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One Sentence Summary: Transposable element expression is an independent predictor of

immune infiltration and poor clinical outcome in cancer patients.

Abstract:

Increased immune infiltration in tumor tissue is usually associated with improved clinical
outcome, but excessive infiltration can lead to worst prognosis. The factors underlying such
immune overdrive phenotype remains unknown. Here, we investigate the contribution of
transposable element (TE) expression to immune response and clinical outcome in cancer.
Using colorectal cancer as a model, we develop a TE expression score, showing that highest
scores are predicative of immune overdrive and poor outcome independent of microsatellite
instability and tumor mutation burden. TE expression scores from cell lines treated with DNA
methyltransferase inhibitors show that TEs are directly responsible for driving excess immune
infiltration. A pan-cancer survey of TE expression further identify a subset of kidney cancer
patients with similar immune overdrive phenotype and adverse prognosis. Together, our
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findings reveal that in cancer, TE expression underlies the immune overdrive phenotype and

is an independent predictor of immune infiltration and prognosis.

Introduction:

Transposable elements (TEs) are a major component of the human genome. They are
divided into class 1 retrotransposons and class 2 DNA transposons which are further
subclassified into subclasses, superfamilies and over 1,000 subfamilies (1). As much as 45% of
the human genome is comprised of TEs, with many copies of near identical TE sequences from
each subfamily located throughout the genome (2-4). In normal somatic tissue, TEs are mainly
epigenetically silenced (5, 6), however, in cancer, TEs can become reactivated due to DNA
hypomethylation (7), resulting in the transcription of retrotransposons into RNA or direct
transposition of DNA transposons. One potential consequence of the reactivation of TEs is to
stimulate the immune system via viral mimicry (8, 9). For instance, upon the treatment of
DNA methyltransferase (DNMT) inhibitors, one type of TE, the human endogenous retrovirus
(hERV) was shown to be reactivated and was accompanied by the up-regulation of viral
defense pathways in ovarian (10) and colorectal (8) cancer cells. Several hERVs such as LTR21B,
MER57F, HERVL74-int, were shown to be positively associated with immune infiltration (e.g.
CD8 + T cells expression) in multiple cancer types (11). Recently, it has been shown that hERVs
can serve as tumor antigen signals and some specific hERVs are of prognostic value and
predictive of response of immunotherapy (9). For instance, ERV3-2 was found to be
correlated with immune checkpoint activation across 11 cancer types (12). Additionally, hERV
4700 derived epitope may function as a target by which anti-PD1 could trigger anti-tumor
immunity in kidney renal clear cell carcinoma (KIRC) (13). Apart from hERVs, other classes of

TEs could also be the potential source of immunogenic peptides from tumor cells such as long
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interspersed nuclear elements (LINE), short interspersed nuclear elements (SINE) and SINE-
VNTE-Alu (SVA) (11). Together, these results have demonstrated the critical roles of TEs in
anti-tumor immunity. Nonetheless, how TE reactivation impacts cancer progression and
clinical outcome still remains unclear.

Patients whose cancer have higher immune cell infiltration tend have better prognosis. For
instance, Immunoscore has been developed based on the density of CD3+ and cytotoxic CD8+
T cells in the tumor and the invasive margin in colorectal cancer (CRC) (14), and has been
shown to have prognostic value superior to American Joint Committee on Cancer (AJCC) stage
classification (15). Intriguingly, a recent study identified a high risk subgroup of CRC patients
with high tumor immune infiltration as indicated by high CD8A and CD274 gene expression
(16). Termed “immune overdrive” signature, these patients’ cancer included both
microsatellite instability (MSI) and stable (MSS) status, increased TGF-B activation and
overexpression of immune response and checkpoint genes. While whether such patients are
likely to benefit from immune checkpoint inhibitors therapy remain to be evaluated, the
underlying factor behind this phenotype and whether a similar immune overdrive phenotype
exists in other cancer types remains unknown.

Given the recent evidence for the role of TEs in triggering cancer immune response, in this
study, we set about investigating whether TE expression may be the underlying mechanism
of the immune overdrive phenotype observed in CRC. To do this, we quantified the expression
of over 1,000 subfamilies of TEs at the RNA level in The Cancer Genome Atlas (TCGA) CRC
cohort. We identified a nine TE expression signature that classified CRC patients into four
groups with distinctive prognosis. The group with the highest TE score was characterised by
markers of immune overdrive and had the poorest prognosis, while the upper intermediate

TE score group is characterised by moderately elevated immune marker expression had the
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best prognosis — mirroring the risk profile reported by Fakih et al (16). Significantly, our TE
score was predicative of prognosis independent of MSI status and tumour mutation burden
(TMB). To demonstrate that TE expression is directly linked to the immune overdrive
phenotype, we compared immune response and gene expression pathways in high TE score
samples using data from cell lines treated with DNA demethylating agents. Finally, a pan-
cancer analysis of our TE expression signature uncovered a similar immune overdrive
subgroup in high risk KIRC patients, validating the prognostic significance of TE expression
signature across cancer types.

Results:

Identification of TEs associated with survival and immune activation in CRC

To establish whether TEs are associated with CRC prognosis and immune activation, we first
qguantified the TE expression landscape in CRC by applying the recently developed
“REdiscoverTE” pipeline (11) on RNA sequencing data from TCGA (Fig. S1A). In brief, the
pipeline quantifies the number of reads mapping to each TE subfamily without uniquely
identifying unique instances in the genome. Our down-stream analysis was focused on 1,072
TE subfamilies which were classified into six classes including LTR (long terminal repeats), DNA,
LINE, SINE, Satellite and Retroposon (Fig. S1B). The expression pattern of these six classes is
shown in Fig. 1A, indicating that Retroposon and SINE had higher expression following by LINE
and LTR while Satellite and DNA had lowest expression (11).

To comprehensively identify prognostic TEs, we performed survival analysis on each TE in
terms of four survival endpoints, respectively, including overall survival (OS), DSS (disease
specific survival), DFI (disease-free interval) and PFI (progression-free interval) (17). There
were 372 candidate TEs that had survival difference for at least one endpoints (Fig. 1B, Table.

S1) with seven significant in all the four endpoints (Fig. S1C-G). Using a permutation test (see
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Methods), we estimated the false discover rate (FDR) to be 1.35% (Fig. S1H). Interestingly,
almost all of the hazard ratio of the candidate TEs was greater than one indicating that higher
TE expression generally contributed to worse survival (Fig. 1C). Similar analysis was performed
at family and class level, respectively. Retroposon showed significant differences in terms of
three endpoints (Fig. S1I and J). Retroposon includes six subfamilies named SVA-A to SVA-F.
Further multivariable Cox regression analysis for each of these Retroposons suggested five of
them could be independent predictors of survival for at least one endpoint except for SVA-B
(Fig. S1K-M).

Next, to identify immune associated TEs, we evaluated 29 immune indices including 17
immunologically relevant gene sets from ImmPort (18), one overall immune infiltration,
termed ImmuneScore calculated by ESTIMATE (19) and 11 immune associated genes (Fig.
S1N). Gene set variation analysis (GSVA) was performed to estimate expression scores of the
17 immune gene sets. Further correlation analysis between individual TEs and the immune
indices indicated that 14 out of the 1,072 TEs had significant positive correlation with at least
one immune indice (Spearman’s correlation > 0.4, p < 0.0001, Fig. 1D and E). The FDR the
significant immune-TE associations was estimated to be 0.7% by permutation test (Fig. S10).

To integrate the results of the prognostic and immune TE associations, we overlapped the
372 survival relevant TEs and the 14 immune positively correlated TEs. By doing so, nine TEs
were identified and used for further exploration (Fig. 1F).

Generation of CRC subtypes based on TE score and clinical outcome

Based on the nine TEs identified above, we first explored the relationship between their
expression, finding that most of them were positively correlated with each other (Fig. S2A).
As such, to generate a combined TE score, we averaged the normalized TE expression (log

counts per million mapped reads, logCPM) across the CRC samples. We applied the kaps
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algorithm (20) to the normalized TE score and identified 4 clusters based on OS (see Methods,
Fig. S2B-G). Based on these clusters, samples were classified into four risk groups termed TE
clusters from cluster 1 to cluster 4 with increasing TE score (Fig. 2A). Cluster 4 accounted for
9% (n = 51) of the total cohort while cluster 3 for 8% (n = 47), cluster 2 for 19% (n = 113) and
cluster 1 for 64% (n = 379). We found that there were significant differences among these
four clusters in terms of some molecular features (Fig. 2B-E, Fig. S2H, Table. S2). Specifically,
cluster 4 showed higher fraction of MSI samples (33%) while cluster 1 had lowest fraction
(11%) (chi-squared P = 0.0001, Fig. 2B). Cluster 4 also had more samples with CpG island
methylator phenotype (CIMP) (30%) (chi-squared P = 0.0228, Fig. 2C). We also observed some
overlaps between TE clusters and other two molecular subtypes including consensus
molecular subtype (CMS) (21) and immune subtypes (22). CMS consists of four subtypes
characterized by MSI, CIMP high and immune infiltration for CMS1, epithelial, WNT and MYC
signals activation for CMS2, metabolic dysregulation for CMS3, mesenchymal and TGF-3
signal activation for CMS4. Predominantly, high fraction of samples in cluster 4 belong to
CMS1 subtype (35%) while half of the cluster 1 were CMS2 and 40% of the cluster 2 belong to
CMS4 (chi-squared P < 0.0001, Fig. 2D). Moreover, as for immune subtypes derived from pan-
cancer analysis, cluster 4 showed higher proportion of IFN-gamma dominant (39%) and
inflammatory subtype (10%) while cluster 1 displayed highest proportion of wound healing
subtype (85%) followed by cluster 2 (69%), cluster 3 (58%) and cluster 4 (51%) (chi-squared P
< 0.0001, Fig. 2E). Lastly, as expected, there was significant survival difference among these
four clusters (log-rank P = 0.0035 for OS, P = 0.011 for DSS, P = 0.12 for DFl and P = 0.022 for
PFI, Fig. 2F-1). Generally, cluster 4 showed worse survival while cluster 3 showed the most
favorable outcomes (cluster 4 versus 3 with HR = 2.36, 95%Cl = 0.96-5.80, P = 0.05 for OS, HR

=3.99, 95%Cl =1.12-14.16, P = 0.02 for DSS and HR = 3.05, 95%Cl = 1.34-6.94, P = 0.005 for
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PFI). Notably, cluster 4 had a very poor survival rate after relapse while cluster 3 had superior
survival rate after relapse.

TE score is a prognostic and immune infiltration predictor independent of MSI and tumor
mutation burden

In CRC, it is well established that patients with tumors that are MSI or high TMB generally
have better prognosis. As TE cluster 4 are slightly enriched with MSI tumors compared with
other groups (33% versus 19%, 16% and 11% in clusters 3, 2 and 1 respectively), we sought to
determine whether TE score is an independent predictor of prognosis and immune infiltration.
To do so, we performed multivariable Cox regression on the TE clusters adjusted by clinical
features including MSI status. Cluster 4 remained an independent prognostic variable for all
the three endpoints with HR against cluster 3 of 3.98 (95%Cl: 1.09-14.57, P = 0.037) for OS,
9.52 (95%Cl: 1.18-76.54, P = 0.034) for DSS and 2.79 (95%Cl:1.07-7.31, P = 0.036) for PFI (Fig.
3A-C). Notably, MSI was not significant for any of the endpoints. Further analysis was
performed on MSI and MSS samples separately. It was found that the four clusters were well
separated especially in MSI samples (Fig. 3D and E). We also explored the correlation between
TE cluster and TMB, defined as non-silent mutation count per megabase (Mb) (23). TMB was
poorly correlated with TE score (r = 0.13, Fig. 3F) and there was no difference in terms of TMB
among TE clusters (Fig. 3G).

To test if TE cluster could independently predict immune infiltration, we used CD8A, a
maker of CD8+ T cells and a T cell-inflamed gene expression profile (GEP) (24). Firstly, we
observed strong correlations between TE score with CD8A (r = 0.43, Fig. 3H) and GEP (r=0.51,
Fig. 3l), respectively. A multinomial logistic regression analysis incorporating clinical
parameters and MSI or TMB was then performed to predict CD8A and GEP. Cluster 4 was a

significant predictor for CD8A and GEP and notably displayed the highest odds ratio (OR) of


https://doi.org/10.1101/2020.07.14.20129031
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.07.14.20129031; this version posted July 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

6.3 for CD8A (Fig. 3J) and 5.4 for GEP (Fig. 3K). Furthermore, TE score showed much higher
OR than TMB with 2.3 versus 1.3 for CD8A (Fig. 3L) and 3.0 versus 1.4 for GEP (Fig. 3M). Our
results demonstrate that TE clusters and TE score were independent predictors of immune
infiltration independent of MSI and TMB.

Immune overdrive is associated with TE score and expression

Given that the TE signature expression was associated with immune activation, we further
explored the differences of tumor immune microenvironment (TME) among TE clusters. We
first compared 28 cell fractions including 26 immune cells and two stroma cells (see Table. S3)
based on GSVA and found that cluster 4 displayed higher fractions of most of these cells
especially for T cells, macrophages and dendritic cells, while cluster 1 showed a lack of
immune infiltration (Fig. 4A). Similar results were obtained for 10 cell fractions based on the
MCPcounter method (Fig. S3A). Further, cluster 4 displayed the highest gene signatures of
immune infiltration followed by cluster 3, 2 and lowest for cluster 1 (Fig. 4B). These signatures
included T cell, lymphocyte, leukocyte infiltration signatures, hot tumor signature and tumor
associated macrophage (TAM) ratio. Cluster 4 also displayed highest expression of T helper 1
(Th-1) immune response and regulatory genes as well as MCH Il and MHC | molecules (Fig. 4B,
Fig. S3B and C). Cluster 4 also had higher IFN-y response rate but exhibited T cell exhaustion
(Fig. 4B). Most of the TCR/BCR receptor indices were also highest in cluster 4 and lowest in
cluster 1 (Fig. 4C).

Next, we investigated association of the TE clusters with genetic changes and did not found
distinctive differences among the clusters except for neo-antigens (Fig. 4D). Specifically, we
investigated associations with hotspot mutations by focusing on CRC specific drivers (25, 26).
To test if any drivers contributed to TE reactivation, we compared the differences in the

frequency of hotspot mutations between cluster 4 and other clusters. Eleven cancer genes
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had sufficient mutated samples in each group for further statistical evaluation (see Methods,
Fig. S3D). Only TP53 (29% in cluster 4 versus 17% in other three clusters) and BRAF (14% in
cluster 4 versus 2.4% in other three clusters) displayed significance (chi-square P =0.0001 and
P = 0.0378 for TP53 and BRAF respectively). As for the copy number changes showing in Fig.
S3E, there was no distinctive differences among TE clusters.

To elucidate the molecular phenotype associated with the TE clusters, we further analyzed
dysregulated pathways among TE clusters. We found that cluster 4 and 2 displayed stronger
immune evasion-associated signatures including TGF-3 response, extracellular matrix (ECM)
gene expression, VEGF target, Epithelial-mesenchymal transition (EMT) and innate anti-PD1
resistance (IPRES) signatures (Fig. 4E, Fig. S3F). By analysis of 50 MSigDB hallmark gene sets
(27) and 39 gene program and canonical drug targetable pathways (28), we found 32 out of
50 hallmark gene sets were dysregulated among TE clusters and most of them were
upregulated in cluster 4 (Fig. 4F). Similarly, 24 out of 39 drug targetable pathways were
significantly different among TE clusters indicating the potential therapy targets for individual
clusters such as ALK and PI3K pathways in cluster 4, anti-apoptosis and epidermal growth
factor (EGF) signals in cluster 3, plasma membrane signal in cluster 2 and MYC pathway in
cluster 1 (Fig. S3G).

Finally, we compared the expression of two markers including CD8A and CD274 which were
used to identify immune overdrive by Fakih et al (16). Our results demonstrated that our
cluster 4 also displayed higher expression of these two markers (Fig. S3H and 1), implying the
comparability of immune overdrive identified by TE cluster and these two markers. More
importantly, based on the classification of risk groups identified by Fakih et al (16), we found
that risk group (IV*) characterized by immune overdrive signature also displayed highest TE

score, followed by risk group 1lI* and I/1l (Fig. S3J). Together, these results above reflect that
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the immune overdrive phenotype of cluster 4 is characterized by TE reactivation, highest
immune infiltration, poorest survival and immune evasion activity (e.g. TGF-B signal), and
higher expression of immune response and checkpoint genes.

Activation of innate immune response in CRC with high TE score recapitulates TE
reactivation by DNMT inhibitors

DNMT inhibitors such as 5-aza-2’-deoxycytidine (5-aza) have been shown to result in TE
reactivation through induction of genome-wide DNA demethylation (2, 5). This in turn results
in the activation of a range of innate immune response pathways in cell lines (8, 10). To show
that TE expression is also directly responsible for triggering the activation of immune
response in the CRC patient samples, we compared immune pathway activation in 5-aza
treated cells and the CRC TE clusters. Generally, activity of hallmark gene sets was consistent
in these three 5-aza treated cell line datasets (Fig. 4F). Interestingly, we observed large
overlaps of the significant up-regulated pathways in treated groups of these three data sets
and CRC TE cluster 4 (n=21, Fig. 4G, Table. S4). Specifically, these pathways were mainly
associated with immune response such as complement, inflammatory response and IFN y and
o response signals. Besides, several oncogenic pathways were also up-regulated including
P53 pathway, TGF-B, EMT, apoptosis pathways. Furthermore, by quantifying the TE
expression in GSE80137 derived from RNA sequencing, we found that TE score were highest
in the 5-aza treated groups compared to control group (Fig. 4H).

As the 5-aza treated samples are all derived from cell lines, to further confirm that TE
reactivation signal is mainly derived from tumor cells in bulk CRC tissue rather than the TME,
we investigated TE expression in a high-depth single cell RNA sequencing (scRNA-seq) breast
cancer dataset (29). Clustering analysis based on the global TE expression profiles after

dimensionality reduction with t-Distributed Stochastic Neighbor Embedding (t-SNE) displayed

10
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that tumor and non-tumor cells formed separated clusters (Fig. S3K). Importantly, the
proportion of reads mapping to TEs was highest in tumor cells (Kruskal-Wallis test P = 0.0019,
Fig. S3L). This is consistent with previous studies that compared TE expression profiles across
healthy human tissues, finding that samples from whole blood displayed relatively lower
expression of TE compared with other solid tissues, suggesting that hematopoietic cells (e.g.
T and B cells) is contributed less to TE expression (30, 31). Together, these results suggest that
TE reactivation is likely to be the underlying mechanism of the immune overdrive phenotype
of cluster 4 and TE expression signal is mainly derived from tumor cells.
TEs trigger intracellular immune response by viral mimicry

Increasing evidence indicated that TE reactivation (e.g. hERVs) could stimulate immune
system via intracellular antiviral responses (8, 10). To elucidate a comprehensive pathway
regulation behind TE reactivation in CRC, we applied weighted correlation network analysis
(WGCNA) (32) to find module genes that were associated with TE score. WGCNA is a popular
systems biology approach aimed to not only build gene networks but also detect gene
modules associated with phenotypic trait (see Methods). Our results suggested that two of
the module genes were strongly positively correlated with TE score (r= 0.5 for greenyellow
module, r = 0.46 for brown module, Fig. 5A, Fig. S4A-G, Table. S5). There were 39 and 389
genes in greenyellow and brown module, respectively. To determine the function of these
modules, we performed GO and KEGG enrichment analysis using these genes (Fig. 5B and C).
Genes in the greenyellow module were mainly enriched in pathways associated with innate
immune pathways such as defense to virus, type | IFN response, dsRNA sensing, NOD-like,
RIG-I-like, MDA-5 and TLRs signals. Genes in brown module were more involved in adaptive
immune response such as differentiation, migration and activation of immune cells, IFN y

response, JAK-STAT and NF-kB signals.
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We then further compared the expression of some critical genes that might be involved in
the response to TE reactivation. As expected, most of these genes were highly expressed in
cluster 4 followed by cluster 3 and 2 and lowest in cluster 1 (Fig. 5D). Specifically, these
included RIG-I-like and interferon-stimulated genes (ISGs), OASL/2/3, IFNs secretion and
production process which have proofed to be associated with TE reactivation. For instance,
upon TE reactivation, the secretion and production of IFNs were increased in which IFN o and
[ indicated type | IFN response. It have been proven that type | IFN response is indicative of
the upregulation of intracellular antiviral pathways which are generally induced by dsRNA
sensing signals simulated by TE reactivation (8, 10). Similarly, some literature evidenced TE
suppressors such as APOBECs, ADAR, NOD2, MOV10, MOV10L1, CTCFL, etc were also
upregulated in cluster 4. Specifically, SVA-C and F were two Retroposons that are part of the
nine TE signature. It has been shown that CTCFL, a germline-specific transcription factor,
functions as suppressor of SVA expression by directly binding to and regulate SVA repeats
(33). Together, these results show that our TE score recapitulate the immune response known
to be induced by both endogenous transposable element and exogenous viruses.
Pan-cancer analysis identified immune overdrive phenotype in KIRC

Finally, to confirm if the TE induced immune overdrive phenotype is also present in other
cancer types, we examined TE expression in an additional 23 cancer types. We first compared
the nine TE score among cancer types. Several cancer types showed higher TE score such as
KIRC, Diffuse Large B-cell Lymphoma (DLBC) and Head and Neck squamous cell carcinoma
(HNSC) while CRC and Adrenocortical carcinoma (ACC) were generally lower (Fig. S5A, Table.
S6). By performing univariable Cox regression analysis on TE score in each cancer type, we
found that apart from CRC, another cancer type, KIRC also had significantly increased HR > 1

(HR =1.78, 95%Cl = 1.43 - 2.22, P value < 0.0001, Fig. 6A, Table. S7). Several cancers also had
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significant HR but less than one including Breast invasive carcinoma (BRCA), Cervical
squamous cell carcinoma and endocervical adenocarcinoma (CESC), HNSC, Liver
hepatocellular carcinoma (LIHC) and Ovarian serous cystadenocarcinoma (OV) (Table. S7).
We then further correlated TE score with immune infiltration based on GEP. Overall, TE score
correlated well with GEP across the cancer types (r = 0.45, Fig. S5B). Individually, the best
correlations were observed in SKCM, HNSCC and CESC followed by CRC and PRAD (Fig. 6B).

As some KIRC appear to also exhibit an immune overdrive phenotype, we carried out
further analyses as we had done for CRC. Eight of the nine TEs had similar trends of expression
across the samples except for Trigger12A (Fig. 6C). As with CRC, using the kaps algorithm, we
identified four KIRC clusters with differing prognostic outcomes (Fig. 6D-F) and enrichment of
molecular subtypes (Fig. S5C). Notably, cluster 4 had worse OS (cluster 4 versus 3 with HR =
2.21, 95%Cl = 1.29-3.77, P = 0.003, Fig. 6D), DSS (cluster 4 versus 3 with HR = 2.77, 95%CI =
1.38-5.56, P =0.0027, Fig. 6E), and poor survival rate after relapse (cluster 4 versus 3 with HR
=2.56,95%Cl =1.38-4.76, P =0.0021, Fig. 6F). Cluster 2 also had relative short OS while cluster
3 had favorable survival rate after relapse. After adjusted by clinical features, cluster 4
remained significant for all three endpoints and cluster 2 were significant for OS and PFI (Fig.
S5D-F).

Consistently, cluster 4 in KIRC also displayed highest immune infiltration and immune
evasion phenotypes (Fig. S5G-J). Similar with CRC, there were no distinctive differences for
genetic changes among these TE clusters in KIRC (Fig. S5K). Finally, most of the genes involved
in the response of TE reactivation had higher expression in cluster 4 showing similar immune
regulation patterns with CRC (Fig. S5L-R).

Discussion:
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Molecular subtyping based on genomic and transcriptomic data has facilitated improved
understanding of molecular features in cancers and has guided targeted strategies in cancer
treatment (34-36). For instance, MSI is a critical subtype in CRC which has been associated
with high immune infiltration (e.g. CD8* T cells) (37-40) and lower risk of relapse (41, 42).
Generally, cancer samples with higher immune infiltration had better survival which has been
observed in cancers including CRC (14, 22). However, an immune overdrive phenotype is also
observed in CRC characterized by high immune infiltration but poorest survival (16). Here, we
link TE expression to the immune overdrive phenotype in CRC and proposed that reactivation
and overexpression of TE might be the potential reason of this phenotype. The immune
overdrive phenotype can be reproduced directly using our TE signature. TE cluster 4 is
characterized as the immune overdrive phenotype with the highest TE score, poorest survival
but also highest immune infiltration. Importantly, a similar immune overdrive subgroup was
also present in KIRC which to our knowledge has not previously been reported. Our findings
suggest that immune overdrive is mainly contributed by TE reactivation, highlighting the
importance of TE reactivation on immune infiltration in cancers.

Nearly 50% of the human genome consists of TEs which are critical for sustaining genomic
stability, chromosomal structure and transcriptional regulation (43, 44). Generally, TEs are
strictly regulated from early embryonic development and in human differentiated somatic
cells mainly through epigenetic mechanisms such as DNA methylation and histone
modification (45, 46). TEs are highly mutagenic and normally regarded as harmful because
their activation is conflicting to the fitness of the human host (47). Compelling evidence
indicates the critical roles of reactivated TEs in cancer development and progression resulting
from the loss of TEs suppression (48-50). Generally, epigenetic regulation, especially DNA

methylation and histone modification, are the best known mechanisms of TE silencing. Indeed,
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studies have demonstrated that epigenetic alterations could lead to carcinogenesis in which
TE reactivation might be a potential secondary cause (51). The global loss of methylation can
lead to TE reactivation and is often accompanied by the hypermethylation of tumor
suppressor genes in cancers (52). For instance, the reactivation of LINE1 caused by DNA
hypomethylation has been observed in several cancer types including CRC (53), LIHC (54), and
BRCA (55). It has been shown that 5-aza treatment could stimulate innate immune response
accompanied by TE reactivation including hERVs and other class of TEs (8, 10, 11). Our analysis
based on cell line data also confirmed immune response was stimulated after 5aza treatment.
More importantly, three cell lines of GBM derived RNA sequencing obtained significant higher
TE score after treatment. Up-regulated hallmark pathways largely overlapped between 5-aza
treated cells and TE cluster 4, most of these were immune associated signals as well as
oncogenic pathways. These results suggested that the phenotype of TE cluster could be
reflected by 5-aza treatment, implying TE reactivation to be the likely cause of immune
overdrive. Our TE cluster 4 with highest TE score is comprised of a higher fraction of samples
with CIMP, a phenotype characterized by hypermethylation of promoter CpG island sites, but
importantly is also associated with genome-wide global hypomethylation (56) which may
contribute to the reactivation of TEs. Currently, few tools are available to specifically
investigate epigenetic regulation on TEs as the repetitive nature of TEs makes it difficult to
assign reads derived from next generation sequencing technology to individual TE copies,
termed multi-mapping problems (57). Bisulfite sequencing (BS-Seq) and methyl-DNA
immunoprecipitation sequencing (MeDIP-Seq) are two well-established methods to measure
DNA methylation at high throughput level (58). However, mapping these short reads from
bisulfite converted genomic DNA to TEs is still challenging. Although most older TEs with

accumulated sufficient nucleotide diversity can be uniquely identified, the insertions of
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younger TEs are often indistinguishable from corresponding source elements by using short-
read sequencing (59). Given that most of the quantification of DNA methylation in TCGA
cohorts were based on the Infinium human methylation 450K or 27K array platform, this limits
the proper analysis on the correlation between DNA methylation alterations and TE
reactivation in this study. Nevertheless, by using TCGA Illumina 450K array data, Kong et al
found that 431 out of 1,007 TEs displayed inverse correlation between TE expression and
methylation in at least one out of 10 cancer types while only 13 TEs were significant across
multiple cancer types (11). One recent pre-published paper has demonstrated it is possible
to accurately assess methylation of TEs by using long-read nanopore sequencing (59). This
new technique would facilitate our investigation of TE biology in the future. Moreover,
heterochromatin formation has also been proven to regulate TE silencing by cooperating with
DNA methylation and small RNAs (7). TE-associated nucleosomes are generally methylated at
the histone 3 lysine (H3K9) representing signals. To date, chromatin immunoprecipitation
sequencing (ChlIP-seq) is the best known to determine the chromatin landscape of TEs by
mapping reads from ChIP-seq data to consensus sequences of TEs (60). Since no ChlIP-seq data
is available for TCGA data, we could not compare TE associated chromatin pattern among our
TE clusters at tissue level.

Previous studies have drawn the landscape of TE expression across human tissues and
indicated that TE expression is much higher in solid tissues compared with in whole blood (30,
31). This is in line with our findings based on high depth scRNA-seq dataset of breast cancer
that cancer cells are the main contributor of TE expression. Thus, TE expression might reflect
cancer-cell intrinsic characteristics (3). Besides, our further analysis revealed that TE score
was generally correlated with not only the proportion of reads mapping to TEs but also TE

expression at class level in both bulk CRC and KIRC, and scRNA-seq datasets (Fig. S6A-D). This
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indicates that TE score might reflect global TE expression. Our TE cluster identified immune
overdrive phenotype in CRC and KIRC characterised by highest immune infiltration but worst
survival. As for survival difference, TE cluster 4 and 2 had shorter OS than cluster 3 and 1.
Cluster 4 had an extreme poor survival rate after relapse, while cluster 3 had superior survival
rate after relapse. The independent predictive value of cluster 4 was confirmed after adjusted
by clinical factors including MSI status, suggesting the clinical significance of TE cluster as
biomarker for prognosis. TE clusters were also separated well in MSI samples, implying that
MSI tumours might be further classified based on TE score (Fig. 3D). Although it has been
known that higher TMB normally leads immune activation, no significant difference of TMB
was observed amongst TE cluster. Importantly, we found two driver genes, TP53 and BRAF,
with enriched hotspot mutations in cluster 4 compared with other three clusters. Indeed,
studies have reported that p53 can function to restrain TEs and TP53 mutations may
potentially cause reactivation of TEs (61, 62). Hence, the enrichment of TP53 mutations in
cluster 4 is consistent with these studies. As for the enrichment of BRAF in cluster 4, the
possible reason might be the higher fraction of MSI samples in cluster 4. For CRC, although
the fraction of MSI status across TE clusters was different, no difference was observed
between cluster 4 and 3. These results implied that TE expression is likely mechanism behind
immune overdrive rather than TMB or MSI. Importantly, immunosuppressive phenotype was
observed in cluster 4 and 2 marked by high expression score of TGF-3 response, ECM genes,
VEGFA and EMT. Indeed, recent studies have demonstrated that increased TGF-3 response
signal is the primary mechanism of immune evasion and could lead to worse survival (63).
Moreover, a pan-cancer investigation demonstrated that up-regulation of 30 ECM genes was
involved with poor prognosis (64). These results to some extent explain why cluster 4 and 2

had worst overall survival.
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Innate immune system is essential for pathogen recognition and initiation of protective
immune response through the recognition of pathogen associated molecular patterns
(PAMPs) by its pattern recognition receptors (PRRs) (65). Nucleic acids including RNA and DNA
are critical PAMPs especially for viruses. We found that, upon TE reactivation, some important
PRRs of innate immune signals were up-regulated. These included TLRs, RIG-I like receptors,
NOD-like receptors, MDAS5 (IFIH1), APOBECs, etc. TLRs including TLR3, 7 and 8 are endosome
RNA sensors while other PPRs including RIG-I, MDA5, NOD-like receptors belong to cytoplasm
RNA sensors (66-68). Indeed, TE-derived RNAs are very prevalent and can form dsRNA in the
nucleus. Annealing of these hybirds is relaxed by adenosine (A)-to-inosine (I) editing through
ADAR or cytidine (C)-to-uridine (U) deamination editing through APOBEC3s (3, 69). However,
the unedited hybirds are prone to bind with RNA sensors and further stimulate downstream
immune response by viral mimicry represented by increased IFN response with higher
expression of IFN-stimulated genes (ISGs) and IFN regulatory factors such as IRF3 and IRF7.
To date, it remains unknown whether individual classes of TEs are prone to activate different
PRRs and whether this would cause distinct downstream biological response (70). In addition
to triggering of innate immune activation, some other evidence also support that TE
reactivation can stimulate immune response through other mechanisms. For instance, some
TEs, such as LTR can function as prompters or enhancers of ISGs (71). Moreover, TEs, such as
hERVs, have also been shown to provide a source of antigens in KIRC (13).

It has been suggested that CRC with MSI could benefit from immune checkpoint blockade
(ICB) therapy. Moreover, epigenetic therapy has been proven to increase tumor
immunogenicity and modulate the response to immunotherapy (8, 72). Thus, there are
several potential strategies for the treatment of patients amongst TE clusters. MSI tumors in

cluster 4 are prone to relapse, therefore, patients in this cluster might benefit from combined
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ICB and chemotherapy. Currently, some clinical trials such as ATOMIC, are ongoing with the
aim to investigate the efficiency of ICB for MSI-H CRC. Our findings indicate that patients with
highest TE score might have higher risk of recurrence and benefit from ICB. Furthermore, our
results found that activation of TGF-B, ALK, PI3K pathways were enriched in cluster 4.
Therefore, these specific pathways might be used as targets for therapy by combining with
ICB. Finally, epigenetic therapy combining with ICB might be suitable for patients in cluster 1
and 2 with relative lower expression TE. More studies and clinical trials will be needed to
confirm these strategies.

There are some limitations of our study. This is a retrospective study linking TEs with
immune overdrive using TCGA CRC cohort without independent validation. To our knowledge
there are currently no other suitable publicly available CRC RNA-seq data with large sample
size that can be used to interrogate TE expression. However, since immune overdrive in CRC
has been previously reported and we have identified a similar phenotype in KIRC, this means
that immune overdrive and its association with TE reactivation is not a cohort specific
phenomenon. Future large cohort of CRC or KIRC with comprehensive RNA sequencing and
survival information is needed to validate our findings. Although we did not observe immune
overdrive phenotype in other cancer types, it does not mean similar phenotype does not exist
in those cancers types. Some other TEs may specifically contribute to immune overdrive in
other cancer types rather than our nine TEs. Thus, more studies are needed to identify other
potential associations between immune infiltration and TE expression in other cancers.

In conclusion, our results suggest that immune overdrive phenotype is not only
characterized by high immune infiltration and poor survival, but also overexpression of TEs.
Importantly our findings suggest that TE reactivation is the potential cause of immune

overdrive in CRC and KRIC. Moreover, patients with relative lower TE expression might be

19


https://doi.org/10.1101/2020.07.14.20129031
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.07.14.20129031; this version posted July 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

suitable for strategies combining ICB with epigenetic therapy while patients in cluster 4 with

highest TE expression may need more comprehensive treatment and clinical monitoring.

Materials and Methods
TE expression quantification using REdiscoverTE pipeline

We used the REdiscoverTE pipeline to quantify TE expression based on RNA sequencing
data as described by Kong et al (11). Briefly, REdiscoverTE uses Salmon (Version, 0.8.2) to
perform quantification adjusted by GC content bias and sequence specific bias. The reference
transcriptome include RNA transcript sequences from GENCODE release 26 basic (73),
RepeatMasker element (74) and GENCODE RE-containing introns. TE and gene transcripts
were separately quantified and the output of read counts were used for further normalization.
TEs were aggregated into TE subfamily, family and class defined by the human Repeatmasker
for hg38. TEs were also classified based on their individual genomic locations with respect to
genes including exon, intron and intergenic.

TCGA RNA sequencing fasta files were obtained from NCI Genomic Commons
(https://www.cancer.gov/tcga). Reads were trimmed firstly using bbduk.sh pipeline (75) and
then quantified by REdiscoverTE. For normalization, the read counts were aggregated to gene
level for gene transcripts and subfamilies for TE, respectively. The two matrixes including gene
and TE expression were combined into one as input of edgeR (76). The normalization was
conducted using “RLE” algorithm and log2CPM was obtained with prior counts of 5. Then a
total of 1,204 TEs were used for further analysis. Additionally, the proportion of reads mapping
to TEs was calculated as the total counts mapped to TE divided by the total counts mapped

to TE and genes.
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Indeed, Kong et al has provided the normalized TE expression in pan cancer level. However,
not all the samples were included for some cancer types. Since our analysis started from CRC,
we applied REdiscoverTE pipeline only to the CRC cohort. For other cancer types, processed
data from Kong et al were used .

Search for TEs associated with survival

To select out the potential TEs associated with survival, we included four survival endpoints
for survival analysis in CRC including OS, DSS, DFI and PFl. We performed Univariable Cox
regression analysis for individual TEs in each of the four endpoints. The median expression of
each TE was used as the cutoff point to separate samples into high or low expression group.
A TE was considered as significant if the log-rank p-value was less than 0.05. To estimate the
FDR of the candidate TEs, we shuffled samples and performed survival analysis for 100 times.
TEs that were significant in at least one endpoint were used for further analysis.

Search for TEs associated with immune activation

To estimate the correlation of TEs with immune activity, we included a total of 29 immune
activation indices for analysis consisted of (i) ImmuneScore, which was measured by
ESTIMATE algorithm (19); (ii) 17 immunologically relevant signatures reflecting immune
pathways derived from ImmPort (18); (iii) mRNA expression of 11 markers representing
immune activation or checkpoint pathway up-regulation including CD8A, CD86, CD80, CTLA4,
PDCD1LG2, CD274, PDCD1, LAG3, TNFRSF14, BTLA and HAVCR2. We performed GSVA to
obtain the 17 gene signatures score(see method below). We calculate Spearman’s correlation
coefficients between individual TEs and immune sets. To estimate the FDR of the candidate
TEs, we shuffled samples and performed Spearman’s correlation analysis 100 times. TEs with
correlation coefficients > 0.4 and p-value < 0.0001 were regarded as immunogenic TEs. TEs

significantly correlated with at least one immune sets were used for further analysis.
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Generation of TE clusters

Using the nine survival and immune associated TEs, we defined subgroups with distinctive
OS differences based on kaps algorithm (20). Briefly, this algorithm estimates multi-way split
points simultaneously and finds the optimal set of cut off points for a prognostic variable (e.g.
0S). A multi-way partition is identified based on subgroup pairwise test and the best number
of subgroups is defined by a permutation test. Based on the output, Xk and X1 indicate the
overall and worst-pair test statistics. The “adj.Pr (| X1|)” represents the Bonferroni corrected
permuted p-value which can be used to select the optimal K. In this study, we input OS as
prognostic variable and found that the worst pairs of comparisons were significant with
significance level o = 0.05 when k = 2 (adjusted P = 0.001) and 4 (adjusted P = 0.04). To
comprehensively compare the survival differences among samples, we chose k = 4 and
identified four subgroups for downstream analysis.
Estimation of gene signature expression score

We included 70 gene signatures from previous publications associated with cell types in
tumour microenvironment (n = 28), immune infiltration (n = 14), immune evasion (n = 4) and
IPRES (n = 24). See Table. S3 for details of each signature. The R package GSVA was applied
to calculate most of these gene signature expression scores. GSVA is a non-parametric and
unsupervised method that can be used to evaluate gene set enrichment based on gene
expression profiles derived from microarrays or RNA-seq data (77). It can evaluate the given
pathway activity variation by transforming the gene by sample matrix into a gene set by
sample matrix. Therefore, it can assess pathway enrichment for individual cases. Importantly,
GSVA also provide a method called “ssgsea”, which can compute a gene set enrichment score
per sample as the normalized difference in empirical cumulative distribution functions of

gene expression ranks inside and outside a given gene set. Single sample GSEA (ssGSEA) was
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firstly described by Berbie et al (78). To validate the estimation of cell fractions from GSVA,
we additionally used Microenvironment Cell Population (MCP)-counter algorithm to estimate
the fraction of 10 cell type including endothelial cells, fibroblasts and another eight immune
cells populations. This method can robustly quantify the abundance of these cell types based
on transcriptomic data for each sample (79). As for the IPRES signature which consisted of 24
gene sets, we firstly calculated the expression score of each gene sets and averaged them as
the IPRES score. In terms of GEP, we referred to the previous approach (24) based on 18
inflammatory genes including CCL5, CD27, CD274, CD276, CD8A, CMKLR1, CXCL9, CXCR6, HLA-
DQA1, HLA-DRB1, HLA-E, IDO1, LAG3, NKG7, PDCD1LG2, PSMB10, STAT1 and TIGIT. The GEP
score was estimated by a weighted sum of normalized expression values of these 18 genes
adjusted by the expression of 11 housekeeping genes.
Estimation of pathway regulation

To compare the pathway regulation, we included pathways from two resources including
hall markers (n=50) (27) and gene program and canonical targetable pathways (n = 39) (28).
We calculated the 50 hallmark pathways score using GSVA. As for the 39 targetable pathways,
we directly downloaded processed gene expression signature score data from previous TCGA
pan-cancer analysis (28). The Kruskal-Wallis test was used to test the difference of these
pathways amongst TE clusters.
Somatic mutation and copy number variation analysis

To explore the genetic changes, we performed somatic mutation and copy number
variation (CNV) analysis. Specifically, we focused on hotspot mutations of a total of 95 CRC
specific driver genes (25, 26). The mutation profile for these 95 genes were downloaded from
cBioPortal (80). Only 11 driver genes that displayed at least 5 hotspot mutations in either

cluster 4 or the other clusters combined were retained for further analysis. Fisher’s exact test
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was performed to compare the differences among groups. In terms of CNV, Copy Number
GISTIC2 level 4 data was download from Broad GDAC  Firehose
(https://gdac.broadinstitute.org/). Segment file was used as input for GISTIC 2.0 from
GenePattern (81). The derived GISTIC score was used for visualization.

Cell line datasets treated with DNA methylation inhibitor

We explored the expression profiles three cell line datasets which were treated with 5-aza.
(i) GSE5816, consisted of 11 lung cancer cells, 1 breast cancer and 1 CRC cell line (82). Cells
were treated with DMSO as the control group, while low and high groups were treated with
0.1 and 1 uM 5-aza, respectively. Cells were collected after 6 days. (ii) GSE80137, consisted
of three GMB cell lines. Cells were treated with 1 uM 5-aza and collected after 3 days (83). (iii)
GSE22250, consisted of 7 breast cancer cell lines, treated with 5-aza of 1 uM and collected
after 4 days (84). The processed transcript data for these datasets were directly accessed
under individual GEO accession identifiers and used for analysis. The batch effect was
removed based on the type of cell lines in GSE80137, GSE22250 and GSE5816, respectively
using the Combat method in the sva R package.

Weighted correlation network analysis (WGCNA)

A WGCNA network was generated for CRC data using the top 5,000 genes with the highest
median absolute deviation (32). This approach firstly calculates Pearson’s correlation
coefficients for all the genes to get the correlation matrix of these genes. A soft threshold of
[ value can be determined based on a scale-free topology criterion (a § of 10 was chosen in
this study). The topological overlap metric (TOM) and dissTOM = 1-TOM are obtained from
the resulting adjacent matrix. Then hierarchical clustering is performed based on the
blockwiseModules and dynamic tree cutting functions to obtain a cluster dendrogram

representing the gene co-expression modules in which the genes are densely interconnected.
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Individual gene modules are marked using different colors while grey module indicates these
genes are not assigned into any modules. To link the association of modules to TE expression,
a module-trait association was performed between gene module and the phenotype (TE
score). The gene significance (GS) indicates the absolute value of the association between the
expression profile and phenotype while the module membership (MM) represents the
correlation between the expression profile and each module. Finally, to explore the biological
function behind TE expression, module genes from brown and greenyellow modules were
used for GO and KEGG pathway enrichment analyses as these two modules correlated well
with TE score.
Single cell RNA sequencing data processing

Raw data was downloaded under the SRA accession number “SRP066982” which consists
of 563 fastq files of single cells derived from breast cancer. Only 515 of these cells with high
guality and annotation of cell types, as indicated by the original paper was used for further
analysis (29). The REdiscoverTE pipeline was applied to these data to quantify TE expression
as with the CRC cohort.
Statistics analysis

All statistical analyses were carried out using the program R. Enumeration data were
examined by Chi-square test or Fisher’s exact test. The comparisons among multiple groups
were performed by nonparametric Kruskal-Wallis test. Survival analysis was evaluated by the
Kaplan—Meier survival curve and the Log-rank test. Differences were considered significant

with a value of P < 0.05 unless otherwise stated.

Supplementary Materials

Fig. S1. Screening of candidate TEs.
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Fig. S2. Clinical and molecular comparison among TE clusters.

Fig. S3. Comparison among TE cluster in terms of immune overdrive.

Fig. S4. Construction of co-expression module using WGCNA.

Fig. S5. Pan cancer analysis of TE score.

Fig. S6. Correlation between TE score and global TE expression.

Table. S1. Results of screening TEs associated with survival.

Table

Table

Table

Table

Table

Table

. S2. summarized clinical data of CRC.

. S3. Gene signatures used in this study.

. S4. Overlapped significant pathways among 5-aza treated datasets and TE cluster.
. S5. Two module gene list derived from WGCNA.

. S6. TE score of pan cancer.

. S7. Univariable Cox regression analysis of TE score across 24 cancer types.
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Figure 1. Identification of TEs associated with survival and immune sets in CRC. (A) Normalized TE expression pattern at TE class level including Retroposon,
SINE, LINE, LTR, Satellite and DNA. (B) Stacked plot showing the number of subfamily TEs with significant log rank p value (p < 0.05) for each of the four endpoints
including DFI, DSS, OS and PFI. TEs were annotated at class level. (C) Distribution of hazard ratios of significant TEs from (B) for each of the four endpoints. TEs
were annotated at class level. (D) Number of immune sets significantly correlated with each TE (Cor = 0.4, p < 0.0001). (E) Spearman’s correlation between candidate
TE expression (n=14) and 29 immune sets. Heatmap colors indicate the correlation coefficient. (F) Venn diagram showing 9 TEs overlapped between candidate
prognostic TEs and immunogenic TEs.
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Figure 2. Generation of TE score-based CRC clusters and comparison of molecular association. (A) Top scatter plot showed the TE score in decreasing order
from left to right. Bottom heatmap displayed the expression profiles of the 9 TEs across four TE clusters as ordered by the TE score. Each TE was annotated at family
and class level, respectively. (B-E) Stacked plots showing the fractions of molecular features across four TE clusters including MSI status (B), CIMP (C), CMS
subtypes (D) and immune subtypes (E). (F-l) Prognostic value of four TE clusters with Kaplan-Meier survival analysis for OS (n = 589) (F), DSS (n = 567) (G), DFI

(n =223) (H) and PFI (n = 589) (l). The hazard ratios (HR) and 95% confidence intervals (Cls) for pairwise comparisons in univariable analyses (log-rank test) are
displayed in each Kaplan-Meier plot. Numbers below the x-axes represent the number of patients at risk at the selected time points. The tick marks on the Kaplan-
Meier curves indicated the censored patients.
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Figure 3. Prognostic value of TE cluster and immune infiltration prediction. (A-C) Forest plots showing multivariable Cox regression analysis of TE cluster
adjusted by clinical features for OS (A), DSS (B) and PFI (C). All variables were set as categorial variable. Samples with age < 65 was set as age low group and > 65
for high group. Solid dots represent the HR of death and open-ended horizontal lines represent the 95 % confidence intervals (Cls). All p-values were calculated using
Cox proportional hazards analysis (ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001). (D-E) Prognostic value of four TE clusters with Kaplan-
Meier survival analysis in two subgroups separated by MSI status (MSI in D, MSS in E) for three endpoints, respectively. DFl was excluded because of non-
comparable sample size among TE clusters. P-value was calculated using log-rank test. Numbers below the x-axes represent the number of patients at risk at the
selected time points. The tick marks on the Kaplan-Meier curves indicate the censored patients. (F) Spearman’s correlation between normalized TE score and
non-silent mutation per Mb. (G) Violin plot comparing non-silent mutation per Mb among TE clusters (n.s.: p > 0.05). (H-l) Spearman’s correlation between normalized
TE score and CD8A expression (H) and GEP (1), respectively. (J-K) Forest plots showing the odds ratio indicating immune infiltration determined by CD8A expression
(J) and GEP (K) using multinomial logistic regression analysis adjusted by MSI status. (L-M) Forest plots showing the odds ratio indicating immune infiltration
determined by CD8A expression (L) and GEP (M) using multinomial logistic regression analysis adjusted by TMB. Solid dots represent the adjusted OR and open-
ended horizontal lines represent the 95 % confidence intervals (Cls). OR to the right of dashed line (where OR = 1) indicates higher odds of immune infiltration while
OR to the left of the dashed line indicates lower odds of immune infiltration.
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Figure 4. Exploration of immune overdrive phenotype. (A) Gene set variation analysis showing fraction of 28 cell types. (B) Gene set variation analysis
showing immune infiltration signatures. (C) TCR/BCR indexes comparison among TE clusters. (D) Genetic changes comparison among TE clusters. (E) Gene
set variation analysis showing immune evasion signatures. P-value for each variable was calculated using Kruskal-Wallis test. For each variable, the median of
normalized value in each cluster was shown. (F) Heatmap showing 50 hallmark gene sets score based on gene set variation analysis in three 5-aza treated cell
line datasets across multiple cell lines and CRC TE clusters. (G) Venn diagram showing the overlapped significant pathways among cell line datasets and bulk
CRC. (H) Comparison of TE score between treated and control groups in GSE80137.
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Figure 5. Weighted correlation network analysis (WGCNA) based on TE score. (A) WGCNA consensus network modules correlated with TE score. Each row
corresponds to a module, column to the TE score, respectively. Each cell contains the corresponding correlation coefficient and p-value. Individual gene modules
were marked using different colors. (B) GO enrichment analysis of the genes in the brown and greenyellow module, respectively. (C) KEGG pathway enrichment
analysis of the genes in the brown and greenyellow module, respectively. The size of the circle indicates the ratio of the genes mapped to each pathway. (D)
Representative expression of genes or signatures involved in immune response and RNA sensor signals including RIG-I-like pathways, APOBECs, Oligoadenylate
synthetases, RNA sensors, interferon-stimulated genes (ISGs), interferon secretion process and Toll-like receptors (TLRs). P-value for each variable was calculated
using Kruskal-Wallis test. For each variable, the median of normalized value in each cluster was shown.
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Figure 6. Pan-cancer analysis of TE score and identification overdrive phenotype in KIRC. (A) Forest plot showing the univariable Cox regression analysis of
OS on TE score across 24 cancer types. Solid dots represent the HR of death and open-ended horizontal lines represent the 95 % Cls. All p-values were calculated
using Cox proportional hazards analysis (ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***: p <= 0.001, ****: p <= 0.0001). (B) Spearman'’s correlation between TE score
and GEP across 24 cancer types. X-axis indicates p-value and y-axis indicates correlation coefficient. (C) Top scatter plot showed the distribution TE score in
decreasing order from left to right in KIRC. Bottom heatmap displayed the expression profiles of 9 TEs across four TE clusters as ordered by the TE score. Each TE
was annotated at family and class level, respectively. (D-F) Prognostic value of four TE clusters with Kaplan-Meier survival analysis in KIRC for OS (n = 494) (D),
DSS (n = 483) (E) and PFI (n = 492) (F). The hazard ratios (HR) and 95% Cls for pairwise comparisons in univariate analyses (log-rank test) are displayed in each
Kaplan-Meier plot. Numbers below the x-axes represent the number of patients at risk at the selected time points. The tick marks on the Kaplan-Meier curves indicate
the censored patients.


https://doi.org/10.1101/2020.07.14.20129031
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.07.14.20129031; this version posted July 17, 2020. The copyright holder for this preprint
(which was not certified by peer rewew) is the author/funder who has granted medRxiv a license to display the preprint in perpetuity.

Py AV P

HHs-made-avaitabte-tnder-a-CE-BY-NC4-0-nternat

“REdiscoverTE” pipeline

TE associated with survival
(OS, DSS, DFI, PFI)

significant at least
with one endpoint

‘—) clinical comparison

kaps

Cor >=0.4 at leas
with one set

TE associated with immune
(29 immune sets)

—> survival

checkpoints

gene signatures
—> immune infiltration—>» )
cell type proportion

MHC
—>» immune evasion—» TGF-beta, ECM, VEGF,EMT,IPRES

TCR/BCR
[—> genetic changes —»

TMB, MSI, CIMP
CNV
—> alterative pathways —»

SNV—> CRC drivers hotspot

hall marker (n=50)

|, gene program and

Honal liBense .

TE proportion at class level (n=1204)
LINE 14%

DNA 20%

SINE 5%

Satellite 2%
etroposon 0%

other.repeats 11%

LTR 48%

significant TEs overlapped among endpoints

targetable pathways (n=39) DFI =
84 49
WGCNA—> module ge:&:)o—B;cl::: EES o8 5 26 25 DSS
—>» TE caused changes—» S
Y o RNA sensors » 6 7 46
5-aza treated cell lines (datasets n=3) TLRs 10 4
ISGs a1
M prognostic value phenotype Oligoadenylate
‘E synthetases 36
immune correlation
D E
=
100/ MSTA-int.group == high expression =
) g 1.00 1
- == |OW expression S
5 075 = o751
Qo >
e} 2
a 0.50 1 =
g @ 0.501
s Qo
§ 0.25 S
= HR=1.83 (1.268 - 2.639) D 0.25; HRe2.19 (1343 - 3.547
o logrank P = 0.001 o =219 (1. 547)
O 0.00] %] logrank P = 0.002
: . . . . T 0.00
0 1000 . 2000 3000 4000 @ 5 1000 2000 3000 2000
Time(days) = Time(days)
>
F ¢ =
1.00 S 1.001
2 o}
= e
© ] a
_g 0.75 < 0.751
E ,—
5 0.501 QE) 0.501
£ ]
o =
g 0.251 I 0.251
L HR=2.43 (1.111 — 5.254) .5 ’ HR=1.79 (1.29 - 2.483)
2 logrank P = 0.025 a3 logrank P < 0.0001
% 0.00; 2 0.001
° 0 1000 2000 ~ 3000 4000 g 0 1000 2000 3000 4000
Time(days) o

Time(days)


https://doi.org/10.1101/2020.07.14.20129031
http://creativecommons.org/licenses/by-nc/4.0/

medRXxiv preprint doi: https://doi.org/10.1101/2020.07.14.20129031; this version posted July 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has grante

GRS AR PO R AR B RTERATY [BvgrPetuy.

H It is made available under a CC-BY-NC 4.0 |
survival screening \ DFI \ DSs \ oS \ PFI
tRNAT, | | i
teloqy | —— e 1
TcMar-Tc2 1, s 1 1
PFI TcMar 1 ——— 1 1 a
TcMarq1 1 1 |-
OS 1 SVAdI | —— | —o— | -o—
MIR {1 1 I 1
DSSH > L2 ! Fo— I-o— Fo-
£ hAT-Blackjack{! l—o— l-o— l-o-
DFI 4 v arl—e—o—— 1 1 1
° Gypsy I ——— ! Lo
012 4 8 12 ERVL-MaLR{' Lo— ! Le-
FDR percentage (%) ervidl—e 1 1 e
ERVK : : : :+
ERV1{, | | |
centr 1 I—.— i 1
J HR d tb t TE t | | | Alu ! T ! T T T T T ! T T T T T ! T T T T T
istribution TEs at class leve NS A NN A S A AN DA
DFI DSS 0S PFI Hazard ratio
1 1 1 1
SINE 1 1 I 1 K . . . .
X X X X Multivariable Cox of OS adjusted by age, gender, msi and stage
Sateliite —:o— %o— -:0— -IB— repClass Retroposon HR (95%Cl) P value
' ' l l $ ona SVA-A  162(1.10-2.38) 0.0144  +—a—s
«» Retroposon{ —#—— 1 2 1 —& 1 —o0— ’ LINE
§ 1 1 1 1 ® R SVA-B 1.32(0.91-1.93) 0.1448 +—u—
2 1 1 1 1
e LRy 7o [ [ i* ® Reoposon  quA ¢ 457 (1.07 -2.30) 0.0207  +—e—
| | | | ® satelite
LNEd —o— lo— lo— SINE SVA-D 1.67(1.13-2.48) 0.0098 —
1 1 1 1
| | | | SVA-E 1.61(1.10-2.37) 0.0152 ——t
DNA —I-.— -I-.— -I-.— 1.-
, , , , SVA-F 2.00(1.35-2.97) 0.0006 —
L A S L A 0.711.0 1.412.0 2.83
Hazard ratio
L M
Multivariable Cox of DSS adjusted by age, gender, msi and stage Multivariable Cox of PFI adjusted by age, gender, msi and stage
Retroposon HR (95%Cl) P value Retroposon HR (95%ClI) P value
SVA-A 2.40 (1.43-4.02) 0.0009 — SVA-A 1.49 (1.06 -2.09) 0.0213 ——
SVA-B 1.23 (0.76 - 1.99) 0.3893 t=———s——t SVA-B 0.98 (0.70-1.36) 0.8921 t=——m——s
SVA-C 2.10 (1.28 - 3.46) 0.0035 — SVA-C  1.31 (0.94-1.84) 0.1092 o
SVA-D 2.07 (1.25-3.45) 0.0050 — SVA-D 1.41 (1.00 - 1.99) 0.0488 ——
SVA-E 1.55 (0.95-2.53) 0.0804  =——u—t SVA-E 1.43 (1.01 -2.01) 0.0417 ——
SVA-F 2.47 (1.48-4.13) 0.0005 —_— SVA-F 1.40 (1.00 - 1.96) 0.0503 ——
| — —| | D E— E—|
1.0 20 40 071 1.0 1.41 20
N log2(Number of immune-related genes+1)
01 38 95 7 9
Immunescore.estimate 4 (0]

Antimicrobials 1

Cytokines 1

Cytokine_Receptors -
TCRsignalingPathway -
BCRSignalingPathway 4
Antigen_Processing_and_Presentation 4
NaturalKiller_Cell_Cytotoxicity 1
hemokines -
Chemokine_Receptors-
Interleukins 1
Interleukins_Receptord
TGFb_Family _Member
TNF_Family_Members_Receptors -
Interferons -
TNF_Family_Members
TGFb_Family_Member_Receptor 4
Interferon_Receptor-

HAVCR2 -

CDB8A -

PDCD1 -

CD274 -

PDCD1LG2 -

CTLA4 A

CD80+

CD86 -

BTLA 4

TNFRSF14 4

LAG3

immune set

immune screening

1

2 3 4
FDR percentage (%)


https://doi.org/10.1101/2020.07.14.20129031
http://creativecommons.org/licenses/by-nc/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2020.07.14.20129031; this version posted July 17, 2020. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC 4.0 International license .

Supplementary Figure S1. Screening of candidate TEs. (A) Schematic workflow
of this study. DSS, disease free survival; OS, overall survival; DFI, disease free
interval; PFI, progression free interval; ECM, extracellular matrix; VEGF, vascular
endothelial growth factor; EMT, epithelial-mesenchymal transition; IPRES, innate
anti-PD1 resistance signature; TMB, tumor mutation burden; CIMP, CpG island
methylator phenotype; CNV, copy number variation; SNV, single-nucleotide variant;
TLR, Toll-like receptors; ISGs, interferon-stimulated genes. (B) Pie chart showing the
fraction of 1,204 TEs at class level. (C) Venn diagram showing the overlaps of
significant candidate TEs associated with four endpoints including OS, DFI, PFI,
DSS. (D-G) Prognostic value of one representative TE (MSTA-int) with Kaplan-Meier
survival analysis for OS (D), DSS (E), DFI (F) and PFI (G). The hazard ratios (HR)
and 95% Cls for pairwise comparisons in univariable analyses (log-rank test) are
displayed in each Kaplan-Meier plot. (H) Density ridgeline plot showing FDR of
univariable Cox regression analysis for each endpoint. Vertical line indicates the
median value. (I-J) Forest plots showing univariable Cox regression analysis of TEs
for four endpoints at family (I) and class (J) level, respectively. Solid dots represent
the HR of death and open-ended horizontal lines represent the 95 % Cls. For TEs at
family level, only those families significant with at least one endpoint were shown in
(). Six main TEs at class level were shown. (K-M) Forest plots showing multivariable
Cox regression analysis of six Retroposon at three endpoints including OS (K), DSS
(L) and PFI (M). For each Retroposon at each endpoint, four clinical features were
included for multivariable Cox regression analysis including age, gender, MSI status
and AJCC stage. Solid dots represent the HR of death and open-ended horizontal
lines represent the 95% Cls. (N) Bar plot showing the number of genes in 29
immune sets. (O) Density ridgeline plot showing FDR of Spearman’s correlation
between TEs and immune sets. Vertical line indicates the median value.
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Supplementary Figure S2. Clinical and molecular comparison among TE
clusters. (A) Correlation matrix showing Spearman’s correlation coefficient among 9
TEs with each other. (B) Scatter plot of survival times (OS) against the prognostic
factor (TE score). (C-E) Kaplan-Meier survival curves of the selected groups for K =
2 (C), K=3 (D) and K =4 (E). (F) Plot of the overall p-values against K with
significance level a = 0.05. (G) Plot of the worst-pair p-values against K with
significance level a = 0.05. (H) Heatmap showing the distribution of clinical and
molecular features among four TE clusters. Each row represents one feature,
column to each sample. P-value was calculated using chi-square test.
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Supplementary Figure S3. Comparison among TE cluster in terms of immune
overdrive. (A) Cell fraction of 10 cell types estimated using MCPCounter algorithm.
P-value for each variable was calculated using Kruskal-Wallis test. For each
variable, the median of normalized value in each cluster was shown. (B) Heatmap
showing the expression profiles of Th-1 signatures compromised of 20 genes.
Samples in each column was ordered by TE score with decreasing order from left to
right. (C) Heatmap showing the expression profiles of MHC genes. Samples in each
column was ordered by TE score with decreasing order from left to right. (D)
Heatmap showing hotspot mutation profiles of 11 CRC drivers. Each row indicates
one gene, each column indicates one sample. P-value was calculated using chi-
square test by comparing between cluster 4 and three clusters combined. (E) CNV
plot showing the GISTIC score among four TE cluster. (F) Heatmap showing the
expression profiles of IPRES signatures compromised of 24 pathways. Each row
indicates one pathway, each column indicates one sample. Sample in each column
was ordered by TE score with decreasing order from left to right. (G) Gene set
variation analysis of 39 gene program and canonical targetable pathways. 24
significant pathways were shown. P-value for each variable was calculated using
Kruskal-Wallis test. For each variable, the median of normalized value in each
cluster was shown. (H) Violin plot showing the comparison of CD8A expression
amongst TE clusters. (I) Violin plot showing the comparison of CD274 expression
amongst TE clusters. (J) Violin plot showing the difference of TE score among risk
groups identified by Fakih et al (13) (****: p <= 0.0001). (K) t-SNE plot of TE
expression profiles at subfamily level for 515 single cells. (L) Boxplot showing the
proportion of reads mapping to TEs among cell types. P-value for each variable was
calculated using Kruskal-Wallis test.
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Supplementary Figure S4. Construction of co-expression module using
WGCNA. (A) Clustering dendrogram of CRC samples. One sample
(TCGA-AA-3947-01) was considered as outlier and was removed in downstream
analysis. (B-C) Soft-thresholding power selection in WGCNA. Analysis of the scale-
free fit index for individual soft-thresholding powers. Analysis of the mean
connectivity for individual soft-thresholding powers. The power = 10 was chosen
which is the lowest power for the curve that the scale-free topology fit index flat upon
reaching a high value above 0.9 with a moderate mean connectivity. (D) Clustering
dendrograms of genes included with dissimilarity based on topological overlap,
together with assigned module colors. A total of 12 modules were identified and
assigned into different colors. (E-F) Scatter plots of gene significance for TE score
versus module membership in greenyellow (E) and brown (F) module, respectively.
(G) Heatmap showing the topological overlap in WGCNA. Each row and column
represents a gene, light color indicates low topological overlap, and progressively
darker red indicates higher topological overlap. Darker squares along the diagonal
represent modules. The gene dendrogram and module assignment are shown along
the left and top. Heatmap on the right panel zooms into the brown and greenyellow
modules.
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Supplementary Figure S5. Pan cancer analysis of TE score. (A) Comparison of
TE score across 24 cancer types. (B) Spearman’s correlation between TE score and
GEP in pooled cancer samples (n = 6,554). (C) Heatmap showing the comparison of
clinical and molecular features among four TE clusters in KIRC. Each row represents
one feature, while each column represents one sample. P-value was calculated
using the chi-square test. (D-F) Forest plots showing multivariable Cox regression
analysis of TE cluster adjusted by clinical features for OS (D), DSS (E) and PFI (F) in
KIRC. All variable was set as categorial variable. Samples with age < 65 was set as
age low group and > 65 for high group. Solid dots represent the HR of death and
open-ended horizontal lines represent the 95 % Cls. All P-values were calculated
using Cox proportional hazards analysis (ns: p > 0.05, *: p <= 0.05, **: p <= 0.01, ***:
p <=0.001, ****: p <= 0.0001). (G) Gene set variation analysis showing fraction of 28
cell types in KIRC. (H) Gene set variation analysis showing immune infiltration
signatures in KIRC. (I) TCR/BCR indexes comparison among TE clusters in KIRC.
(J) Genetic changes comparison among TE clusters in KIRC. (K) Gene set variation
analysis showing immune evasion signatures in KIRC. P-value for each variable was
calculated using Kruskal-Wallis test. For each variable, the median of normalized
value in each cluster was shown. (L-R) Representative expression of genes or
signatures involved in immune response and RNA sensor signals in KIRC including
RIG-I-like pathways (L), APOBECs (M), Oligoadenylate synthetases (N), RNA
sensors (0), interferon-stimulated genes (ISGs) (P), interferon secretion process (Q)
and Toll-like receptors (TLRs) (R). P-value for each variable was calculated using
Kruskal-Wallis test. For each variable, the median of normalized value in each
cluster was shown.
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Supplementary Figure S6. Correlation between TE score and global TE
expression. (A) Spearman’s correlation between TE score and the proportion of
reads mapping to TEs in CRC. (B) Circle plot showing Spearman’s correlation
between TE score and TE expression at six main class level (DNA, LINE, LTR,
SINE, Retroposon and Satellite) in CRC. (C) Spearman’s correlation between TE
score and the proportion of reads mapping to TEs in scRNA-seq data of breast
cancer. (D) Circle plot showing Spearman’s correlation between TE score and TE
expression at six main class level (DNA, LINE, LTR, SINE, Retroposon and Satellite)
in KIRC.
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