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Abstract

We derive and validate a novel and analytic method for estimating the probability that an epidemic

has been eliminated (i.e. that no future local cases will emerge) in real time. When this probability crosses

0.95 an outbreak can be declared over with 95% confidence. Our method is easy to compute, only requires

knowledge of the incidence curve and the serial interval distribution, and evaluates the statistical lifetime

of the outbreak of interest. Using this approach, we rigorously show how the time-varying under-reporting

of infected cases will artificially inflate the inferred probability of elimination, leading to premature (false-

positive) end-of-epidemic declarations. Contrastingly, we prove that incorrectly identifying imported cases

as local will deceptively decrease this probability, resulting in delayed (false-negative) declarations. Failing

to sustain intensive surveillance during the later phases of an epidemic can therefore substantially mislead

policymakers on when it is safe to remove travel bans or relax quarantine and social distancing advisories.

World Health Organisation guidelines recommend fixed (though disease-specific) waiting times for end-

of-epidemic declarations that cannot accommodate these variations. Consequently, there is an unequivocal

need for more active and specialised metrics for reliably identifying the conclusion of an epidemic.

Author Summary: Deciding on when to declare an infectious disease epidemic over is an important and non-

trivial problem. Early declarations can mean that interventions such as lockdowns, social distancing advisories and

travel bans are relaxed prematurely, elevating the risk of additional waves of the disease. Late declarations can

unnecessarily delay the re-opening of key economic sectors, for example trade, tourism and agriculture, potentially
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resulting in significant financial and livelihood losses. Here we develop and test a novel and exact data-driven

method for optimising the timing of end-of-epidemic declarations. Our approach converts observations of infected

cases up to any given time into a prediction of the likelihood that the epidemic is over at that time. Using this

method, we quantify the reliability of end-of-epidemic declarations in real time, under ideal case surveillance,

showing that it can depend strongly on past infection numbers. We then prove that failing to compensate for

practical issues such as the time-varying under-reporting and importing of cases necessarily results in premature

and delayed declarations, respectively. These variations and biases cannot be accommodated by current worldwide

declaration guidelines. Sustained and intensive surveillance coupled with more adaptive declaration metrics are vital

if informed end-of-epidemic declarations are to be made.

Key-words: epidemic elimination; renewal processes; reproduction numbers; epidemic curves; Bayesian statistics;

infectious disease, second waves, epidemic extinction.

INTRODUCTION1

The timing of an end-of-epidemic declaration can have significant economic and public health consequences.2

Early or premature declarations can negate the benefits of prior control measures (e.g. quarantines or lockdown),3

leaving a population at an elevated risk to the resurgence of the infectious disease. The Ebola virus epidemic in4

Liberia (2014-2016), for example, featured several declarations that were followed by additional waves of infections5

[1]. Late or delayed declarations, however, can unnecessarily stifle commercial sectors such as agriculture, trade6

and tourism, leading to notable financial and livelihood losses. One of the first studies advocating the need for7

improved end-of-epidemic metrics suggested that the MERS-CoV epidemic in South Korea was declared over at8

least one week later than was necessary [2]. Balancing the health risk of a second wave of infections against the9

benefits of reopening the economy earlier is a non-trivial problem and is currently of major global concern as many10

countries prepare to meet the challenge of resurging COVID-19 caseloads.11

World Health Organisation (WHO) guidelines adopt a time-triggered (i.e. decisions are enacted after some fixed,12

deterministic time) approach to end-of-epidemic declarations, recommending that officials wait for some prescribed13

period after the last observed infected case has recovered, before adjudging the outbreak over. The most common14

waiting time, which applies to Ebola virus and MERS-CoV among others, involves twice the maximum incubation15

period of the disease [3]. While having a fixed decision time is simple and actionable, it neglects the stochastic16

variation that is inherently possible at the tail of an outbreak. Recent studies have started to question this time-17

triggered heuristic and to investigate the factors that could limit its practical reliability.18

Initial advances in this direction were made in [2], where mathematical formulae for assessing the end of an19

epidemic, in a data-driven manner, were derived. These formulae use the time-series of new cases (incidence) across20
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an epidemic together with estimates of its serial interval distribution and basic reproduction number to compute the21

probability that the outbreak is over at any moment. The serial interval distribution describes the random inter-event22

times between the onset of symptoms of an infector and infectee, while the basic reproduction number is the average23

number of secondary infections per primary infection at the start of an epidemic [4, 5]. The output of this method24

is an epidemiologically informed statistical measure of confidence in an end-of-epidemic declaration.25

This approach is important, but not perfect. It assumes that infected cases are reported without any error and26

it depends on parameters that relate to the initial growth phase of the epidemic. Moreover, to maintain simplicity,27

it adopts a mathematically conservative description of transmission, making its end-of-epidemic declaration time28

estimates likely to be late or delayed [2]. More recent studies [6, 7] have applied forward simulation to investigate29

the tail dynamics of an outbreak. These have revealed the impact of the constant under-reporting of cases [6] and30

demonstrated the sensitivity of declarations to the effective reproduction number [7], a parameter that generalises31

the basic reproduction number and that remains relevant across all phases of the epidemic. The influence of different32

routes of transmission on declarations has also been examined in [1] using the framework of [2].33

However, there is still much we do not know about the dynamics of an outbreak as it approaches its end.34

Specifically, analytic and general insight into the sensitivity of end-of-epidemic declarations to practical surveillance35

imperfections is needed. Real incidence data is corrupted by time-varying trends in under-reporting, delays in case36

notification and influenced by the interaction of imported and local cases [8, 9, 10]. Previous works have either37

assumed perfect reporting [2] or treated constant under-reporting within some simulated scenarios [6, 7]. Here38

we attempt to expose the implications of more realistic types of data corruption, particularly time-varying case39

under-reporting and importation, by developing an exact framework that provides broad and provable insights.40

Understanding how realistic surveillance patterns can bias our perception of the epidemic end is the first step to41

engineering sensible and effective countermeasures against these biases.42

We build on the renewal process transmission model from [11, 12], to derive and test a novel and exact real-time43

method for estimating the probability of elimination; defined as the probability that no future local cases will emerge44

conditioned on the past epidemic incidence. We explain this model in Fig. 1. Using this probability, we define an45

event-triggered [13, 14] declaration metric that guarantees confidence in that declaration provided the assumptions46

of the model hold. The trigger is the first time that this probability crosses a threshold e.g. we are 95% confident47

in our declaration if the threshold is 0.95. Event-triggered decision-making was essentially proposed by [2], has48

proven effective in other fields [15, 16, 17] and belies the time-triggered WHO approach, which fixes the time49

(elapsed since the last case1) but not the confidence in declaration.50

We benchmark our estimate against the true probability of elimination, i.e. the probability if the statistics and51

1Strictly, it is the time elapsed since the last case has recovered or died. However, as this additionally delay is not informative, it does not
invalidate or alter any of the results or statements in this paper and so we speak in terms of the last case time for simplicity.
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effective reproduction number of the epidemic were known precisely, and show consistency under the perfect52

conditions in [2] but with the caveat that we estimate effective reproduction numbers from the incidence curve in53

real time. We find that even the true elimination probabilities strongly depend on the specific stochastic incidence54

curve observed, confirming that time-triggered decision heuristics are unwarranted. Using our exact framework we55

prove two key results about imperfect surveillance. First, any type of time-varying under-reporting will lead to56

premature or false-positive event-triggers and hence declarations, unless explicit knowledge of the under-reporting57

scheme is available. Second, a failure to identify and account for the differences between local and imported cases58

will result in delayed or false-negative event-triggers, regardless of the dynamics of case importation.59

Many infectious disease epidemics, including the ongoing COVID-19 pandemic, are known to feature extensive60

time-varying under-reporting and repeated importations from different regions [18, 19]. As this pandemic progresses61

into a potential second wave in several countries, public health authorities will need to decide when to relax and62

reapply intervention measures such as lockdowns, social distancing policies or travel bans [20]. Our work suggests63

that intensive surveillance, both of cases and their origin, must be sustained to make informed, reliable and adaptive64

decisions about the threat posed by the virus in the waning stages of the outbreak, even if reported case numbers65

remain at zero for consecutive days. We hope that our method, which is available at https://github.com/kpzoo/66

End-of-epidemic-declarations, will aid understanding and assessment of the tail kinetics of infectious epidemics.67

I. METHODS68

Infectious disease transmission models69

We can mathematically describe the transmission of an infection within a population over time with a renewal70

process based on the Euler-Lotka equation from ecology and demography [4]. This process models communicable71

pathogen spread from a primary (infected) case to secondary ones at some time s using two key variables: the72

effective reproduction number, Rs, and the generation time distribution with probabilities {wu} for all times u.73

Here Rs defines the number of secondary cases at time s+ 1 one primary case at s infects on average, while wu is74

the probability that it takes u time units for a primary case to infect a secondary one [4]. As infection events are75

generally unobserved, we approximate the time of primary and secondary infection with the corresponding times76

of symptom onset i.e. the serial interval. This amounts to making the common assumption that the serial interval77

distribution, which can be observed, is a good approximation to the generation time distribution [2, 12].78

If Is counts the newly observed infected cases at s and a Poisson (Poiss) model is used to represent the noise79

in these observations then the renewal model captures the reproductive dynamics of infectious disease transmission80

with Is ∼ Poiss(Rs−1Λs) [5]. Here Λs :=
∑s−1

u=1 Is−uwu is the total infectiousness of the disease up to time s− 181

and summarises how previous cases contribute to upcoming cases on day s. We use Is1 := {I1, I2, . . . , Is} to82
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Fig. 1: Transmission dynamics of an infectious disease. The renewal approach to infection propagation is outlined
under a Poisson noise model in panel (a). Past, observed infected cases Is1 , which form an incidence curve, seed new
infections with probabilities proportional to wu defined by the generation time distribution of the disease, which is
approximated by the serial interval distribution. The total infectiousness Λs+1 sums the contributions of past cases
according to the set of {wu}. The effective reproduction number Rs determines how many effective infections are
passed on to the next time unit s+ 1. It is common to group Rs values over a window τ(s) to improve estimation
reliability. When all future incidence values are zero we conclude that the epidemic is over or eliminated. Panel (b)
shows how Rs acts as a reproductive parameter, controlling whether the epidemic grows or dies out. This parameter
is therefore essential to predicting the dynamics of an epidemic. Panel (c) provides a breakdown of more realistic
observation assumptions, where we might not be able to directly measure the local and complete incidence Is due
to unreported Us or imported (migrating) Ms cases. If we can only observe sampled cases, Ns, or the total number
of cases, Cs, then our epidemic predictions will be biased.

represent the incidence curve from time 1 to s. A schematic of this approach to epidemic transmission is given83

in Fig. 1. Usually we are interested in estimating the Rs numbers in real time [21, 22] from the progressing Is1 ,84

assuming that the serial interval distribution is known (i.e. derived from some other linelist data) [12].85

This effective reproduction number is important for forecasting the kinetics of the epidemic. If Rs > 1 then we86

can expect the number of infections to increase monotonically with time. However, if Rs < 1 is sustained then we87

can be confident that the epidemic is being controlled and will, eventually, be eliminated [23]. In order to enhance88

the reliability of these estimates we usually assume that the epidemic transmission properties are stable over a look-89

back window of size k defined at time s as τ(s) := {s, s−1, . . . , s−k+1} [12, 24]. We let the reproduction number90

over this window be Rτ(s) and apply a conjugate gamma (Gam) prior distribution assumption: Rτ(s) ∼ Gam (a, 1/c)91
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with a and c as shape-scale hyperparameters. This formulation, together with the use of gamma prior distributions,92

is standard in current renewal model frameworks [12, 21, 25].93

The posterior distribution of Rτ(s) given the relevant window of the past incidence curve of data i.e. Iτ(s) :=94

Iss−k+1 is also gamma distributed as follows [22]95

Rτ(s) | Iτ(s) ∼ Gam
(
a+ iτ(s),

1
c+λτ(s)

)
, (1)96

97

with grouped sums iτ(s) :=
∑

u∈τ(s) Iu and λτ(s) :=
∑

u∈τ(s) Λu. If some variable y ∼ Gam(α, β) then P(y) =98

yα−1e−
y/β/βαΓ(α) and E[y] = αβ. As a result, Eq. (1) yields the posterior mean estimate of R̂τ(s) = ατ(s)βτ(s) with99

ατ(s) := a + iτ(s), βτ(s) := 1/c+λτ(s). Eq. (1) allows us to infer the grouped or averaged effective reproduction100

number over the window τ(s), which is considered an approximation of the unknown Rs.101

We can derive the posterior predictive distribution of the next incidence value (at time s + 1) by marginalising102

over the domain of Rτ(s) as in [22]. If the space of possible predictions at s + 1 is x | Iτ(s) and NB indicates a103

negative binomial distribution then we obtain104

x | Iτ(s) ∼ NB
(
ατ(s), pτ(s) :=

Λs+1βτ(s)
1+Λs+1βτ(s)

)
. (2)105

106

Eq. (2) completely describes the uncertainty surrounding one-step-ahead incidence predictions and is causal because107

all of its terms (including Λs+1) only depend on the past observed incidence curve Is1 [22].108

If a random variable y ∼ NB(α, p) then P(y) :=
(
α+y−1

y

)
(1 − p)αpy and E[y] = pα/1−p. Hence our posterior109

mean prediction is Îs+1 = E[x | Iτ(s)] = Λs+1R̂τ(s). The current estimate of Rτ(s) influences our ability to predict110

upcoming incidence points. Thus, we expect that good estimation of the effective reproduction number is necessary111

for projecting the future behaviour of an infectious disease epidemic. In Results we rigorously extend and apply112

this insight to derive an exact method for computing the probability that an epidemic is reliably over at some time113

s i.e. that no future infections will occur from s+ 1 onwards.114

Under-reported and imported cases115

The above formulation assumes perfect case reporting and that all cases, Is1 , are local to the region being116

monitored. We now relax these assumptions. First, we consider more realistic scenarios where only some fraction117

of the local cases are reported or observed at any time. We use Ns and Us for the number of sampled and118

unreported cases at time s. We consider a general time-varying binomial (Bin) sampling model with 0 ≤ ρs ≤ 1119

as the probability that a true case is sampled at time s (hence 1 − ρs is the under-reporting probability). Then120

Ns ∼ Bin(Is, ρs). The smaller ρs is, the less representative the sampled curve N s
1 is of the true Is1 .121
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This is a standard model for under-reporting [8, 26] and implies the following statistical relationship122

Is = Ns + Us, Ns ∼ Poiss(ρsRs−1Λs). (3)123
124

Raikov’s theorem [27] states that if the sum of two independent variables is Poisson then each variable is also125

Poisson. Consequently, Us is Poisson with mean (1−ρs)Rs−1Λs. Most studies assume that ρs = ρ for all s i.e. that126

constant under-reporting occurs. The persistence of the Poisson relationship in Eq. (3) means that we can directly127

apply the forecasting and estimation results of the previous section to Ns. Practically, if we observe only N s
1 then128

unless we have independent knowledge of ρs (which can often be difficult to ascertain reliably [18, 26]) we can129

only construct an approximation to ρsΛs as Λ̃s :=
∑s−1

u=1wuNs−u with E[Λ̃(s)] = ρsΛs.130

Second, we investigate when imported or migrating cases from other regions, denoted by count Ms at time s,131

are introduced, resulting in the total number of observed cases being Cs. Within this framework we ignore the132

under-reporting of cases and assume that Is is observed to avoid confounding factors. We follow the approach of133

[9] and describe Ms as a Poisson number with some mean at time s of εs. Using Raikov’s theorem we obtain134

Cs = Is +Ms, Cs ∼ Poiss(Rs−1Λs + εs). (4)135
136

Eq. (4) models how imported cases combine with existing local ones to propagate future local infections.137

While our work does not require assumptions on εs, for ease of comparison later on we adopt the convention138

that the sum of imports and local cases drive the epidemic forward with the same reproduction number and serial139

interval [28]. Consequently, Is ∼ Poiss(Rs−1Λ̄s) with Λ̄s :=
∑s−1

u=1wuCs−u. Practically, when surveillance is poor140

(i.e. local and imported cases cannot be distinguished), it is common to assume that all observed cases are local141

and conform to the approximate model Cs ∼ Poiss(Rs−1Λ̄s) [25]. The forecasting and estimation results of the142

previous section therefore also apply under these conditions.143

In Results we examine the impact of imperfect (our null hypothesis H0) and ideal (the alternative H1) surveillance144

within the context of under-reporting and importation in turn. We treat each problem individually to isolate the145

impact of each bias. Ideal surveillance then represents the ability to know either Us or Ms (depending on the problem146

of interest) and hence account for their contributions. Imperfect surveillance refers to only having knowledge of Ns147

or Cs and basing inferences on these curves under the strong assumption that they approximate the true incidence.148

This assumption is often made in the literature [2, 12, 21] for the purposes of tractability and means Eq. (1) and149

Eq. (2) are valid. Fig. 1 summarises the relationships from Eq. (3) and Eq. (4).150
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RESULTS151

An exact method for declaring an outbreak over152

We define an epidemic to be eliminated or over [23] at time s if no future, local or indigenous infected cases153

are observed i.e. Is+1 = Is+2 = · · · = I∞ = 0. We can define the estimated probability of elimination, zs, as154

zs := P
(
∧∞j=s Ij+1 = 0 | Is1

)
, (5)155

156

with Is1 as the incidence curve (data), observed until time s. We refer to zs as an estimated probability because we157

do not have perfect knowledge of the epidemic statistics e.g. we cannot know Rs precisely. The importance of this158

distinction will become clear in the subsequent section (see Eq. (10)). However, we observe that if we could have159

this idealised knowledge then Eq. (5) would exactly define the probability of no future cases given Is1 .160

Declaring the end of an epidemic with confidence µ% translates into solving the optimal stopping time problem161

tµ = arg min
s
zs ≥ µ

100 , (6)162
163

with t95, for example, signifying the first time that we are at least 95% sure that the epidemic has ended. Note that164

zs is a function of Is1 and practically characterises our uncertainty in the outcome of the epidemic (i.e. if it is over165

or not). This uncertainty derives from the fact that a range of possible epidemics with distinct future incidences166

I∞s+1 can possess the same Is1 and Rs1 values. Some uncertainty exists even if Rs1 is known perfectly.167

Eq. (6) presents an event-triggered approach to declaring the end of an epidemic with the µ threshold serving as168

an informative trigger. Event-triggered formulations have the advantage of being robust to changes in the observed169

data [13, 14], a point visible from the dependence of zs and hence tµ on Is1 . While Eq. (6) is written in absolute170

time, we may also clock time relative to the last observed case, t0. Our waiting time until declaration is then171

∆tµ = tµ − t0, which is more useful for comparing zs values from various realisations of Is1 and for deriving172

confidence intervals. Later, we consider differences in the ∆tµ, denoted δtµ, proposed by comparable methods.173

Previous works on end-of-epidemic declarations have either approximated zs with a simpler, more conservative174

probability [2] or used simulations to estimate a quantity similar to zs that is averaged over those simulations [6]175

[7]. No study has yet (to our knowledge) included real-time estimates of Rs, within its assessment of epidemic176

elimination, despite the importance of this parameter in foretelling transmission [23]. By taking the renewal process177

approach to epidemic propagation (see Fig. 1), we explicitly embed uncertainty about Rs estimates to obtain an178

analytic and insightful expression for the probability that the outbreak is over given past observed cases (Eq. (5)).179

We derive this by inferring Rs within a sequential Bayesian framework from Is1 , using a moving window of180

length k time units. We denote this estimate Rτ(s) with window τ(s) spanning Iss−k+1 [12, 22]. Our main result is181

summarised as a theorem below (see Methods for further details and notation). Fig. 2 illustrates how our computed182
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zs probability varies across the lifetime of an example incidence curve, thus providing a real-time, causal and183

dynamically updating view of our confidence in its end.184

Fig. 2: Elimination probabilities across the lifetime of an epidemic. We simulate a single incidence curve, Is
(blue, case counts on left y-axis), under the serial interval distribution for Ebola virus [29] and a true Rs profile
that step changes from 2 to 0.5 at s = 100 days. We compute the true and estimated elimination probabilities,
z∗s and zs, conditional on all cases observed up to time s in grey and red respectively (right y-axis). The circle
(black) indicates when the outbreak can be declared over with 95% confidence. Observe how zs and z∗s respond
to the low Is at the beginning of the epidemic before remaining 0 until we get to the tail of the outbreak, where a
couple fluctuations occur due to some final cases. An estimate of the WHO declaration time, tWHO [3], which is
mostly insensitive to past case profiles is in dark blue. The central question in this study is how few cases need to
be observed in the recent past before we can be confident that the epidemic has been eliminated.

Theorem 1. If the posterior distribution of the grouped effective reproduction number, Rτ(s), given the incidence185

curve Is1 has form Gam
(
ατ(s), βτ(s)

)
then the estimated probability that this epidemic has been eliminated at time186

s is zs =
∏∞
j=s

(
1 + Îj+1

ατ(j)

)−ατ(j)
with Îj+1 = Λj+1R̂τ(j) and R̂τ(j) = ατ(j)βτ(j) as the mean posterior incidence187

prediction and effective reproduction number estimate at time j, respectively.188

We outline the development of this theorem. First, we decompose Eq. (5) into sequentially predictive terms as:189

zs = P (Is+1 = 0 | Is1)
∏∞
j=s+1 P

(
Ij+1 = 0 | Ij1

)
. (7)190

191

For simplicity, we rewrite Eq. (7) as zs = q0
∏∞
j=1 qj . The factor qj conditions on Is+j1 , which includes all the192

epidemic data, Is1 and the sequence of assumed zeros beyond that i.e. Is+js+1 = 0 for j ≥ 1. This sequence is treated193

as pseudo-data. Observe that q0 is simply a one-step-ahead prediction of 0 from the available incidence curve.194

We solve Eq. (7) by making use of known renewal model results derived in [12, 22, 24] and outlined in Methods.195

The renewal transmission model allows us to estimate the effective reproduction number Rs and hence compute196

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2020. ; https://doi.org/10.1101/2020.07.13.20152082doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20152082
http://creativecommons.org/licenses/by-nc-nd/4.0/


10

zs in real time (see Fig. 1). This estimate at time s, Rτ(s), uses the look-back window τ(s) of k time units (e.g.197

days). The posterior over Rτ(s) is shape-scale gamma distributed as Gam
(
ατ(s), βτ(s)

)
with ατ(s) := a + iτ(s)198

and βτ(s) := 1
c+λτ(s)

(see Eq. (1)). Here (a, c) are hyperparameters of a gamma prior distribution placed on Rτ(s)199

and iτ(s) and λτ(s) are grouped sums of the incidence Iu and total infectiousness Λu for u ∈ τ(s). The total200

infectiousness describes the cumulative impact of past cases and is defined in Methods.201

Under this formulation, the posterior predictive distribution of the incidence at s+ 1 is negative binomially dis-202

tributed (NB) (see Eq. (2)). The probability of Is+1 being zero from this distribution gives q0 = (1+Λs+1βτ(s))
−ατ(s)203

by substitution. The next term, q1, is computed similarly because we condition on Is+1 = 0 as pseudo-data (i.e.204

the sequential terms in Eq. (7)) and update Λs+2, βτ(s+1) and ατ(s+1) with this zero. Iterating for all terms yields205

zs =
∏∞
j=s(1 + Λj+1βτ(j))

−ατ(j) , (8)206
207

which is an exact expression for zs. As a string of zero incidence values accumulates with time Λj+1 → 0 and208

hence qj → 1. Consequently, only a finite number of terms in Eq. (8) need to be computed and the initial ones are209

the most important for evaluating zs.210

The posterior mean estimate of Rτ(s) is R̂τ(s) = E[Rτ(s) | Is1 ] = E[Rτ(s) | Iτ(s)] = ατ(s)βτ(s) with Iτ(s) as the211

incidence values in the τ(s) window (the remaining Is−k1 are assumed uninformative [12]). This follows from the212

Gam distribution and implies a posterior mean incidence prediction Îs+1 = E[Is+1 | Iτ(s)] = Λs+1R̂τ(s) from the213

NB posterior predictive distribution [22]. Substituting these into Eq. (8) gives:214

zs =
∏∞
j=s

(
1 +

Îj+1 = Λj+1R̂τ(j)
ατ(j)

)−ατ(j)
. (9)215

216

This completes the derivation. Theorem 1, when combined with Eq. (6), provides a new, analytic and event-217

triggered approach to adjudging when an outbreak has ended. Eq. (9) provides direct and quantifiable insight into218

what controls the elimination of an epidemic and can be easily computed and updated in real time.219

Understanding the probability of elimination220

We dissect and verify the implications of Theorem 1, which provides an exact formula for estimating the221

probability, zs, that any infectious disease epidemic has been eliminated by time s. Eq. (8) formalises the expectation222

that any decrease in case incidence increases zs. This results because ∂qj/∂ατ(j) > 0 for all ατ(j), meaning that qj223

is monotonically increasing in ατ(j) and hence iτ(j). As zs is a product of qj and every qj is positive then zs is224

also monotonically increasing in all incidence window sums. Consequently, any process that reduces historical or225

cumulative incidence surely increases the probability of elimination.226

The main variable controlling zs is the average predicted incidence Îj+1 (see Eq. (9)). Reducing either Λj+1227
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or R̂τ(j) therefore increases our confidence in a declaration made after a fixed time (the time-triggered approach)228

or, decreases the time of declaration for a fixed confidence (the event-triggered approach). This highlights the229

two known ways that sustained interventions, e.g. vaccination, social-distancing or quarantine, can help drive an230

epidemic to extinction. First, such measures explicitly limit Rj and hence R̂τ(j), leading to an expected rise in zs231

[23]. Second, they may also implicitly reduce the duration of the serial interval, resulting in smaller Λj+1 [30].232

Accordingly, under- or over-estimating R̂τ(j) or using incorrectly smaller or larger Λj+1 sums induces spurious233

fluctuations in zs and promotes premature or delayed declarations, respectively. This insight underlies later analyses,234

which investigate how surveillance imperfections can modulate the declaration time. Because we cannot reduce either235

reproduction numbers or serial intervals to arbitrary values of interest (e.g. certain diseases have intrinsically wider236

serial interval distributions) some epidemics will be innately harder to control and eliminate [31].237

Interestingly, while zs is controlled by mean estimates and predictions, it appears insensitive to the uncertainty238

around those means, despite its derivation from the posterior distributions of Eq. (1) and Eq. (2). This follows from239

the inherent data shortage at the tail of an epidemic (there are necessarily many zero incidence points), which likely240

precludes the inference of higher order statistics [24]. Moreover, when the incidence is small stochastic fluctuations241

can dominate epidemic dynamics. Consequently, to maximise the reliability of our zs estimates we recommend242

using long windows (large k) for R̂τ(j). Short windows are more sensitive to recent fluctuations and are more prone243

to yielding uninformative estimates when many zero incidence points occur [22].244

Last, we validate the correctness of our estimated zs by considering a hypothetical setting in which the true245

reproduction number, {Rs : s ≥ 0}, is known without error. This allows us to derive the true (but unknowable)246

probability of elimination z∗s at time s, given complete information of the epidemic statistics. Under the renewal247

model P (Is+1 = 0 | Is1) = e−RsΛs+1 . Repeating this process sequentially for future zero infected cases (akin to248

describing the likelihood of that observation series) gives:249

z∗s =
∏∞
j=s e

−Λj+1Rj = e−
∑∞
j=s Λj+1Rj . (10)250

251

Clearly z∗s depends on the serial interval distribution and past incidence (through Λj+1) and the sequence of252

reproduction numbers Rj , which are the main factors underlying the transmission of the infectious disease.253

The true declaration time with confidence µ% is then t∗µ = arg mins z
∗
s ≥

µ
100 (see Eq. (6)). We can verify254

our approach to end-of-epidemic declarations if we can prove that tµ sensibly converges to t∗µ. At the limit of255

ατ(j) → iτ(j) → ∞, the estimated R̂τ(j) tends to the true Rj because under those conditions the posterior mean256

estimate coincides with the grouped maximum likelihood estimate of Rj , which is unbiased. Applying this limit to257

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2020. ; https://doi.org/10.1101/2020.07.13.20152082doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20152082
http://creativecommons.org/licenses/by-nc-nd/4.0/


12

qj in Eq. (9) we find that as R̂τ(j) → Rj :258

lim
iτ(j)→∞

(
1 +

Λj+1R̂τ(j)
iτ(j)

)−iτ(j)
= e−Λj+1Rj , (11)259

260

implying that zs → z∗s , and consequently that tµ → t∗µ.261

This asymptotic consistency suggests that zs and tµ indeed approximate the true but unknowable probability262

of elimination z∗s and declaration time t∗µ. Other end-of-epidemic metrics in the literature have not shown such263

theoretical justification. We illustrate zs and z∗s across a simulated and representative incidence curve in Fig. 2.264

There we find a good correspondence between these probabilities and observe their sensitivity to changes in incidence265

at the beginning and end of this outbreak. Note that zs and z∗s (and hence tµ and t∗µ) depend on Is1 and are more266

precisely written as zs | Is1 and z∗s | Is1 . The WHO declaration time, tWHO, which is included for reference, is mostly267

independent of the shape of Is1 [3], explaining why it provides no confidence guarantee.268

Practical comparisons and verification269

We have only validated our approach at an asymptotic limit that is not realistic for elimination i.e. the proof that270

zs and tµ converge to their true counterparts requires infinite incidence. While this proof suggests our formulation271

is mathematically correct, it does not indicate its performance on actual elimination problems. We now verify out272

method more practically. We first use simulated data to show that ∆tµ = tµ − t0 and ∆t∗µ = t∗µ − t0 correspond273

well over several end-of-epidemic problems, where we are far from this limit, and with t0 as the time of the last274

observed case. We characterise this via histograms of the error δtµ = ∆tµ −∆t∗µ = tµ − t∗µ, which are given in275

panels (a)-(c) of Fig. 3. There we present 95% (µ = 0.95) declaration time errors over 1000 simulated epidemics276

with serial interval distributions from the COVID-19 pandemic [32], MERS-CoV in Saudi Arabia [25], Marburg277

virus in Angola [29] and Measles in Germany [12].278

We investigate true Rs profiles that describe (a) rapidly controlled, (b) partially recovering and (c) exponentially279

rising and falling transmission (boom-bust). For each profile we use the renewal model to simulate conditionally280

independent Is1 curves and compute zs | Is1 and z∗s | Is1 using Eq. (9) and Eq. (10). The declaration time errors then281

follow as above and from Eq. (6). Panel (d) plots these Rs profiles (top) and the serial interval distributions for282

each disease (bottom). Generally, we find that tµ is a good approximation to t∗µ, with some error naturally emerging283

from the difficulty of estimating Rs in conditions where data are necessarily scarce [33]. Our prior distribution284

over Rτ(j) is Gam(1, 5), which is both uninformative and has a large mean of 5.285

This error, δt95, is more prominent for diseases featuring wide serial interval distributions, which are fundamen-286

tally more difficult to estimate, due to their dependence on much earlier epidemic dynamics. These simulations287

also demonstrate why time-triggered approaches can be misleading; they do not adapt to the shape of the specific288
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(a) (b)

(c) (d)

Fig. 3: True and estimated declaration times. We simulate 1000 independent incidence curves under various
renewal models and provide normalised histograms of the difference between the estimated and true declaration
times i.e. δt95 = ∆t95 −∆t∗95 = t95 − t∗95. Panels (a)-(c) present these histograms for various infectious diseases
under Rs profiles indicating (a) rapidly controlled, (b) recovering and (c) rising and then decaying transmission
(boom-bust). The top row of (d) plots the true Rs curves in absolute time, while the bottom row of (d) provides the
serial interval distributions of the infectious diseases examined. Generally we find that t95 ≈ t∗95 to a reasonable
level. The quality of this approximation depends on the variability of the serial interval distribution (see S1 Fig)
and the degree of fluctuation in transmission when incidence is small.
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instance of Is1 observed. An example of this is given in S1 Fig, where we find that the WHO declaration time289

∆tWHO = tWHO − t0 is delayed relative to both the true (∆t∗95) and estimated ∆t95 event-triggered declaration290

times, for Ebola virus disease, which has a wide serial interval. Depending on the disease of interest ∆tWHO291

could also be premature. The large variability among the possible ∆t∗95 provides a clear visualisation of the non-292

deterministic nature of epidemic end-points and the need for adaptive metrics with stated confidence.293

At present, we have only verified our method under ideal reporting conditions. Practical surveillance is investigated294

in later sections. We now compare our method to the event-triggered one of [2], which assumes ideal surveillance295

and models epidemic transmission with a NB branching process that is strictly only valid at the beginning of the296

outbreak. This notably differs from our renewal model approach and the elimination probabilities derived in [2]297

are a mathematically conservative approximation to our zs. We compare both methods on MERS-CoV data from298

South Korea, examined in [2], by running them on a set of bootstrapped incidence curves generated from fitting299

the model of [2] to that data and compute 95% confidence intervals on the probability of elimination.300

Fig. 4 presents our main results with time relative to the last observed case in each bootstrap (∆s) and blue and301

red curves as the outputs of [2] and our method. While the median 95% relative declaration times (black circles) are302

close, the approach of [2] yields a delayed declaration. This effect is reduced if we use the lower bound of the zs303

curves instead of their median. When zs is small (which is not practical for defining end-of-epidemic declarations)304

we find that the methods are less consistent. The WHO declaration time (dark blue) for this epidemic is over one305

week later than the time proposed by both methods [2]. While our method shows wider uncertainty, the similarity306

of these intervals suggests that our formulation is robust to moderate model mismatch.307

Under-reporting leads to premature declarations308

Having verified zs and hence tµ as reliable and sensible means of assessing the conclusion of an epidemic,309

we investigate the effect of model mismatch due to imperfect surveillance. We start with case under-reporting,310

which affects all infectious disease outbreaks to some degree. While previous works have drawn attention to how311

constant under-reporting can bias end-of-epidemic declarations [6] [7], no analytic results are available. Moreover,312

the impact of time-varying under-reporting, which models a wide range of more realistic surveillance scenarios313

[8, 34], remains unstudied. We provide mathematical background for our under-reporting models in Methods.314

Fig. 1 illustrates how under-reporting results in only a portion, Ns, of the total local cases, Is being sampled315

or observed. We use Us = Is −Ns ≥ 0 to denote the unreported cases. We investigate two hypotheses or models316

about the incidence curve, a null one, H0, where we assume that the observed cases N s
1 represent all the infected317

individuals and an alternative hypothesis H1, in which the unreported cases U s1 (and hence Is1) are known and318
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Fig. 4: Empirical method comparison. We compare 95% confidence intervals on the elimination probability from
[2] (blue) and zs from Eq. (9) (red) on bootstrapped epidemics based on the MERS-CoV data from South Korea
used in [2]. Black circles define the median relative declaration time (∆t95) when each method deems the epidemic
to be over with 95% confidence (the event trigger). Time is relative to the last observed case in each epidemic
bootstrap and the WHO (time-triggered) declaration time (∆tWHO) is in dark blue.

distinguished. The estimated elimination probabilities under both surveillance models are:319

H0 : zs |N s
1 = P

(
∧∞j=sNj+1 = 0 |N s

1

)
and

H1 : zs | Is1 = P
(
∧∞j=s Ij+1 = 0 |N s

1 ∧ U s1
)
.

(12)320

Here H0 portrays a naive interpretation of the observed (Ns) incidence, while H1 indicates ideal surveillance.321

Intensive and targeted population testing should interpolate betweenH0 andH1. We compute zs |N s
1 by constructing322

the sampled total infectiousness Λ̃s :=
∑s−1

u=1wuNs−u and then applying Theorem 1. This follows because Ns can323

also be described by a Poisson renewal model (see Methods for details). We therefore find that zs |N s
1 =

∏∞
j=s(1+324

Λ̃j+1β̃τ(j))
−a−nτ(j) with nτ(j) and λ̃τ(j) as the sums of Nu and Λ̃u within the τ(j) window and β̃τ(j) = 1/c+λ̃τ(j).325

We get zs | Is1 directly from Eq. (8) since this is the perfect surveillance case.326

Since Ns ≤ Is for all s then λτ(j) ≥ λ̃τ(j) for all j, assuming that the same serial interval distribution applies.327

As a result, βτ(j) ≤ β̃τ(j), which means that zs |N s
1 ≥

∏∞
j=s(1 + Λ̃j+1βτ(j))

−a−nτ(j) := φ. From Eq. (8) we can328

rewrite zs | Is1 =
∏∞
j=s(1 + Λj+1βτ(j))

−a−nτ(j)−uτ(j) with uτ(j) = iτ(j) − nτ(j) as the total number of unreported329

cases in the window τ(j). We examine the ratio of zs |N s
1 to zs | Is1 , which is at least as large as φ/(zs | Is1 ). If330

this ratio is above 1 then the elimination probability is being inflated by imperfect surveillance. We find that331

φ/(zs | Is1 ) =
∏∞
j=s(1 + Λj+1βτ(j))

uτ(j)
(

1+Λj+1βτ(j)
1+Λ̃j+1βτ(j)

)a+nτ(j)
. Since Λj ≥ Λ̃j at every j (historical numbers of cases332
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are fewer) and the remaining term is always ≥ 1 we do find this inflation and consequently333

zs |N s
1 ≥ zs | Is1 =⇒ tµ |H0 ≤ tµ |H1. (13)334

335

At no point have we assumed any form for the under-reporting fraction, denoted ρs at time s (see Methods). Our336

derivation only depends on under-reporting causing smaller (absolute) historical incidence.337

Thus any under-reporting, whether constant (i.e. all ρs are the same) or time-varying will engender premature338

or false-positive end-of-epidemic declarations provided Ns is randomly sampled from Is (so Theorem 1 holds; see339

Eq. (3)). We highlight this principle by examining a random sampling scheme using empirical SARS 2003 data340

from Hong Kong [12]. We binomially sample the SARS incidence with random probability ρs ∼ Beta(a, b). We341

set b = 40 and compute a so that the mean sampling fraction E[ρs] = fρ takes some desired (fixed) value. We342

investigate various fρ and show that premature declarations are guaranteed in (a) and (b) of Fig. 5. The impact of343

ρs is especially large when under-reporting leads to early but false sequences of 0 cases, which is additional to the344

bias from Eq. (13). We present results in absolute time to showcase this effect.345

Importation results in late declarations346

The influence of imported cases on end-of-epidemic declarations, to our knowledge, has not been investigated347

in the literature. Repeated importations or migrations of infected cases are a common means of seeding and re-348

seeding local infectious epidemics. Failing to ascertain which cases are local or imported can significantly change349

our perception of transmission [9]. We assume that Is is the total count of local cases in our region of interest but350

that at time s there are also Ms imported cases that have migrated from neighbouring regions. The total number351

of infected cases observed is Cs = Is + Ms as displayed in Fig. 1. We provide mathematical background on352

how importations are included within the renewal framework in Methods. We consider two hypotheses about our353

observed incidence data that reflect real epidemic scenarios.354

Under the null hypothesis, H0, we assume that all cases are local and so we cannot disaggregate the components355

of Cs. The alternative, H1, assumes perfect surveillance. Imported cases are distinguished from local ones under356

H1 and their differing impact considered. The relevant elimination probabilities for each model are357

H0 : zs |Cs1 = P
(
∧∞j=sCj+1 = 0 |Cs1

)
and

H1 : zs | Is1 = P
(
∧∞j=s Ij+1 = 0 | Is1 ∧M s

1

)
.

(14)358

Since H0 deems all cases local, it models Cs as a renewal process with total infectiousness Λ̄s :=
∑s−1

u=1Cs−uws.359

Thus we use Theorem 1 to obtain the jth factor of zs |Cs1 as qj |Cs1 = (1+Λ̄j+1β̄τ(j))
−a−cτ(j) with β̄τ(j) = 1/c+λ̄τ(j).360

Here cτ(j) and λ̄τ(j) are sums of Cu and Λ̄u over window τ(j).361
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(a) (b)

(c) (d)

Fig. 5: Case under-reporting and importation lead to premature and delayed declarations respectively. In (a)
and (b) we binomially sample an empirical SARS 2003 incidence curve from Hong Kong with reporting probabilities
drawn from a beta distribution with mean fρ. In (a) we plot the elimination probability zs when surveillance is
ideal i.e. there is no underreporting (red) versus when the under-reporting is unknown (blue). The difference in the
95% declaration times, denoted δt95, from these curves is in (b). As fρ increases we are more likely to declare too
early. In (c) and (d) we consider an empirical MERS-CoV 2014-5 incidence curve from Saudi Arabia with local
and imported cases. We increase the mean fraction of imported cases to fε by adding Poisson imports with mean ε
and in (c) compute zs with (red) and without (blue) accounting for the difference between imports and local cases.
The change in t95 is given in (d). As ε and hence fε increase later declarations become more likely. We repeat our
sampling or importation procedure 1000 times to obtain confidence intervals in (a)–(d). As fε → 0 or fρ → 1 we
attain the ideal surveillance scenarios of no unreported or imported cases.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2020. ; https://doi.org/10.1101/2020.07.13.20152082doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.13.20152082
http://creativecommons.org/licenses/by-nc-nd/4.0/


18

Under H1 the imported cases are distinguished but all cases still contribute to ongoing local transmission [9, 28].362

Consequently, Is still adheres to a renewal transmission process and Theorem 1 yields the jth factor of zs | Is1 as363

qj | Is1 = (1 + Λ̄j+1β̄τ(j))
−a−iτ(j) . We compare qj | Is1 with qj |Cs1 directly to easily prove that364

zs |Cs1 ≤ zs | Is1 =⇒ tµ |H0 ≥ tµ |H1. (15)365
366

Not accounting for migrations shrinks the elimination probability leading to false-negative or unnecessarily late367

declarations. This result makes no assumption on the dynamics for importation other than it possesses Poisson368

noise (so Theorem 1 is valid for Cs) and so holds quite generally (see Methods for further details).369

We illustrate this phenomenon using empirical MERS-CoV data from Saudi Arabia [25] in (c) and (d) of Fig. 5.370

Here repeated importations occur as zoonotic camel to human transmissions. We show the increasing effect of371

importation by adding further (artificial) imports via a Poisson noise variable with mean ε (see Eq. (4)). The mean372

fraction of imported to total cases across the incidence curve is then fε. In Fig. 5 we see that larger ε promotes373

increasingly later declaration times. In Fig. 5 we do not add any imports beyond the time of the last local case.374

If imports do come after this case, and seed no further local infections, which is likely for epidemics with large375

heterogeneity, then the t0 assumed under H0 will be later, and further exacerbate the bias from importation.376

DISCUSSION377

Understanding and predicting the temporal dynamics of infectious disease transmission in real time is crucial378

to controlling existing epidemics and to thwarting future resurgences of those outbreaks, once controlled [21]. To379

achieve this understanding it is necessary to characterise and study the infectious disease throughout its lifetime.380

While many works have focussed on the growth, peak and controlled phases of epidemics (see Fig. 2), relatively381

less research has examined how the tail of the outbreak shapes the kinetics of its elimination. For example, while382

much is known about how the basic and effective reproduction numbers influence the growth rate, peak size and383

controllability of an epidemic [4, 35], the relationship between these numbers and the waiting time to epidemic384

elimination or extinction is still largely unexplored.385

However, this relationship has important implications for public health policy. Knowing when to relax non-386

pharmaceutical interventions, such as social distancing or lockdowns, can be essential to effectively managing and387

mitigating the financial and social disruption caused by an outbreak as well as to safeguarding populations from the388

risk of future waves of the disease [1, 2]. The ongoing COVID-19 pandemic for instance, which in some countries389

such as New Zealand entered a prolonged period of near-elimination before resurgence occurred [33], provides a390

current and important example where this question might soon become urgent.391

Existing WHO guidance on deciding when an outbreak can be safely declared over takes a time-triggered392

approach. This means a fixed waiting time from the last observed case, usually based on the incubation period393
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of the disease, is adopted [3]. While this approach is easy to follow, it does not change informatively between394

outbreaks of the same disease, even if the patterns of transmission are very different and cannot provide a measure395

of the reliability of this suggested declaration time. The few existing studies that have investigated this waiting-time396

problem [2, 6, 7] have all converged to what is known as an event-triggered solution in control theory [13].397

Event-triggered decision-making has been shown to be more effective than acting at deterministic or fixed times398

for a range of problems including several involving the optimising of waiting or stopping times [14, 15, 16, 17].399

Moreover, because it directly couples decision making to observables of interest (in our case the incidence curve),400

it can better adapt or respond to changes in dynamics. Here we have attempted to build upon these realisations401

to better characterise the relationship between epidemic transmission and elimination. Specifically, we focussed on402

computing the probability at time s, zs, that the total future incidence of the epidemic is zero.403

This probability is directly responsible for determining how quickly an epidemic will end. In fact, if an outbreak404

is defined as surviving if it can propagate at least 1 future infection then 1−zs is precisely its survival function and is405

therefore rigorously linked to the future risk of cases. By taking a renewal process approach, we were able to derive406

an analytic and real-time measure of zs that explicitly depends on up-to-date estimates of the effective reproduction407

number (see Eq. (9)). This result formed the main theorem of this paper and provided a clear and easily-computed408

link between epidemic transmission and elimination. To our knowledge, no previous work has directly obtained409

zs. Specifically, [2] computed a simpler and more conservative quantity while [6] and [7] approximated something410

similar via simulation, and so cannot provide real-time formulae. The event-trigger for declaring an outbreak over411

with µ% confidence is then the first time that zs crosses a threshold of µ
100 .412

To validate the correctness of our approach we considered several comparisons. We proved mathematically that413

our formulae recover the true elimination probability and event trigger given perfect knowledge of the epidemic. This414

provided theoretical justification for our approach (Eq. (11)). We verified practical performance by benchmarking415

our method against the known (true) declaration times from simulated outbreaks of several infectious diseases416

(Fig. 3) and on empirical data by directly comparing to [2] (Fig. 4). We found that our method generated sensible417

and reasonably accurate estimates, given the fundamental difficulties of inferring Rs at low incidence. Integrating418

our method with newly developing approaches that improve on Rs estimates in these low data conditions [33],419

should further enhance performance and forms part of our future work.420

Fig. 3, Fig. 4 and S1 Fig also explained why time-triggered methods, such as the existing WHO guidelines, can be421

unreliable or deceptive. Replicate epidemics driven by the same time-series of reproduction numbers can engender422

significantly different relative declaration times ∆t95. This variability exists even if Rs is known perfectly (i.e. when423

we have ∆t∗95). As no single, fixed time can reasonably approximate this distribution, time-triggered approaches are424

necessarily performance limited. Moreover, we can never guarantee the confidence in such a declaration because425
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zs and z∗s also vary considerably for epidemics of the same disease even under identical transmission dynamics.426

These issues will only worsen with the additional noise deriving from non-ideal surveillance.427

Exploring non-ideal surveillance noise and rigorously assessing its impact on the tail dynamics of epidemics428

was the main motivation for developing our method. Consequently, we investigated two prevalent and potentially429

dominant sources of noise in surveillance – unreported and imported cases [9, 26]. While both [6] and [7] looked430

at the effect of constant under-reporting on declarations, general insight into the more realistic time-varying case is431

lacking. Further, the influence of importation on the epidemic tail has, to our knowledge, not yet been examined.432

By adapting zs to various surveillance hypotheses we proved two key results and developed a flexible framework433

for incorporating and analysing the influence of other related noise sources.434

First, we showed that any type of random under-reporting will precipitate early declarations, which worsen as435

the fraction of unreported cases increases (Eq. (13)). Second, we found that any random importation process will436

lead to late declarations that become more delayed as the fraction of imports increase (Eq. (15)). Moreover, under-437

reporting and importation processes can respectively, cause falsely early and late starts (i.e. t0 in our notation) to438

the sequence of zero incidence days that are used to determine declaration times, thus exacerbating the bias from439

each noise source. We illustrated the biases of both unreported and imported cases using empirical data (Fig. 5),440

clarifying how the epidemic tail is sensitive to these imperfections in the collection or reporting of incidence data.441

The theoretical framework we employed to reveal these biases can also help generate insight into other noise442

sources and surveillance hypotheses. It provides a scheme for investigating case misidentification, asymptomatic443

transmission and reporting delays, among others. The first occurs when cases of a co-circulating diseases are444

misattributed to the disease of interest due to overlapping symptoms and is common among influenza-like illnesses445

[8]. The disease of interest is then effectively over-reported, which may be modelled as a false importation process446

with Ms as the over-reported cases in Eq. (4), but past Ms counts do not contribute to Is (and so are not in its447

total infectiousness term). It then follows that declaration times will be delayed.448

Asymptomatic transmission and reporting delays are effectively types of under-reporting. In the first, the cases449

observed at any time represent only the symptomatic fraction of actual infections. Consequently, a formulation450

similar to Eq. (3) applies, with variations depending on whether the asymptomatic proportion has the same or a451

different serial interval distribution [36]. The result is that end-of-epidemic declarations that do not account for452

asymptomatic transmission will be early. Reporting delays act as time-varying under-reporting fractions, which453

especially degrade the more recent case days [10]. While the model required is more involved than Eq. (3), since454

the declaration times largely depend on cumulative case counts, they are also likely to be premature.455

While our method presents a clean framework for estimating the lifetime of an epidemic and investigating456

surveillance noise sources, it has several limitations. It commonly assumes that the serial interval distribution is457
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known [12]. However, if surveillance is poor and changes to the serial interval (e.g. contractions due to interventions458

[30]) are not measured or included in computing zs then declaration times might be biased. Moreover, we neglect459

transmission heterogeneity, are necessarily hindered by the difficulty of estimating reproduction numbers at low460

incidence and do not consider interactions among noise sources. While these factors could limit the accuracy of our461

predicted declaration times, many can be accommodated as future extensions. We can incorporate heterogeneity462

by using negative binomial renewal models [1], improve on low incidence estimates by capitalising on specialised463

methods [33] and extend the models in Fig. 1 to examine mixed noise types.464

A key contribution of this work has been clarifying and highlighting how realistic imperfections in the collection465

or reporting of incidence data can significantly influence and bias the tail dynamics of an epidemic. Heightened466

surveillance should therefore be sustained even in periods of negligible incidence. Intensive testing and tracing467

is especially essential as it provides a means of measuring and compensating for case under-reporting, which we468

found to be among the strongest sources of bias. Maintaining good quality screening and geodata is also important469

since having accurate case origins can prevent misidentification, which is a main cause of unknown or unrecognised470

imports. These sentiments echo many issues currently being faced across the COVID-19 pandemic [19, 37].471

Real-time assessments of epidemic dynamics are crucial for understanding and aptly responding to unfolding472

epidemics [21]. We hope that the analytic approach developed here will serve as a useful tool for gaining ongoing473

insight into the tail dynamics of an outbreak, motivate the adoption of more event-triggered decision making and474

provide clear impetus for improving and sustaining surveillance across all phases of an epidemic. Our method475

is available at https://github.com/kpzoo/End-of-epidemic-declarations. Our future work aims to develop this tool476

from its current form as a passive means of understanding and uncovering biases to an approach that can actively477

infuse additional data streams (e.g. case ascertainment ratios) to compensate for these biases in end-of-epidemic478

declarations.479

ACKNOWLEDGMENTS480

KVP and CAD acknowledge joint centre funding from the UK Medical Research Council and Department for481

International Development under grant reference MR/R015600/1. RNT thanks Christ Church (Oxford) for funding482

via a Junior Research Fellowship. CAD thanks the UK National Institute for Health Research Health Protection483

Research Unit (NIHR HPRU) in Modelling Methodology at Imperial College London in partnership with Public484

Health England (PHE) for funding (grant HPRU-2012–10080). The funders had no role in study design, data485

collection and analysis, decision to publish, or preparation of the manuscript.486

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2020. ; https://doi.org/10.1101/2020.07.13.20152082doi: medRxiv preprint 

https://github.com/kpzoo/End-of-epidemic-declarations
https://doi.org/10.1101/2020.07.13.20152082
http://creativecommons.org/licenses/by-nc-nd/4.0/


22

AUTHOR CONTRIBUTIONS487

Conceptualization: KVP and RNT. Formal analysis, investigation, methodology, project administration, software,488

visualisation and writing (original draft preparation): KVP. Validation: KVP, RJ, RNT and CAD. Writing (review489

and editing): KVP, RNT, RJ and CAD.490

REFERENCES491

1. Lee H, Nishiura H. Sexual transmission and the probability of an end of the Ebola virus disease epidemic. J Theor Biol. 2019;471:1–12.492

2. Nishiura H, Miyamatsu Y, Mizumoto K. Objective determination of end of MERS outbreak, South Korea. Emerg Infect Dis. 2016;22:146–8.493

3. WHO. WHO recommended criteria for declaring the end of the Ebola virus disease outbreak; 2020. Available from: https://www.who.int/who-documents-detail/494

who-recommended-criteria-for-declaring-the-end-of-the-ebola-virus-disease-outbreak.495

4. Wallinga J, Lipsitch M. How generation intervals shape the relationship between growth rates and reproductive numbers. Proc R Soc B. 2007;274:599–604.496

5. Fraser C. Estimating Individual and Household Reproduction Numbers in an Emerging Epidemic. PLOS One. 2007;8:e758.497

6. Thompson R, Morgan O, Jalave K. Rigorous surveillance is necessary for high confidence in end-of-outbreak declarations for Ebola and other infectious diseases. Phil Trans R498

Soc B. 2019;374:20180431.499

7. Djaafara B, Imai N, Hamblion E, et al. A quantitative framework to define the end of an outbreak: application to Ebola Virus Disease. medRxiv. 2020;(20024042).500

8. White L, Pagano M. Reporting errors in infectious disease outbreaks, with an application to Pandemic Influenza A/H1N1. Epidemiol Perspec Innov. 2010;7(12).501

9. Churcher T, Cohen J, Ntshalintshali N, et al. Measuring the path toward malaria elimination. Science. 2014;344(6189):1230–32.502

10. Yan P, Chowell G. Quantitative Methods for Investigating Infectious Disease Outbreaks. vol. 70 of Texts in Applied Mathematics. Cham, Switzerland: Springer; 2019.503

11. Fraser C, Cummings D, Klinkenberg D, et al. Influenza Transmission in Households During the 1918 Pandemic. Am J Epidemiol. 2011;174(5):505–14.504

12. Cori A, Ferguson N, Fraser C, et al. A New Framework and Software to Estimate Time-Varying Reproduction Numbers During Epidemics. Am J Epidemiol. 2013;178(9):1505–12.505

13. Astrom K, Bernhardsson B. Comparison of periodic and event based sampling for first order systems. Proc IFAC World Conf. 1999:301–6.506

14. Parag K. On signalling and estimation limits for molecular birth-processes. J Theor Biol. 2019;480:262–73.507

15. Rabi M, Moustakides G, Baras J. Adaptive Sampling for Linear State Estimation. SIAM Journal of Control and Optimization. 2012;50(2):672–702.508

16. Parag K, Vinnicombe G. Point Process Analysis of Noise in Early Invertebrate Vision. PLOS Comput Biol. 2017;13(10):e1005687.509

17. Lemmon M. Event-Triggered Feedback in Control, Estimation, and Optimization. vol. 406 of Networked Control Systems. London: Springer; 2010. p. 293–358.510

18. Bhatia S, Cori A, Parag K, et al.. Short-term forecasts of COVID-19 deaths in multiple countries.; 2020. Available from: https://mrc-ide.github.io/covid19-short-term-forecasts.511

19. Pybus O, Rambaut A, du Plessis L, Zarebski A, et al.. Preliminary analysis of SARS-CoV-2 importation & establishment of UK transmission lineages; 2020. Available from:512

https://virological.org/t/preliminary-analysis-of-sars-cov-2-importation-establishment-of-uk-transmission-lineages [cited 13 June 2020].513

20. Thompson R, Hollingsworth D, Isham V, et al. Key questions for modelling COVID-19 exit strategies. Proc R Soc B. 2020;287(1932):20201405.514

21. Cauchemez S, Boelle P, Thomas G, et al. Estimating in Real Time the Efficacy of Measures to Control Emerging Communicable Diseases. Am J Epidemiol. 2006;164(6):591–7.515

22. Parag K, Donnelly C. Using information theory to optimise epidemic models for real-time prediction and estimation. PLOS Comput Biol. 2020;16(7):e1007990.516

23. De Serres G, Gay N, Farrington P. Epidemiology of Transmissible Diseases after Elimination. Am J Epidemiol. 2000;151(11).517

24. Parag K, Donnelly C. Adaptive Estimation for Epidemic Renewal and Phylogenetic Skyline Models. Syst Biol. 2020;(syaa035).518

25. Thompson R, Stockwin J, van Gaalen R, et al. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics. 2019;29:100356.519

26. Azmon A, Faes C, Hens N. On the estimation of the reproduction number based on misreported epidemic data. Stats Med. 2014;33:1176–92.520

27. Raikov D. On the decomposition of Poisson laws. Dokl Acad Sci URSS. 1937;14:9–11.521

28. Roberts M, Nishiura H. Early Estimation of the Reproduction Number in the Presence of Imported Cases: Pandemic Influenza H1N1- 2009 in New Zealand. PLOS One.522

2011;6(5):e17835.523

29. Van Kerkhove M, Bento A, Mills H, et al. A review of epidemiological parameters from Ebola outbreaks to inform early public health decision-making. Sci Data. 2015;2:150019.524

30. Ali S, Wang L, Lau E, et al. Serial interval of SARS-CoV-2 was shortened over time by nonpharmaceutical interventions. Science. 2020;369(6507):1106–9.525

31. White L, Pagano M. A likelihood-based method for real-time estimation of the serial interval and reproductive number of an epidemic. Stats Med. 2008;27:2999–3016.526

32. Ferguson N, Laydon D, Nedjati-Gilani G, et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID- 19 mortality and healthcare demand. Imperial College527

London; 2020.528

33. Parag K. Improved estimation of time-varying reproduction numbers at low case incidence and between epidemic waves. medRxiv. 2020;2020.09.14.20194589.529

34. Parag K, du Plessis L, Pybus O. Jointly inferring the dynamics of population size and sampling intensity from molecular sequences. Mol Biol Evol. 2020;37(8):2414–29.530

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted October 10, 2020. ; https://doi.org/10.1101/2020.07.13.20152082doi: medRxiv preprint 

https://www.who.int/who-documents-detail/who-recommended-criteria-for-declaring-the-end-of-the-ebola-virus-disease-outbreak
https://www.who.int/who-documents-detail/who-recommended-criteria-for-declaring-the-end-of-the-ebola-virus-disease-outbreak
https://www.who.int/who-documents-detail/who-recommended-criteria-for-declaring-the-end-of-the-ebola-virus-disease-outbreak
https://mrc-ide.github.io/covid19-short-term-forecasts
https://virological.org/t/preliminary-analysis-of-sars-cov-2-importation-establishment-of-uk-transmission-lineages
https://doi.org/10.1101/2020.07.13.20152082
http://creativecommons.org/licenses/by-nc-nd/4.0/


23

35. Brauer F, van den Driessche P, Wu J, editors. Mathematical Epidemiology. Lecture Notes in Mathematics. Berlin, Germany: Springer-Verlag; 2008.531

36. Park S, Cornforth D, Dushoff J, et al. The time scale of asymptomatic transmission affects estimates of epidemic potential in the COVID-19 outbreak. Epidemics. 2020;31:100392.532

37. Li R, Pei S, Chen B, et al. Substantial undocumented infection facilitates the rapid dissemination of novel coronavirus (SARS-CoV-2). Science. 2020;368(6490):489–93.533

SUPPORTING INFORMATION534

Fig. S1: Event and time-triggered declarations. We compare 95% event-triggered declaration times to the WHO
time-triggered equivalent for Ebola virus disease over 1000 simulated epidemics. Left panels show the true (∆t∗95)
and estimated (∆t95) declaration times (based on Eq. (10) and Eq. (9)) relative to the time of the last observed case.
The significant variability in both, which reflects the different shapes of possible epidemic curves with the same
reproduction number profile (Rs) indicates why time-triggered approaches such as the WHO one [3] (∆tWHO,
which is based on 42 days plus the time to recovery) can be insufficient. The error between the true and estimated
times (δt95) and the serial interval and reproduction number profile used are shown in the right panels.
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