr>
<tr>
<td>Gushchina 2014</td>
<td>Japan</td>
<td>High school students</td>
<td>16.5 (1.0)</td>
<td>162:85</td>
<td>Not determined</td>
<td>Not determined</td>
<td>Not determined</td>
<td>Not determined</td>
<td>9203:10000 (92000)</td>
<td>0.25 mg weekly/ factorially with gargling</td>
<td>Placebo</td>
<td>0.25 mg weekly/ factorially with gargling</td>
<td>Primary</td>
<td>247/247 (100)</td>
<td></td>
</tr>
<tr>
<td>Grant 2014</td>
<td>New Zealand</td>
<td>Pregnant women and offspring</td>
<td>26 (pregnant women) 121:128 (offspring)</td>
<td>LC-MS/MS, DEQAS</td>
<td>54.8 (25.8)</td>
<td>30:200 (15.0)</td>
<td>82.9 (41.6)</td>
<td>173:87 (pregnant women) 164:85 (offspring, 249)</td>
<td>90 µg vs. 20 µg daily</td>
<td>Placebo</td>
<td>9 mo (3 mo in pregnancy + 6 mo in infancy)</td>
<td>URI: doctor-diagnosed ARI precipitating primary care consult</td>
<td>Secondary</td>
<td>239/280 (98.0)</td>
<td></td>
</tr>
<tr>
<td>Martineau 2015a †, VDIco</td>
<td>UK</td>
<td>Adults with COPD</td>
<td>64.7 (8.5)</td>
<td>144:96</td>
<td>LC-MS/MS, DEQAS</td>
<td>46.1 (25.7)</td>
<td>50:240 (20.8)</td>
<td>67.3 (27.5)</td>
<td>122:118 (240)</td>
<td>3 mg bolus 2-monthly</td>
<td>Placebo</td>
<td>1 yr</td>
<td>URI: assessed from daily symptom diary</td>
<td>Co-primary</td>
<td>240/240 (100)</td>
</tr>
</tbody>
</table>
| Martineau 2015a †, VDIco | UK | Adults with COPD | 47.9 (14.4) | 198:141 | LC-MS/MS, DEQAS | 49.6 (24.7) | 46:250 (14.4) | 69.4 (21.0) | 12b:12b (260) | 3 mg bolus 2-monthly | Placebo | 1 yr | URI: assessed from daily symptom diary | Co-primary | 261/261
<table>
<thead>
<tr>
<th>Study first author, year</th>
<th>Setting</th>
<th>Participants</th>
<th>Mean age, years (s.d.)</th>
<th>Male: Female</th>
<th>25(OH)D assay, EQA scheme</th>
<th>Mean baseline 25(OH)D, nmol/L (s.d.)</th>
<th>Baseline 25(OH)D <25 nmol/L (%)</th>
<th>Mean attained 25(OH)D, intervention arm, nmol/L (s.d.)</th>
<th>Intervention: 25(OH)D intervention arm</th>
<th>Oral dose of vitamin D, intervention arm</th>
<th>Control</th>
<th>Trial duration</th>
<th>ARI definition</th>
<th>ARI primary or secondary outcome?</th>
<th>N contributing data / N randomised (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simpson 2015<sup>a</sup></td>
<td>UK</td>
<td>Older adults and their carers</td>
<td>67.1 (13.0)</td>
<td>62:158</td>
<td>DEQAS</td>
<td>42.9 (23.0)</td>
<td>60/240 (25.0)</td>
<td>84.8 (24.1)</td>
<td>137:103 (240)</td>
<td>Older adults: 2.4 mg bolus 2-monthly + 10 µg daily</td>
<td>Placebo</td>
<td>1 yr</td>
<td>URI & LRI, both assessed from daily symptom diary</td>
<td>Co-primary</td>
<td>240/240 (100.0)</td>
</tr>
<tr>
<td>Dubnov-Raz 2015<sup>b</sup></td>
<td>Israel</td>
<td>Adolescent swimmers with vitamin D insufficiency</td>
<td>32.2 (12.2)</td>
<td>15.2 (1.6)</td>
<td>LC-MS/MS, DEQAS</td>
<td>67.9 (23.0)</td>
<td>0/33 (0.0)</td>
<td>Not determined</td>
<td>18:16 (34)</td>
<td>0.5 mg weekly</td>
<td>Placebo</td>
<td>17 wk</td>
<td>ARI assessed with symptom score</td>
<td>Primary</td>
<td>34/34 (100.0)</td>
</tr>
<tr>
<td>Denlinger 2016<sup>c</sup></td>
<td>USA</td>
<td>Older adults with chronic obstructive pulmonary disease</td>
<td>39.2 (12.9)</td>
<td>130:278</td>
<td>CLA (DiaSorin), DEQAS</td>
<td>47.0 (16.9)</td>
<td>55/408 (13.5)</td>
<td>104.3 (32.4)</td>
<td>201:207 (408)</td>
<td>2.5 mg bolus then 100 µg daily</td>
<td>Placebo</td>
<td>28 wk</td>
<td>URI assessed with symptom score</td>
<td>Secondary</td>
<td>408/408 (100.0)</td>
</tr>
<tr>
<td>Tachimoto 2016<sup>b</sup></td>
<td>Japan</td>
<td>Children with asthma</td>
<td>9.9 (2.3)</td>
<td>50:39</td>
<td>RIA (Immunootech SAS/Diasorin)</td>
<td>74.9 (24.6)</td>
<td>1/89 (1.1)</td>
<td>85.7 (24.5)</td>
<td>54.35 (89)</td>
<td>20 µg daily, first 2 mo</td>
<td>Placebo</td>
<td>6 mo</td>
<td>URI: assessed with symptom score, ARI: medical record diagnosis</td>
<td>Secondary</td>
<td>89/89 (100.0)</td>
</tr>
<tr>
<td>Gupta 2016<sup>o</sup></td>
<td>India</td>
<td>Children with pneumonia</td>
<td>1.4 (1.1)</td>
<td>226:98</td>
<td>RIA (DiaSorin)</td>
<td>43.9 (33.4)</td>
<td>104/312 (33.3)</td>
<td>64.1 (43.9)</td>
<td>162:162 (324)</td>
<td>2.5 mg bolus, single dose</td>
<td>Placebo</td>
<td>6 mo</td>
<td>Physician confirmed recurrent pneumonia</td>
<td>Co-primary</td>
<td>314/324 (96.9)</td>
</tr>
<tr>
<td>Agpait 2017<sup>a</sup></td>
<td>Canada</td>
<td>Healthy children</td>
<td>2.7 (1.5)</td>
<td>10:249</td>
<td>CLA (Sensible Diagnostics)</td>
<td>90.9 (20.9)</td>
<td>1/703 (0.1)</td>
<td>114:6 (96.9)</td>
<td>58.6 (20.9)</td>
<td>30 µg daily</td>
<td>Placebo</td>
<td>8 mo</td>
<td>URI: lab confirmed</td>
<td>Primary</td>
<td>89/703 (99.4)</td>
</tr>
<tr>
<td>Anhiro 2018<sup>c</sup></td>
<td>Japan</td>
<td>Children with asthma</td>
<td>44.7 (1.3)</td>
<td>136:87</td>
<td>RIA (Diasorin)</td>
<td>56.6 (22.0)</td>
<td>5/223 (2.2)</td>
<td>80.4 (21.5)</td>
<td>119:116 (237)</td>
<td>12.5 µg daily</td>
<td>Placebo</td>
<td>6 mo</td>
<td>Lab confirmed influenza</td>
<td>Primary</td>
<td>233/237 (94.1)</td>
</tr>
<tr>
<td>Habb 2018<sup>d</sup></td>
<td>USA</td>
<td>Adults with inflammatory bowel disease</td>
<td>0.0 (0.0)</td>
<td>166:133<sup>e</sup></td>
<td>RIA</td>
<td>55.4 (22.2)</td>
<td>1/300 (0.3)</td>
<td>95.0 (21.2)</td>
<td>153.147 (300)</td>
<td>10 µg daily, regardless of dietary intake</td>
<td>Placebo</td>
<td>1 yr</td>
<td>ARI: self-reported URI/LRI</td>
<td>Secondary</td>
<td>200/200 (100.0)</td>
</tr>
<tr>
<td>Lee 2018<sup>f</sup></td>
<td>USA</td>
<td>Children with and young adults with sickle cell disease</td>
<td>9.9 (3.9)</td>
<td>30:32</td>
<td>LC-MS/MS, DEQAS</td>
<td>35.7 (16.5)</td>
<td>16/62 (25.9)</td>
<td>92.4 (23.7)</td>
<td>31:31 (62)</td>
<td>2.5 mg bolus monthly</td>
<td>Placebo</td>
<td>3 mo</td>
<td>Self-reported respiratory events, including ARI</td>
<td>Primary</td>
<td>82/62 (100.0)</td>
</tr>
<tr>
<td>Leeb 2018<sup>g</sup></td>
<td>Switzerland</td>
<td>Healthy children and adolescents</td>
<td>8.5 (4.0)</td>
<td>42:75</td>
<td>CLA (Diasorin), DEQAS</td>
<td>65.5 (16.8)</td>
<td>5/1163 (43.4)</td>
<td>91.8 (23.6)</td>
<td>520:550 (1300)</td>
<td>0.35 mg weekly</td>
<td>Placebo</td>
<td>6 mo</td>
<td>RT-PCR confirmed influenza A or B</td>
<td>Primary</td>
<td>112/1310 (88.7)</td>
</tr>
<tr>
<td>Rosendahl 2018<sup>h</sup></td>
<td>Finland</td>
<td>Healthy infants</td>
<td>0.0 (0.0)</td>
<td>495:492</td>
<td>CLA (IDS-ISYS)</td>
<td>81.5 (25.9)</td>
<td>0/879 (0.0)</td>
<td>117.7 (26.1)</td>
<td>492:495 (987)</td>
<td>30 µg daily</td>
<td>Placebo</td>
<td>10 µg daily</td>
<td>Parent reported infections, including ARI</td>
<td>Primary</td>
<td>897/987 (90.9)</td>
</tr>
<tr>
<td>Shizumzi 2018<sup>i</sup></td>
<td>Japan</td>
<td>Healthy adults</td>
<td>32.7 (6.5)</td>
<td>66:149</td>
<td>RIA (DiaSorin)</td>
<td>48.9 (13.5)</td>
<td>1/214 (0.5)</td>
<td>114.6 (32.7)</td>
<td>126:126 (252)</td>
<td>10 µg daily (25(OH) D<sub>3</sub> monohydrate 5 mg bolus loading dose; then 2.5 mg bolus monthly)</td>
<td>Placebo</td>
<td>4 mo</td>
<td>URI: self-reported</td>
<td>Primary</td>
<td>219/252 (86.3)</td>
</tr>
<tr>
<td>Akoa 2019<sup>j</sup></td>
<td>South Africa</td>
<td>Healthy children</td>
<td>58.0 (5.3)</td>
<td>80:260</td>
<td>LC-MS/MS, NIST</td>
<td>54.4 (16.7)</td>
<td>8/258 (3.5)</td>
<td>117.0 (28.0)</td>
<td>130:130 (260)</td>
<td>50 µg daily</td>
<td>Placebo</td>
<td>3 mo</td>
<td>ARI: self-reported cold/flu</td>
<td>Secondary</td>
<td>260/260 (100.0)</td>
</tr>
<tr>
<td>Camargo 2019<sup>k</sup></td>
<td>New Zealand</td>
<td>Older adults</td>
<td>64.4 (8.3)</td>
<td>2395:212</td>
<td>LC-MS/MS, DEQAS</td>
<td>63.4 (23.6)</td>
<td>89/5056 (1.8)</td>
<td>135.0 (39.9)</td>
<td>2558:2552 (5110)</td>
<td>5 mg bolus loading dose; then 2.5 mg bolus monthly</td>
<td>Placebo</td>
<td>3 yrs</td>
<td>ARI: self-reported cold/flu</td>
<td>Secondary</td>
<td>856/5110 (89.3)</td>
</tr>
<tr>
<td>Haug 2019<sup>l</sup></td>
<td>Denmark</td>
<td>Healthy adults</td>
<td>5.6 (1.5)</td>
<td>61:69</td>
<td>LC-MS/MS, DEQAS</td>
<td>56.8 (12.5)</td>
<td>0/118 (0.0)</td>
<td>20 µg arm: 75.8 (11.5) 10 µg arm: 61.8 (10.6)</td>
<td>43:44/43 (130)</td>
<td>20 µg / 10 µg daily</td>
<td>Placebo</td>
<td>5 mo</td>
<td>ARI: self-reported</td>
<td>Secondary</td>
<td>116/130 (90.8)</td>
</tr>
<tr>
<td>Gamma, Mongolian</td>
<td>Healthy school</td>
<td>9.4 (1.6)</td>
<td>4485:4366</td>
<td>EIA</td>
<td>29.7 (10.5)</td>
<td>2813:8851</td>
<td>77.4 (22.7)</td>
<td>4418:4433</td>
<td>0.35 mg weekly</td>
<td>Placebo</td>
<td>5 yrs</td>
<td>ARI: self-reported</td>
<td>Secondary</td>
<td>885/8851</td>
<td></td>
</tr>
<tr>
<td>Study first author, year</td>
<td>Setting</td>
<td>Participants</td>
<td>Mean age, years (s.d.)</td>
<td>Male: Female</td>
<td>25(OH)D assay, EQA scheme</td>
<td>Mean baseline 25(OH)D, nmol/L (s.d.)</td>
<td>Baseline 25(OH)D <25 nmol/L (%)</td>
<td>Mean attained 25(OH)D, intervention arm, nmol/L (s.d.)</td>
<td>Intervention: Control (total)</td>
<td>Oral dose of vitamin D3, intervention arm</td>
<td>Control</td>
<td>Trial duration</td>
<td>ARI definition</td>
<td>ARI primary or secondary outcome?</td>
<td>N contributing data / N randomised (%)</td>
</tr>
<tr>
<td>------------------------</td>
<td>---------</td>
<td>--------------</td>
<td>------------------------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>---------------------------------</td>
<td>----------------------------------</td>
<td>-----------------------------------</td>
<td>---------</td>
<td>---------------</td>
<td>----------------</td>
<td>--------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>2020*1</td>
<td>children</td>
<td></td>
<td>8.1 (1.2)</td>
<td>158:127</td>
<td>Biomerieux, DEQAS</td>
<td>58.9 (10.9)</td>
<td>680 (23.3)</td>
<td>135:150 (285)</td>
<td>25 µg daily + 500 mg calcium</td>
<td>Placebo</td>
<td>6 mo</td>
<td>URI: self-reported</td>
<td>Secondary</td>
<td>244/285 (85.6)</td>
<td></td>
</tr>
<tr>
<td>Mandlik 2020 13</td>
<td>India</td>
<td>Healthy children</td>
<td>8.1 (1.2)</td>
<td>158:127</td>
<td>CLA (LJI diagnostics)</td>
<td>50.2 (27.1)</td>
<td>109.2 (33.9)</td>
<td>395-392 (787)</td>
<td>2.5 mg bolus monthly</td>
<td>Placebo</td>
<td>2 yrs</td>
<td>URI/LRI: GP recorded</td>
<td>Secondary</td>
<td>787/787 (100.0)</td>
<td></td>
</tr>
</tbody>
</table>

[a] Sex missing for two participants randomised to intervention arm and subsequently excluded from analysis due to lack of outcome data. [b] Sex missing for one participant. [c] equivalent to 30 µg vitamin D3. 1 µg vitamin D3 = 40 international units (IU); 25(OH)D concentrations reported in ng/ml were converted to nmol/L by multiplying by 2.496. 25(OH)D, 25-hydroxyvitamin D; RIDT, rapid influenza diagnostic test; COPD, chronic obstructive pulmonary disease; D3, vitamin D3 (cholecalciferol); p.o., per os (orally); mo, month; yr, year; wk, week. ARI, acute respiratory infection; CAP, College of American Pathologists; CLA, chemiluminescent assay; DEQAS, Vitamin D External Quality Assessment Scheme; EIA, enzyme immunoassay; EQA, external quality assessment; LC-MS/MS, liquid chromatography tandem-mass spectrometry; RIA, radio-immunoassay; URI, upper respiratory infection; LRI, lower respiratory infection; ILI, influenza-like illness; RIQAS, Randox International Quality Assessment Scheme; VDSP, Vitamin D Standardisation Program of the Office of Dietary Supplements, National Institutes of Health, USA.
<table>
<thead>
<tr>
<th>Variables</th>
<th>No of trials</th>
<th>Proportion with ≥1 ARI, intervention group (%)</th>
<th>Proportion with ≥1 ARI, control group (%)</th>
<th>Odds ratio (95% CI)</th>
<th>I² %</th>
<th>P for heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall</td>
<td>34</td>
<td>8307/14155 (58.7)</td>
<td>8196/13660 (60.0)</td>
<td>0.89 (0.81 to 0.98)</td>
<td>40.0</td>
<td>0.009</td>
</tr>
<tr>
<td>Baseline 25(OH)D, nmol/L</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><25</td>
<td>19</td>
<td>1348/1798 (75.0)</td>
<td>1388/1819 (76.3)</td>
<td>0.78 (0.53 to 1.16)</td>
<td>47.2</td>
<td>0.012</td>
</tr>
<tr>
<td>25 – 49.9</td>
<td>27</td>
<td>3411/4637 (73.6)</td>
<td>3337/4491 (74.3)</td>
<td>1.03 (0.91 to 1.17)</td>
<td>4.1</td>
<td>0.40</td>
</tr>
<tr>
<td>50 – 74.9</td>
<td>28</td>
<td>1607/2761 (58.2)</td>
<td>1531/2542 (60.2)</td>
<td>0.90 (0.75 to 1.07)</td>
<td>14.1</td>
<td>0.25</td>
</tr>
<tr>
<td>≥75</td>
<td>24</td>
<td>923/1520 (60.7)</td>
<td>895/1458 (61.4)</td>
<td>0.97 (0.81 to 1.16)</td>
<td>0.0</td>
<td>0.74</td>
</tr>
<tr>
<td>Dosing frequency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily</td>
<td>18</td>
<td>1056/2134 (49.5)</td>
<td>1020/1871 (54.5)</td>
<td>0.75 (0.61 to 0.93)</td>
<td>52.5</td>
<td>0.005</td>
</tr>
<tr>
<td>Weekly</td>
<td>5</td>
<td>4357/6288 (69.3)</td>
<td>4388/6274 (69.9)</td>
<td>0.97 (0.88 to 1.06)</td>
<td>0.0</td>
<td>0.41</td>
</tr>
<tr>
<td>Monthly or less frequently</td>
<td>11</td>
<td>2894/5733 (50.5)</td>
<td>2788/5515 (50.6)</td>
<td>1.00 (0.91 to 1.09)</td>
<td>0.0</td>
<td>0.50</td>
</tr>
<tr>
<td>Daily dose equivalent, IU[a]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><400</td>
<td>2</td>
<td>482/1175 (41.0)</td>
<td>511/1133 (45.1)</td>
<td>0.65 (0.31 to 1.37)</td>
<td>86.3</td>
<td>0.007</td>
</tr>
<tr>
<td>400-1000</td>
<td>10</td>
<td>656/1236 (53.1)</td>
<td>627/1069 (58.7)</td>
<td>0.70 (0.55 to 0.89)</td>
<td>31.2</td>
<td>0.16</td>
</tr>
<tr>
<td>1001-2000</td>
<td>14</td>
<td>46937885 (59.5)</td>
<td>47127817 (60.3)</td>
<td>0.96 (0.87 to 1.06)</td>
<td>8.0</td>
<td>0.37</td>
</tr>
<tr>
<td>>2000</td>
<td>7</td>
<td>2291/3462 (66.2)</td>
<td>2250/3444 (65.3)</td>
<td>1.05 (0.84 to 1.31)</td>
<td>37.1</td>
<td>0.15</td>
</tr>
<tr>
<td>Trial duration, months</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤12</td>
<td>28</td>
<td>1852/4754 (39.0)</td>
<td>1807/4307 (42.0)</td>
<td>0.82 (0.72 to 0.94)</td>
<td>39.9</td>
<td>0.017</td>
</tr>
<tr>
<td>>12</td>
<td>6</td>
<td>64559401 (68.7)</td>
<td>63899353 (68.3)</td>
<td>1.03 (0.95 to 1.11)</td>
<td>0.0</td>
<td>0.97</td>
</tr>
</tbody>
</table>

[a] Data from one trial that included higher-dose, lower-dose and placebo arms are excluded from this sub-group analysis, since the higher-dose and lower-dose arms spanned the 1,000 IU/day cut-off, rendering it unclassifiable.
<table>
<thead>
<tr>
<th>Variables</th>
<th>No of trials</th>
<th>Proportion with ≥1 event, intervention (%)</th>
<th>Proportion with ≥1 event, control group (%)</th>
<th>Odds ratio (95% CI)</th>
<th>I²</th>
<th>P for heterogeneity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper respiratory infection</td>
<td>27</td>
<td>7600/12175 (62.4)</td>
<td>7483/11754 (63.7)</td>
<td>0.94 (0.89 to 1.02)</td>
<td>7.3</td>
<td>0.36</td>
</tr>
<tr>
<td>Lower respiratory infection</td>
<td>13</td>
<td>3245/10849 (29.9)</td>
<td>3265/10747 (30.4)</td>
<td>0.98 (0.92 to 1.05)</td>
<td>0.0</td>
<td>1.00</td>
</tr>
<tr>
<td>Emergency department</td>
<td>17</td>
<td>110979 (1.1)</td>
<td>1239707 (1.3)</td>
<td>0.88 (0.88 to 1.15)</td>
<td>0.0</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Efficacy outcomes
<table>
<thead>
<tr>
<th>event</th>
<th>observed</th>
<th>expected</th>
<th>OR [95% CI]</th>
<th>p-value</th>
<th>RR [95% CI]</th>
</tr>
</thead>
<tbody>
<tr>
<td>attendance and/or hospital admission due to ARI</td>
<td>32</td>
<td>14/13479 (0.1)</td>
<td>11/12996 (0.1)</td>
<td>1.05 (0.61 to 1.81)</td>
<td>0.0</td>
</tr>
<tr>
<td>Death due to ARI or respiratory failure</td>
<td>12</td>
<td>1967/6340 (31.0)</td>
<td>1995/6236 (32.0)</td>
<td>0.94 (0.85 to 1.04)</td>
<td>6.3</td>
</tr>
<tr>
<td>Absence from work or school due to ARI</td>
<td>10</td>
<td>378/1527 (24.7)</td>
<td>364/1044 (34.9)</td>
<td>0.91 (0.69 to 1.20)</td>
<td>35.3</td>
</tr>
<tr>
<td>Safety outcomes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Serious adverse event of any cause</td>
<td>32</td>
<td>403/11833 (3.4)</td>
<td>424/11364 (3.7)</td>
<td>0.94 (0.81 to 1.08)</td>
<td>0.0</td>
</tr>
<tr>
<td>Death due to any cause</td>
<td>33</td>
<td>117/13721 (0.9)</td>
<td>97/13231 (0.7)</td>
<td>1.16 (0.89 to 1.50)</td>
<td>0.0</td>
</tr>
<tr>
<td>Hypercalcaemia</td>
<td>20</td>
<td>28/7394 (0.4)</td>
<td>19/7019 (0.3)</td>
<td>1.28 (0.77 to 2.16)</td>
<td>0.0</td>
</tr>
<tr>
<td>Renal stones</td>
<td>19</td>
<td>79/9640 (0.8)</td>
<td>86/9238 (0.9)</td>
<td>0.91 (0.67 to 1.22)</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Figure 1: Flow chart of study selection

1,519 studies identified through database searching:
- Medline: 447
- Web of Science: 345
- Cochrane central: 601
- Embase: 72
- Clinicaltrials.gov: 53

370 duplicates removed

1,149 unique studies after duplicates removed

1109 studies ineligible (not relevant, review article, not RCTs, ARI not pre-specified as efficacy outcome, only abstract published, allocation not concealed, intervention not vitamin D or calcidiol)

40 studies with total of 30,956 participants eligible:
- 31 studies with total of 27,523 participants comparing a single vitamin D regimen vs. placebo only
- 4 studies with total of 1,274 participants including higher-dose, lower-dose and placebo arms
- 5 studies with total of 2,159 participants comparing higher- vs. lower-dose regimens of vitamin D only

Data not obtained for 1 study with 47 participants comparing vitamin D vs. placebo only

Number of participants and studies contributing primary outcome data to meta-analysis:
- 26,782/27,476 participants in 30 studies comparing a single vitamin D regimen vs. placebo only
- 994/1,274 participants in 4 studies including higher-dose, lower-dose and placebo arms
- 2,065/2,159 participants in 5 studies comparing higher- vs. lower-dose regimens of vitamin D only
Figure 2: Forest plot of placebo-controlled RCTs reporting proportion of participants experiencing 1 or more acute respiratory infection.

- This analysis includes data from the subset of ViDiFlu trial participants who were randomised to vitamin D vs. placebo control.
References

