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The United States (US) has not been spared in the ongoing pandemic of novel coronavirus disease
1,2

. 5 

COVID-19, caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), continues to 6 

cause death and disease in all 50 states, as well as significant economic damage wrought by the non-7 

pharmaceutical interventions (NPI) adopted in attempts to control transmission
3
. We use a 8 

deterministic, Susceptible, Exposed, Infectious, Recovered (SEIR) compartmental framework
4,5

 to 9 

model possible trajectories of SARS-CoV-2 infections and the impact of NPI
6
 at the state level. Model 10 

performance was tested against reported deaths from 01 February to 04 July 2020. Using this SEIR 11 

model and projections of critical driving covariates (pneumonia seasonality, mobility, testing rates, 12 

and mask use per capita), we assessed some possible futures of the COVID-19 pandemic from 05 July 13 

through 31 December 2020. We explored future scenarios that included feasible assumptions about 14 

NPIs including social distancing mandates (SDMs) and levels of mask use. The range of infection, 15 

death, and hospital demand outcomes revealed by these scenarios show that action taken during the 16 

summer of 2020 will have profound public health impacts through to the year end. Encouragingly, we 17 

find that an emphasis on universal mask use may be sufficient to ameliorate the worst effects of 18 

epidemic resurgences in many states. Masks may save as many as 102,795 (55,898–183,374) lives, 19 

when compared to a plausible reference scenario in December. In addition, widespread mask use may 20 

markedly reduce the need for more socially and economically deleterious SDMs.  21 
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 2 

The zoonotic origin of the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
7
 in 22 

Wuhan, China
8
, and the global spread of the coronavirus disease (COVID-19)

2,9
 promises to be the 23 

defining global health event of the twenty-first century. This pandemic has already resulted in extreme 24 

societal, economic, and political disruption across the world and in the United States (US)
3,10

. The 25 

establishment of SARS-CoV-2 and its rapid spread in the US has been dramatic
11

. Since the first case in 26 

the US was identified on 20 January 2020
12

 (first death on 06 February 2020
13

), SARS-CoV-2 has spread 27 

to every state and resulted in more than 15.7 million cases and 127,868 deaths as of 4 July 2020
14–16

. 28 

There remains no approved vaccine for the prevention of SARS-CoV-2 infection and few 29 

pharmaceutical options for the treatment of the COVID-19 disease
17,18

. The most optimistic 30 

commentators do not predict the availability of new vaccines or therapeutics before 2021
19

. Non-31 

pharmaceutical interventions (NPI) are, therefore, the only available policy levers to reduce 32 

transmission
20

. Several such NPI have been put in place across the US in response to the epidemic (Fig. 33 

1), including the dampening of transmission through the wearing of face masks and social distancing 34 

mandates (SDM) aimed at reducing contacts through school closures, restrictions of gatherings, stay at 35 

home orders, and the partial or full closure of non-essential businesses. Increased testing and isolation 36 

of infected individuals will also have had an impact
6
. These NPI are credited with a reduction in disease 37 

transmission
21,22

, along with a host of other hypotheses on environmental, behavioral, and social 38 

determinants of the course of the epidemic at the state level. 39 

In the US, decisions to impose SDM or require mask use are generally made at the state level by 40 

government officials. These executives need to balance net losses from the societal turmoil, economic 41 

damage, and indirect effects on health caused by NPI with the direct benefits to human health of 42 

controlling the epidemic, all within a complex political environment. Control has usually been defined as 43 

the restriction of infections to below a specified level at which health services are not overwhelmed by 44 

demand and the loss of human health and life is minimized
23

. 45 
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In the first stages of the SARS-CoV-2 outbreak in the US, states sequentially enacted increasingly 46 

restrictive SDMs meant to reduce transmission (by reducing human-to-human contact)
1
 at the same 47 

time as there was conflicting advice on the use of masks by the general public
24

. At that early stage, 48 

relatively simple statistical models of future risk were sufficient to capture the general patterns of 49 

transmission
25

. As different behavioral responses to SDM began to emerge, and more importantly, as 50 

some states began to remove SDM (Fig. 1), a modeling approach that directly quantifies transmission 51 

and could be used to explore these developing scenarios was necessary
25

. As states variously remove 52 

and reinstate SDM (Fig. 1) or begin to issue mandatory mask use orders
26

 amid resurgences of COVID-53 

19
27

, there is an urgent need for evidence-based assessments of the likely impact of the NPI options 54 

available to decision-makers. 55 

There is now a growing consensus that face masks, whether cloth or medical-grade, can 56 

considerably reduce the transmission of respiratory viruses like SARS-CoV2, thereby limiting spread of 57 

COVID-19
28–30

. While medical-grade masks may provide enhanced protection, cloth face coverings 58 

(homemade or manufactured), have been found to be comparably effective in non-medical settings
28

, as 59 

well as being simple, widely accessible, and available commonly at relatively low cost. We updated a 60 

recently published review
28

 to generate a novel meta-analysis (Supplementary Information section 3.4) 61 

of both peer-reviewed studies and pre-prints to assess mask effectiveness at preventing respiratory viral 62 

infections in humans
31

. This analysis suggested a reduction in infection (from all respiratory viruses) for 63 

mask-wearers by one-third (Relative Risk = 0.65 (0.47-0.92)) relative to controls. This is suggestive of a 64 

considerable population health benefit to mask wearing that may be particularly effective in the US, 65 

where currently only 41.1% of Americans have reported always wearing a mask in public 66 

(Supplementary Information section 3.4)
32

. 67 

Here we provide a state-level descriptive epidemiological analysis of the introduction of SARS-68 

CoV-2 infection across the US, from the first recorded case, through to 04 July 2020. We use these 69 
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observations to learn about epidemic progression and thereby model the first wave of transmission 70 

using a deterministic Susceptible, Exposed, Infectious, Recovered (SEIR) compartmental framework
4,5

. 71 

This observed, process-based understanding of how NPI affect epidemiological processes is then used to 72 

make inferences about the future trajectory of COVID-19 and how different combinations of existing NPI 73 

might affect this course. Three SEIR-driven scenarios, along with covariates that inform them, were then 74 

projected until 31 December 2020 (see methods). We use these scenarios as a sequence of experiments 75 

to describe a range of model outputs including ���������� (the change over time in the average number 76 

of secondary cases per infectious case in a population where not everyone is susceptible
4,5,33

), infections, 77 

deaths, and hospital demand outcomes which might be expected from plausible subsets of the policy 78 

options applied in the summer and fall of 2020 (see methods, Supplementary Information section 6.1 for 79 

more rationale on scenario construction and considerations). 80 

Briefly, we forecast the expected outcomes if states continue to remove SDMs at the current 81 

pace (“mandates easing”), with resulting increases in population mobility and number of contacts. This 82 

is an alternative scenario to the more probable situation, where states are expected to respond to an 83 

impending health crisis by re-imposing some SDMs. In that plausible reference scenario, we model the 84 

future progress of the pandemic assuming that states would move to once again shut down social 85 

interaction and economic activity at a threshold for the daily death rate; when 8 daily deaths per million 86 

population is reached – the 90
th

 percentile of the observed distribution of when states previously 87 

implemented SDM (Fig. 1, Supplementary Information section 3) – we assume reinstatement of SDM for 88 

six weeks. In addition, newly available data on mask efficacy enabled the exploration of a third, 89 

“universal mask” scenario to investigate the potential population-level benefits of increased mask use in 90 

addition to a threshold-driven reinstatement of SDM. In this scenario, “universal” was defined as 95% of 91 

people wearing masks in public, based on the current highest rate of mask use globally (in Singapore), 92 
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during the COVID-19 pandemic to date (Supplementary Information section 3.4). All scenarios presume 93 

an increase in mobility associated with the opening of schools across the country. 94 

Observed COVID-19 trends 95 

The COVID-19 epidemic has progressed unevenly across states. Since the first death was recorded in the 96 

US in early February 2020, cumulative through 04 July 2020, 127,868 deaths from COVID-19 have been 97 

reported in the US (Fig. 2); a quarter of those (24.5%) occurred in New York alone. Washington and 98 

California issued the first sets of state-level mandates on 11 March that prohibited gatherings of 250 99 

people or more in certain counties, and by 23 March, all 50 states initiated some combination of SDM 100 

(Fig. 1). The highest levels of daily deaths at the state level between February and June of 2020 occurred 101 

in New York, New Jersey, and Massachusetts at 935.3, 330.2, and 168.1 deaths per day (Fig. 3, Extended 102 

Data Fig. 1). At the end of June, the highest level of daily deaths was in California at 73.5 deaths per day. 103 

A critical policy need at this stage of the modeling was the forecasting of hospital demand in the US in 104 

the states with the worst effective transmission rates (Hawaii, South Carolina, and Florida; Fig. 4). The 105 

highest peak demand was observed as 5969 hospital ICU beds in New York on April 8 and 3073 ICU beds 106 

in New Jersey on April 19; health care capacity was exceeded in 11 states (New York, New Jersey, 107 

Connecticut, Massachusetts, Michigan, Maryland, Louisiana, Pennsylvania, Rhode Island, Delaware, 108 

District of Columbia) (Extended Data Figs 2,3). Demand had receded to within capacity levels across the 109 

US by the end of May. 110 

Predicted COVID-19 trends 111 

Under a scenario where states continue with planned removal of SDMs (“mandates easing”), our model 112 

projects that cumulative total deaths across the US could reach 430,494 (288,046–649,582) by 31 113 

December 2020 (Fig. 2, Table 1). At the state level, contributions to that death toll would not be evenly 114 

distributed across the US. Greater than 60% of the deaths projected between July and December 2020 115 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.12.20151191doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.12.20151191
http://creativecommons.org/licenses/by/4.0/


 6 

in this scenario would occur across just five states: California, Florida, Texas, Massachusetts, and 116 

Virginia; the highest cumulative death rates (per 100,000) between July and December 2020 are 117 

projected to occur in Massachusetts (465.0 (302.4–659.9) deaths per 100,000)), Florida (272.4 (117.3–118 

551.0) deaths per 100,000), Virginia (214.9 (78.4–468.8) deaths per 100,000), and New Jersey (207.2 119 

(191.5-235.0) deaths per 100,000) (Extended Data Fig. 4, Table 1). By 03 November 2020 – when many 120 

Americans may need to queue in public for national elections – a total of four states are predicted to 121 

exceed a threshold of daily deaths of 8 deaths per million (Fig. 3), and a total of 41 states would have an 122 

����������  greater than one (Fig. 4), presenting a possible increased risk of spread if preventive 123 

measures are not taken at that time. By 31 December 2020, a total of 24 states are predicted to exceed 124 

that threshold and 47 states would reach an ����������  of greater than one before the end of the year 125 

(Table 1; Fig. 4). This scenario results in an estimated total of 67,485,279 (41,003,799–101,794,827) 126 

infections across the United States by the end of year (Extended Data Fig. 5). The highest infection levels 127 

in states relative to their population are estimated to occur in Massachusetts (58.0% (39.9–74.9%) 128 

infected), Virginia (37.5% (13.8–68.0%) infected), and Washington (37.1% (15.0–67.0%) infected) 129 

(Extended Data Fig. 6). Further results for hospital resource use needs are presented in Extended Data 130 

Figs 2,3 and forecast infections under this scenario are presented in Extended Data Figs 7,8. 131 

When we model the future course of the epidemic assuming that states will move to once again 132 

shut down social interaction and economic activity when daily deaths reach a threshold of 8 deaths per 133 

million (the plausible “reference” scenario), the projected cumulative death toll across the US is forecast 134 

to be lower than under the “mandates easing” scenario, with 294,565 (233,885–398,397) deaths by 31 135 

December 2020 (Fig. 2). Thus, across the 24 states that are projected to exceed 8 deaths per million 136 

under the “mandates easing” scenario by the end of 2020 (Table 1), the re-imposition of SDM could save 137 

135,929 (49,669–278,666) lives. This scenario results in 30,336,701 (12,044,797–55,506,392) fewer 138 

estimated infections across the United States by the end of year (Extended Data Fig. 5) compared to the 139 
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“mandates easing” scenario, with the highest rates of infections estimated to occur in New Jersey 140 

(24.9% (21.8–30.8%) infected), Massachusetts (21.2% (18.0–27.8%) infected), and Louisiana (19.4% 141 

(12.6–33.8%) infected) (Extended Data Fig. 6). As with the previous scenario, even with the re-142 

imposition of SDM when daily deaths exceed 8 per million population, 47 states would reach an 143 

����������  greater than one before the end of the year (Fig. 4, Table 1). Further results for hospital 144 

resource use needs are presented in Extended Data Figs 2,3 and forecast infections under this scenario 145 

are presented in Extended Data Figs 7,8. 146 

The scenario where the population of each state was assumed to adopt and maintain the 147 

maximum observed level of mask use observed globally (see methods) – in addition to states re-148 

imposing SDM if a threshold daily death rate of 8 deaths per million population was exceeded – resulted 149 

in the lowest projected cumulative death toll across US states, with a total of 191,771 (175,160–150 

223,377) deaths forecast to occur by 31 December 2020 (Fig. 2, Table 1). Under this scenario, at the time 151 

of the US national election on 3 November 2020, no states will have exceeded a daily death rate of 8 152 

deaths per million (Fig. 3), although 38 states are still estimated to exceed an ����������  of one at some 153 

point between 4 July and 31 December 2020, and 33 states would have an ���������� greater than one 154 

on 31 December (Fig. 4). Through the end of the year, the daily death rate is forecast to exceed 8 deaths 155 

per million in just three states (California, Massachusetts, and Virginia) (Table 1) saving 102,795 156 

(55,898–183,374) lives when compared to the plausible reference scenario and 238,723 (112,886–157 

426,205) lives when compared to the “mandates easing” scenario. Universal mask use combined with 158 

threshold-driven imposition of SDM results in 12,920,928 (7,136,980–22,826,322) fewer estimated 159 

infections across the United States by the end of year compared to the plausible reference scenario, and 160 

43,257,629 (19,744,352–74,125,020) fewer estimated infections compared to the “mandates easing” 161 

scenario (Extended Data Fig. 5). The highest infection rates under the mask use scenario are estimated 162 

to occur in Massachusetts (21.0% (17.3–29.9%) infected), New Jersey (20.7% (19.3–22.5%) infected), 163 
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 8 

and New York (17.8% (16.8–18.7%) infected) (Extended Data Fig. 6). Further results for hospital resource 164 

use needs are presented in Extended Data Figs 2,3 and forecast infections under this scenario are 165 

presented in Extended Data Figs 7,8. 166 

Discussion 167 

We delimit three possible futures (continued removal of SDM, plausible reference, and universal mask-168 

use scenarios), to help frame and inform a national discussion on what actions can be taken during the 169 

summer of 2020 and the profound public health, economic, and political influences these decisions will 170 

have for the rest of the year. Under all scenarios, the US is likely to face a continued public health 171 

challenge from the COVID-19 pandemic through December 2020 and beyond, with populous states in 172 

particular facing high levels of illness, deaths, and hospital demands from the disease. The 173 

implementation of SDMs as soon as individual states reach a threshold of 8 daily deaths per million can 174 

dramatically ameliorate the effects of the disease; achieving near universal mask use could delay or 175 

prevent this threshold from being reached in many states and has the potential to save the most lives 176 

while minimizing damage to the economy. National and state-level decision makers can use these 177 

forecasts of the potential health benefits of available NPI alongside considerations of economic and 178 

other social costs to make the most informed decisions on how to confront the COVID-19 pandemic at 179 

the local level. Our findings indicate that mask use, a relatively affordable and low-impact intervention, 180 

has the potential to serve as a priority life-saving strategy in all US locations. 181 

New epidemics, resurgences, and second waves are not inevitable. Several countries have 182 

sustained reductions in COVID-19 cases over time
32

. Early indications that seasonality may play a role in 183 

transmission, with increased spread during colder winter months as is seen with other respiratory 184 

viruses
34–37

, highlight the importance of taking action both before and during the pneumonia season in 185 

the US. While it is yet unclear if COVID-19 seasonality will match that of pneumonia in general, the 186 
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 9 

strong association observed so far should be heeded as a plausible warning of what is to come. Toward 187 

the end of 2020, masks could contain a second wave of resurgence while reducing the need for frequent 188 

and widespread imposition of SDMs. Such an approach has the potential to save lives while minimizing 189 

the economic and societal disruption associated with both restrictive SDMs and the pandemic itself. 190 

Although 95% mask use across the population may seem like a high threshold to achieve and maintain, 191 

this value represents a level that has been achieved elsewhere (see methods and Supplementary 192 

Information section 3.4). Where mask use has been widely adopted, in South Korea, Hong Kong, Japan, 193 

and Iceland, among others, transmission has declined and in some cases halted
32

. These examples serve 194 

as additional natural experiments
38

 of the likely impact of masks and support the findings from the 195 

universal mask use scenario. Long-term, the future of COVID-19 in the US will be determined by the 196 

evolution of herd immunity through progressive pandemic waves over seasons and/or through the 197 

deployment of an efficacious vaccine or therapeutic approaches. 198 

Mask use has emerged as a contentious issue in the US. At the same time, although well below 199 

the rates seen in other countries, about 41% of US residents have reported that they “always” wear a 200 

mask
31

. The highest proportions of mask use were reported in the northeast of the country, where 201 

several states had estimated mask use greater than 60% on 26 June 2020
31

. The potential life-saving 202 

benefit of increasing mask use in the coming summer and fall cannot be overstated. Recent large-scale 203 

outdoor gatherings, such as the massive marches and protests against police brutality and racism that 204 

took place in June 2020 in the US, seem to have had a negligible effect on SARS-CoV-2 infection rates
39

 205 

possibly due to high levels of mask use
40

. As Americans prepare to head to the polls in November, local 206 

policy makers should consider the health implications of long lines at polling places and the role of mask 207 

use (or alternatives such as mail-in voting) in mitigating disease spread. Several states have already 208 

postponed primary elections in an effort to avoid increased transmission. Mandatory mask laws have 209 

also been introduced in many states
38,41

, but compliance appears to be variable, indicating that 210 
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mandates alone may be insufficient to substantially alter behavior. In certain locations, such as prisons, 211 

mask use alone may not be sufficient to prevent transmission, social distancing may not be feasible, and 212 

alternate solutions to protect these vulnerable populations may be needed
42

. Ultimately, US residents 213 

will need to choose between higher levels of mask use or risking the frequent redeployment of more 214 

stringent and economically damaging SDMs; or, in the absence of either measure, face a reality of a 215 

rising death toll
43

. 216 

This work represents the outputs of a class of models that aim to abstract the disease 217 

transmission process in populations to a level that is tractable for understanding, and, in this case, that 218 

can be used for predictions. A clear consequence of any such exercise is that it will be limited by data 219 

(disease and relevant covariates), the model of understanding developed, and the length of time 220 

available to the model to learn/train the important dynamics. We have therefore tried to benchmark 221 

our model against alternative models of the COVID-19 pandemic and fully document our predictive 222 

performance with a range of measures
44

. In addition, we have provided the reader all the data and 223 

model code to enable full reproducibility and increased transparency and presented a range of likely 224 

futures in the form of a continued removal of mandates, plausible reference, and universal mask use 225 

scenario for decision makers to review. In addition, triangulation of other outputs of the SEIR model, 226 

such as the proportion of the population that are affected, are also provided and tested against 227 

independent data, in this case seroprevalence surveys (Extended Data Fig. 9). Finally, because 228 

uncertainty compounds with distance into the future predicted, the data, model, and its assumptions 229 

will be iteratively updated as the pandemic continues to unfold. 230 

As we extend this work to investigate the impact of mask use and other NPI on the global 231 

pandemic, we are hopeful that masks will be sufficient in all states to avoid a COVID-19 resurgence in 232 

the US and avoid further economic damage. The US can reduce a potential second wave, if its residents 233 

decide to do so. 234 
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Online content 235 

Results for each state are accessible through a visualization tool at http://covid19.healthdata.org. The 236 

estimates presented in this tool will be iteratively updated as new data are incorporated and will 237 

ultimately supersede the results in this paper. 238 

 239 
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Figure legends 337 

Figure 1. Number of social distancing mandates by state in the US on a timeline starting on 01 February 2020 338 

through to 04 July 2020. States are ordered by decreasing population size on the y-axis. 339 

Figure 2. Cumulative deaths from 01 February to 31 December 2020. The inset map displays the cumulative deaths 340 
under the “plausible reference” scenario on 31 December 2020. A light yellow background separates the observed 341 
and predicted part of the time series, before and after 04 July. The dashed vertical line identifies 03 November 342 
2020. The red line is the “mandates easing” scenario, the purple line the “plausible reference” scenario, and the 343 
green line the “universal mask” scenario. Numbers are the means and UIs for the plausible reference scenario on 344 
dates highlighted. The UIs are not shown for the “mandates easing” and “universal mask” scenarios for clarity. 345 
State panels are ordered by decreasing population size. Two-letter state abbreviations are provided in panels and 346 
the inset map. An asterisk next to state abbreviation indicates a state with one or more urban agglomerations 347 
exceeding two million persons. State panels are scaled to accommodate the state with the highest value (CA here), 348 

and range from zero to 68,000 cumulative deaths. This map was generated with R Studio (R Version 3.6.3). 349 

Figure 3. Daily deaths from 01 February to 31 December 2020. The inset map displays the daily deaths under the 350 
“plausible reference” scenario on 31 December 2020. A light yellow background separates the observed and 351 
predicted part of the time series, before and after 04 July. The dashed vertical line identifies 03 November 2020. 352 
The red line is the “mandates easing” scenario, the purple line the “plausible reference” scenario, and the green 353 
line the “universal mask” scenario. Numbers are the means and UIs for the plausible reference scenario on dates 354 
highlighted. The UIs are not shown for the “mandates easing” and “universal mask” scenarios for clarity. State 355 
panels are ordered by decreasing population size. Two-letter state abbreviations are provided in panels and the 356 
inset map. An asterisk next to state abbreviation indicates a state with one or more urban agglomerations 357 
exceeding two million persons. State panels are scaled to accommodate the state with the highest value (CA here), 358 

and range from zero to 2,500 daily deaths. This map was generated with R Studio (R Version 3.6.3). 359 

Figure 4. Time series for values of Reffective by state in the US. Inset maps display the value of Reffective on 03 360 
November and 31 December 2020; time series of Reffective are presented for each state as separate panels. A light 361 
yellow background separates the observed and predicted part of the time series, before and after 04 July. The 362 
dashed vertical line identifies 03 November 2020. The red line is the “mandates easing” scenario, the purple line 363 
the “plausible reference” scenario, and the green line the “universal mask” scenario. The UIs are not shown for the 364 
“mandates easing” and “universal mask” scenarios for clarity. State panels are ordered by decreasing population 365 
size. Two-letter state abbreviations are provided in panels and the inset maps. An asterisk next to state 366 
abbreviation indicates a state with one or more urban agglomerations exceeding two million persons. For legibility 367 
purposes, the y-axes of the state panels are displayed from 0.25 to 4 and the x-axes from 01 March to 31 368 

December 2020. These maps were generated with R Studio (R Version 3.6.3). 369 

Table 1. Cumulative deaths 04 July 2020 through 31 December 2020, maximum estimated daily deaths per million 370 

population, date of maximum daily deaths, and estimated Reffective on 31 December 2020 for three scenarios.  371 

 372 

  373 
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Methods 374 

Our analysis strategy supports two main and interconnected objectives: (1) generate predictions of 375 

COVID-19 deaths, infections, and hospital resource needs for all US states; and (2) explore alternative 376 

scenarios on the basis of changes in state-imposed social distancing mandates or population levels of 377 

mask use. The modeling approach to achieve this is summarized in Supplementary Information section 2 378 

and can be divided into four stages: (1) identification and processing of COVID-19 data, (2) exploration 379 

and selection of key drivers or covariates, (3) modelling deaths and cases across three scenarios of SDM 380 

in US states using an SEIR framework, and (4) modeling heath service utilization as a function of forecast 381 

infections and deaths within those scenarios. This study complies with the Guidelines for Accurate and 382 

Transparent Health Estimates Reporting (GATHER) statement (Supplementary Information). 383 

 384 

Data identification and processing 385 

IHME forecasts include data from local and national governments, hospital networks and associations, 386 

the World Health Organization, third-party aggregators, and a range of other sources. Data sources and 387 

corrections are described in detail in the Supplementary Information. Briefly, daily confirmed case and 388 

death numbers due to COVID-19 are collated from the Johns Hopkins University (JHU) data repository; 389 

we supplement and correct this dataset as needed to improve the accuracy of our projections and 390 

adjust for reporting-day biases (see Supplementary Information Table 4). Testing data are obtained from 391 

the Our World in Data COVID tracking project and supplemented with data from additional government 392 

websites (Supplementary Information Table 8). Social distancing data are obtained from a number of 393 

different official and open sources, which vary by state (Supplementary Information Table 7). Mobility 394 

data are obtained from Facebook Data for Good, Google, SafeGraph, and Descartes Labs 395 

(Supplementary Information section 3.2). Mask use data are obtained from the Facebook Global 396 

Symptom Survey (in collaboration with the University of Maryland Social Data Science Center) and 397 
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PREMISE (Supplementary Information section 3.4). Specific sources for data on licensed bed and ICU 398 

capacity and average annual utilization in the United States are detailed in the Supplementary 399 

Information section 2. 400 

 Before modeling, observed cumulative deaths are smoothed using a spline-based smoothing 401 

algorithm with randomly placed knots. Uncertainty is derived from bootstrapping and resampling of the 402 

observed deaths. The time series of case data is used as a leading indicator of death based on an 403 

infection fatality ratio (IFR) and a lag from infection to death. These smoothed estimates of observed 404 

deaths by location are then used to create estimated infections based on an age-distribution of 405 

infections and on age-specific IFRs. The age-specific infections were collapsed into total infections by day 406 

and state and used as data inputs in the SEIR model. Detailed descriptions of data smoothing and 407 

transformation steps are provided in the Supplementary Information. 408 

 409 

Covariate selection 410 

Covariates for the compartmental transmission SEIR model are predictors of the � parameter in the 411 

model that affects the transition from Susceptible to Exposed state. Covariates were evaluated on the 412 

basis of biologic plausibility and on the impact on the results of the SEIR model. Given limited empirical 413 

evidence of population-level predictors of SARS-CoV-2 transmission, biologically plausible predictors of 414 

pneumonia such as population density (percentage of the population living in areas with more than 415 

1000 individuals per square kilometer), tobacco smoking prevalence, population-weighted elevation, 416 

lower respiratory infection mortality rate, and particulate matter air pollution were considered. These 417 

covariates are representative at a population level and are time-invariant. Spatially resolved estimates 418 

for these covariates are derived from the Global Burden of Disease Study 2019
45

. Time-varying 419 

covariates include pneumonia excess mortality seasonality, diagnostic tests per capita, population-level 420 

mobility, and personal mask use. These are described in the following sections. 421 
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Pneumonia seasonality 422 

We used weekly pneumonia mortality data from the National Center for Health Statistics Mortality 423 

Surveillance System
46

 from 2013 to 2019 by US state. Pneumonia deaths included all deaths classified by 424 

the full range of ICD codes in J12–J18.9. We pooled data over available years for each state and found 425 

the weekly deviation from the annual, state-specific mean mortality due to pneumonia. We then fit a 426 

seasonal pattern using a Bayesian meta-regression model with a flexible spline and assumed annual 427 

periodicity (Supplementary Information section 3.5). For locations outside the United States, we used 428 

vital registration data where available. Locations without vital registration data had weekly pneumonia 429 

seasonality predicted based on latitude from a model pooling all available data (Supplementary 430 

Information section 3.5). 431 

 432 

Testing per capita 433 

We considered diagnostic testing for active SARS-CoV-2 infections as a predictor of the ability for a state 434 

to identify and isolate active infections. We assumed that higher rates of testing are negatively 435 

associated with SARS-CoV-2 transmission. Our primary sources for US testing data were compiled by the 436 

COVID Tracking Project (Supplementary Information section 3.3 and SI Table 8). Unless testing data 437 

existed before the first confirmed case in a state, we assumed that testing is non-zero after the date of 438 

the first confirmed case. Before producing predictions of testing per capita, we smoothed the input data 439 

by using the same smoothing algorithm used for smoothing daily death data prior to modeling 440 

(previously described). Testing per capita projections for unobserved future days were based on linearly 441 

extrapolating the mean day-over-day difference in daily tests per capita for each location. We put an 442 

upper limit on diagnostic tests per capita of 500 per 100,000 based on the highest observed rates in 443 

June 2020. 444 

 445 
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Social distancing mandates 446 

Social distancing mandates (SDMs) were not used as direct covariates in the transmission model. Rather, 447 

SDMs were used to predict population mobility (see below) which is subsequently used as a covariate in 448 

the transmission model. We collected the dates of state-issued mandates enforcing social distancing as 449 

well as the planned or actual removal of these mandates. The measures that we included in our model 450 

were 1) severe travel restrictions, 2) closing of public educational facilities, 3) closure of non-essential 451 

businesses, 4) stay at home orders, 5) restrictions on gathering size. Generally, these came from state 452 

government official orders or press releases.  453 

To determine the expected change in mobility due to social distancing mandates, we used a 454 

Bayesian, hierarchical meta-regression model with random effects by location on the composite mobility 455 

indicator to estimate the effects of social distancing policies on changes in mobility (Supplementary 456 

Information section 3.1). 457 

 458 

Mobility 459 

We used four data sources on human mobility to construct a composite mobility indicator. Those 460 

sources were Facebook, Google, SafeGraph, and Descartes Labs (Supplementary Information section 461 

3.2). Each source has a slightly different way of capturing mobility, so before constructing a composite 462 

mobility indicator, we standardized these different data sources (Supplementary Information section 463 

3.2). Briefly, this first involved determining the change in a baseline level of mobility for each location by 464 

data source. Then, we determined a location-specific median ratio of change in mobility for each 465 

pairwise comparison of mobility sources, using Google as a reference and adjusting the other sources by 466 

that ratio. The time series for mobility was estimated using a Gaussian process regression model using 467 

the standardized data sources to get a composite indicator for change in mobility for each location-day. 468 

We calculated the residuals between our predicted composite mobility time series and input 469 

composite time series, and then applied a first-order random walk to the residuals. The random walk 470 
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was used to predict residuals from 01 January 2020 to 01 January 2021, which were then added to the 471 

mobility predictions to produce a final time series with uncertainty: “past” changes in mobility from 01 472 

January 2020 to 27 June 2020, and projected mobility from 27 June 2020 to 01 January 2021. 473 

 474 

Masks 475 

We performed a meta-analysis of 40 peer-reviewed scientific studies in an assessment of mask 476 

effectiveness for preventing respiratory viral infections (Supplementary Information section 3.4). The 477 

studies were extracted from a preprint publication
28

. In addition, we considered all articles from a 478 

second meta-analysis
30

 and one supplemental publication
47

. These studies included both persons 479 

working in health care and the general population – especially family members of those with known 480 

infections. The studies indicate overall reductions in infections due to masks preventing exhalation of 481 

respiratory droplets containing viruses, as well as some prevention of inhalation by those uninfected. 482 

The resulting meta-regression calculated log-transformed relative risks and corresponding log-483 

transformed standard errors based on raw counts and used a continuity correction for studies with zero 484 

counts in the raw data (0.001). Whereas the other meta-analyses reported one outcome per study, we 485 

extracted all relevant outcomes per study. Additionally, we included additional specifications and 486 

characteristics to account for differences in characteristics of individual studies and to identify important 487 

factors impacting mask effectiveness. These include the type of population using masks (general 488 

population versus health care population), country of study (Asian countries versus non-Asian 489 

countries), type of mask (paper, cloth, or non-descript masks versus medical masks and N95 masks), 490 

type of control group (no use versus infrequent use), type of disease (SARS-CoV 1 or 2 versus H1N1, 491 

influenza, or other respiratory pathogens), and type of diagnosis (clinical versus laboratory). 492 

We used MR-BRT – a meta-regression tool developed at the Institute for Health Metrics and 493 

Evaluation (meta-regression, Bayesian, regularized, trimmed) (Supplementary Information section 2.5) – 494 
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to perform a meta-analysis that considered the various characteristics of each study. We accounted for 495 

between-study heterogeneity and quantified remaining between-study heterogeneity into the width of 496 

the uncertainty interval. We also performed various sensitivity analyses to verify the robustness of the 497 

modeled estimates and found that the estimate of the effectiveness of mask use did not change 498 

significantly when we explored four alternative analyses, including changing the continuity correction 499 

assumption, using odds ratio versus relative risk from published studies, using a fixed effects versus a 500 

mixed effects model, and including studies without covariate information. 501 

We estimated the proportion of people who self-reported always wearing a face mask when 502 

outside in public for both US and global locations using data from PREMISE (US) and Facebook (non-US). 503 

We again used the same smoothing model as for COVID-19 deaths and testing per capita to produce 504 

estimates of observed mask use. This smoothing process averaged each data point with its neighbors. 505 

Tails are an average of the change in mask use over the three following days (left tail) and three 506 

preceding days (right tail). The level of mask use starting on 26 June 2020 (or the last day of processed 507 

and analyzed data) is assumed to be flat. Among states without state-specific data, a regional average 508 

was used. 509 

Deterministic modeling framework 510 

Model specification is provided in detail in the Supplementary Information and summarized in a 511 

schematic (SI Fig. 1). In order to fit and predict disease transmission dynamics, we include a susceptible-512 

exposed-infected-recovered (SEIR) component in our multi-stage model. In particular, each location’s 513 

population is tracked through the following system of differential equations: 514 

��
�� � ����	 ��
� � 
�		

�  

�
�� � ���	 ��
� � 
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� � � 
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where � represents a mixing coefficient to account for imperfect mixing within each location, � is the 515 

rate at which infected individuals become infectious, �� is the rate at which infectious people transition 516 

out of the pre-symptomatic phase, and �� is the rate at which individuals recover. This model does not 517 

distinguish between symptomatic and asymptomatic infections but has two infectious compartments (
� 518 

and 
�) to allow for interventions that would avoid focus on those who could not be symptomatic; 
� is 519 

thus the pre-symptomatic compartment. 520 

Using the next-generation matrix approach, we can directly calculate both the basic reproductive 521 

number under control (����	) and the effective reproductive number (������������	) as (see 522 

Supplementary Information section 5.1 for derivation): 523 

����	 � � � ���	 � �
���	 � 
���	�	
� � � 1
�� � 1

���  
and 524 

������������	 �  ����	 � ���	
�  

 525 

By allowing ���	 to vary in time, our model is able to account for increases in transmission intensity as 526 

human behavior shifts over time (e.g., changes in mobility, adding or removing SDM, changes in 527 

population mask use). Briefly, we combine data on cases (correcting for trends in testing), 528 

hospitalizations, and deaths into a distribution of trends in daily deaths. 529 

To fit this model, we resample 1000 draws of daily deaths from this distribution for each state 530 

(see Supplementary Information section 5). Using an estimated IFR by age (Supplementary Information 531 

section 4.2) and the distribution of time from infection to death (Supplementary Information section 532 
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4.3), we then use the daily deaths to generate 1000 distributions of estimated infections by day from 10 533 

January to 04 July 2020. We then fit the rates at which infectious individuals may come into contact and 534 

infect susceptible individuals (denoted as ���	) as a function of a number of predictors that affect 535 

transmission. Our modeling approach acts across the overall population (i.e., no assumed age structure 536 

for transmission dynamics), and each location is modeled independently of the others (i.e., we do not 537 

account for potential movement between locations). 538 

We detail the SEIR fitting algorithm in the Supplementary Information section 5.1, but in brief, 539 

by draw we first fit a smooth curve to our estimates of daily new infections. Then, sampling ��, �, and � 540 

from defined ranges from literature (see SI) and using �� � �

�
, we then sequentially fit the , 
�, 
�, and 541 

� components in the past. We then algebraically solve the above system of differential equations for 542 

���	. 543 

The next stage of our model fits relationships between past changes in ���	 and covariates 544 

described above: mobility, testing, masks, pneumonia seasonality, others. As detailed in Supplementary 545 

Information section 3, the time-varying covariates are forecast from 01 July to 31 December 2020. The 546 

fitted regression is then used to estimate future transmission intensity ������	. The final future 547 

transmission intensity is then an adjusted version of ������	 based on the average fit over the recent 548 

past (where the window of averaging varies by draw from 2 to 4 weeks; see Supplementary Information 549 

section 5 for more details). 550 

Finally, we use the future estimated transmission intensity to predict future transmission (using, 551 

for each draw, the same parameter values for all other SEIR parameters). In a reversal of the translation 552 

of deaths into infections, we then use the estimated daily new infections to calculate estimated daily 553 

deaths (again using the location-specific IFR). We also use the estimated trajectories of each SEIR 554 

compartment to calculate �� and ���������� . 555 
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A final step to take predicted infections and deaths and a hospital use microsimulation to 556 

estimate hospital resource need for each US state is described in greater detail in the Supplementary 557 

Information section 7 and the results presented online (https://covid19.healthdata.org/united-states-of-558 

america). 559 

Forecasts/scenarios 560 

Policy responses to COVID-19 can be supported by the evaluation of impacts of various scenarios of 561 

those options, against a background of business as usual assumption, to explore fully the potential 562 

impact of policy levers available. 563 

 We estimate the trajectory of the epidemic by state under a “mandates easing” scenario that 564 

models what would happen in each state if the current pattern of easing social distancing mandates 565 

continues and new mandates are not imposed. This should be thought of as a worst-case scenario, 566 

where regardless of how high the daily death rate gets, SDM will not be re-introduced and behavior 567 

(including population mobility and mask use) will not vary before 31 December 2020. In locations where 568 

the number of cases is rising, this leads to very high predictions by the end of the year.  569 

As a more plausible scenario, we use the observed experience from the first phase of the 570 

pandemic to predict the likely response of state and local governments during the second phase. This 571 

plausible reference scenario assumes that in each location the trend of easing SDM will continue at its 572 

current trajectory until the daily death rate reaches a threshold of 8 deaths per million. If the daily death 573 

rate in a location exceeds that threshold, we assume that SDM will be reintroduced for a six-week 574 

period. The choice of threshold (of a rate of daily deaths of 8 per million) represents the 90th percentile 575 

of the distribution of daily death rate at which US states implemented their mandates during the first 576 

months of the COVID-19 pandemic. We selected the 90th percentile rather than the 50th percentile to 577 

capture an anticipated increased reluctance from governments to re-impose mandates because of the 578 

economic effects of the first set of mandates. In locations that do not exceed the threshold of a daily 579 
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death rate of 8 per million, the projection is based on the covariates in model and the forecasts for these 580 

to 31 December 2020. In locations were the daily death rate exceeded 8 per million at the time of our 581 

final model run for this manuscript (04 July 2020), we are assuming that mandates will be introduced 582 

within seven days. 583 

 The scenario of universal mask wearing models what would happen if 95% of the population in 584 

each state always wore a mask when they were in public. This value was chosen to represent the highest 585 

observed rate of mask use in the world so far during the COVID-19 pandemic (see Supplementary 586 

Information section 3.4). In this scenario, we also assume that if the daily death rate in a state exceeds 8 587 

deaths per million, SDMs will be reintroduced for a six-week period. 588 

 589 

Model validation 590 

Model performance was tested against reported deaths from 01 February to 30 June 2020
24

. Out-of-591 

sample predictive validity was assessed periodically for all model versions against subsequently 592 

observed trends in COVID-19 weekly and cumulative mortality. The IHME hybrid SEIR model described 593 

here was found to have a median absolute percent error of 9.9% at four weeks after the last available 594 

input data
25

. This work provides a comprehensive and reproducible platform for testing model 595 

performance for the model presented here and all other models that have published and archived 596 

similar predictions. 597 

The increasing number of population-based serology surveys conducted also provide a unique 598 

opportunity to cross-validate our prior predictions with modeled epidemiological outcomes. In Extended 599 

Data Fig. 9 we compare these serology surveys (such as the Spanish ENE-COVID study
48

) to our 600 

estimated population seropositivity time-indexed to the date that the survey was conducted. In general, 601 

across the varied locations that have been reported globally, we note a high degree of agreement 602 
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between the estimated and surveyed seropositivity. As more serology studies are conducted and 603 

published, especially in the US, this will allow an ongoing and iterative assessment of model validity.  604 

 605 

Limitations 606 

Epidemics progress based on complex non-linear and dynamic biological and social processes that are 607 

difficult to observe directly and at scale. Mechanistic models of epidemics, formulated either as ordinary 608 

differential equations or as individual-based simulation models, are a useful tool for conceptualizing, 609 

analyzing, or forecasting the time course of epidemics. In the COVID-19 epidemic, effective policies and 610 

the responses to those policies have changed the conditions supporting transmission from one week to 611 

the next, with the effects of policies realized typically after a variable time lag. Each model approximates 612 

an epidemic, and whether used to understand, forecast, or advise, there are limitations on the quality 613 

and availability of the data used to inform it and the simplifications chosen in model specification. It is 614 

unreasonable to expect any model to do everything well, so each model makes compromises to serve a 615 

purpose, while maintaining computational tractability. 616 

One of the largest determinants of the quality of a model is the corresponding quality of the input 617 

data. Our model is anchored to daily COVID-19-related deaths, as opposed to daily COVID-19 case 618 

counts, due to the assumption that death counts are a less biased estimate of true COVID-19-related 619 

deaths than COVID-19 case counts are of the true number of SARS-CoV-2 infections. Numerous biases 620 

such as treatment-seeking behavior, testing protocols (such as only testing those who have traveled 621 

abroad), and differential access to care greatly influence the utility of case count data. Moreover, there 622 

is growing evidence that inapparent and asymptomatic individuals are infectious as well as individuals 623 

who eventually become symptomatic being infectious before the onset of any symptoms. As such, our 624 

primary input data for our model are counts of deaths; death data can likewise be fallible, however, and 625 
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where available, we combine death data, case data, and hospitalization data together to estimate 626 

COVID-19 deaths. 627 

Beyond the basic input data, there are a large number of other data sources with their own 628 

potential biases that are incorporated into our model. Testing, mobility, and mask use are all imperfectly 629 

measured and may or may not be representative of the practices of those that are susceptible and/or 630 

infectious. Moreover, any forecast of the patterns of these covariates is associated with a large number 631 

of assumptions (detailed in the corresponding sections of the Supplementary Information), and as such, 632 

care must be taken in the interpretation of estimates farther into the future, as the uncertainty 633 

associated with the numerous sub-models that go into these estimates increases in time.  634 

For practical purposes, our transmission model has made a large number of simplifying assumptions. 635 

Key among these is the exclusion of movement between locations (e.g., importation) and the absence of 636 

age structure and mixing within location (e.g., we assume a well-mixed population). It is clear that there 637 

are large, super-spreader-like events that have occurred throughout the COVID-19 pandemic, and our 638 

current model is unable to fully capture these dynamics within our predictions. Another important 639 

assumption to note is that of the relationship between pneumonia seasonality and SARS-CoV-2 640 

seasonality. To date, across both the northern and southern hemisphere, there is a strong association 641 

between COVID-19 cases and deaths and general seasonal patterns of pneumonia deaths (SI Section 642 

3.5). Our predictions through the end of 2020 are immensely influenced by the assumption that this 643 

relationship will maintain through the year and that SARS-CoV-2 seasonality will be well approximated 644 

by pneumonia seasonality. While we assess this assumption to the extent possible (see Supplementary 645 

Information), we have not yet experienced a full year of SARS-CoV-2 transmission, and as such cannot 646 

yet know if this assumption is valid. 647 

Finally, the model presented herein is not the first model our team has developed to predict current 648 

and future transmission of SARS-CoV-2. As the outbreak has progressed, we have attempted to adapt 649 
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our modeling framework to both the changing epidemiological landscape as well as the increase in data 650 

that could be useful to inform a model
49

. Changes in the dynamics of the outbreak overwhelmed both 651 

the initial purpose and some key assumptions of our first model, requiring evolution in our approach. 652 

While the current SEIR formulation is a more flexible framework (and thus less likely to need to be 653 

wholly reconfigured as the outbreak progresses further), we fully expect the need to adapt our model to 654 

accommodate future shifts in patterns of SARS-CoV-2 transmission. Incorporating movement within and 655 

without locations is one example, but resolving our model at finer spatial scales as well as accounting for 656 

differential exposure and treatment rates across sexes and races are other dimensions of transmission 657 

modelling we currently do not account for but expect will be necessary additions in the coming months. 658 

As we have done before, we will continually adapt, update, and improve our model based on need and 659 

predictive validity. 660 

 661 

Data availability statement 662 

All estimates can be further explored through our customized online data visualization tools 663 

(https://covid19.healthdata.org/united-states-of-america). The findings of this study are supported by data 664 

available in public online repositories, data publicly available upon request of the data provider, and 665 

data not publicly available owing to restrictions by the data provider. Non-publicly available data were 666 

used under license for the current study but may be available from the authors upon reasonable request 667 

and with permission of the data provider. Detailed tables and figures of data sources and availability can 668 

be found in SI Figures 1-4, and SI Tables 1-11. All maps presented in this study are generated by the 669 

authors using RStudio (R Version 3.6.3) and no permissions are required to publish them. Administrative 670 

boundaries were retrieved from the Database of Global Administrative Areas (GADM). Land cover was 671 

retrieved from the online Data Pool, courtesy of the NASA EOSDIS Land Processes Distributed Active 672 
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Archive Center (LP DAAC), USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, 673 

South Dakota. Populations were retrieved from WorldPop (https://www.worldpop.org). 674 

 675 

Code availability statement 676 

Our study follows the Guidelines for Accurate and Transparent Health Estimate Reporting (GATHER; 677 

Supplementary Information). All code used for these analyses is publicly available online 678 

(http://github.com/ihmeuw/). 679 
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Extended Data Figure Legends 713 

EDF 1. Estimated daily COVID-19 death rate (per 100,000 population) by state for three scenarios. 714 

The inset map displays the estimated peak in daily deaths from COVID-19 death per 100,000 population by state 715 

between 04 July and 31 December. The light yellow background separates the observed and predicted part of the 716 

time series, before and after 04 July. The dashed vertical line identifies 03 November 2020. The red line is the 717 

“mandates easing” scenario, the purple line the “plausible reference” scenario, and the green line the “universal 718 

mask” scenario. Numbers are the means and uncertainty interval (UI) for the plausible reference scenario on dates 719 

highlighted. State panels are ordered by decreasing population size. Two-letter state abbreviations are provided in 720 

panels and the inset map. An asterisk next to state abbreviation indicates a state with one or more urban 721 

agglomerations exceeding two million persons. State panels are scaled to accommodate the state with the highest 722 

value (WA here), ranging from zero to 7.2. This map was generated with RStudio (R Version 3.6.3). 723 

EDF 2. Estimated total hospital beds needed for COVID-19 patients by state from 01 February to 31 724 

December, 2020 for three scenarios. 725 

The inset map displays the estimated peak number of all COVID-19 beds above capacity by state between 04 July 726 

and 31 December. The light yellow background separates the observed and predicted part of the time series, 727 

before and after 04 July. The dashed vertical line identifies 03 November 2020. The purple line shows the time 728 

trend in estimated total hospital beds needed for COVID-19 patients under the “plausible reference” scenario; the 729 

horizontal red line identifies estimated total COVID-19 bed capacity for each state. Numbers are the means and 730 

uncertainty interval (UI) for the plausible reference scenario on dates highlighted. State panels are ordered by 731 

decreasing population size. Two-letter state abbreviations are provided in panels and the inset map. An asterisk 732 

next to state abbreviation indicates a state with one or more urban agglomerations exceeding two million persons. 733 

State panels are scaled to accommodate the state with the most available all COVID beds (TX here), ranging from 734 

zero to 30,000. This map was generated with RStudio (R Version 3.6.3). 735 

EDF 3. Estimated total ICU beds needed for COVID-19 patients by state from 01 February to 31 736 

December 2020, for three scenarios. 737 

The inset map displays the estimated peak number of all ICU COVID-19 beds above capacity by state between 04 738 

July and 31 December. The light yellow background separates the observed and predicted part of the time series, 739 

before and after 04 July. The dashed vertical line identifies 03 November 2020. The purple line shows the time 740 

trend in estimated total ICU beds needed for COVID-19 patients under the “plausible reference” scenario; the 741 

horizontal red line identifies estimated COVID-19 ICU bed capacity for each state. Numbers are the means and 742 

uncertainty interval (UI) for the plausible reference scenario on dates highlighted. State panels are ordered by 743 

decreasing population size. Two-letter state abbreviations are provided in panels and the inset map. An asterisk 744 

next to state abbreviation indicates a state with one or more urban agglomerations exceeding two million persons. 745 

State panels are scaled to accommodate the state with the most ICU COVID beds needed (NY here), ranging from 746 

zero to 6,300. This map was generated with RStudio (R Version 3.6.3). 747 

EDF 4. Estimated cumulative deaths from COVID-19 per 100,000 population from 01 February to 31 748 

December 2020, by state, for three scenarios.  749 

The inset map displays the cumulative deaths under the “plausible reference” scenario on 31 December 2020. The 750 

light yellow background separates the observed and predicted part of the time series, before and after 04 July. The 751 

dashed vertical line identifies 03 November 2020. The red line represents the estimated time trend for deaths in 752 

the “mandates easing” scenario, the purple line the “plausible reference” scenario, and the green line the 753 

“universal mask” scenario. Numbers are the means and uncertainty interval (UI) for the plausible reference 754 

scenario on dates highlighted. State panels are ordered by decreasing population size. Two-letter state 755 
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abbreviations are provided in panels and the inset map. An asterisk next to state abbreviation indicates a state 756 

with one or more urban agglomerations exceeding two million persons. State panels are scaled to accommodate 757 

the state with the highest value (MA here), ranging from zero to 500 deaths per 100,000. This map was generated 758 

with RStudio (R Version 3.6.3). 759 

EDF 5. Estimated cumulative infections from SARS-CoV-2 from 01 February to 31 December 2020, by 760 

state, for three scenarios.  761 

The inset map displays the cumulative infections under the “plausible reference” scenario on 31 December 2020. 762 

The light yellow background separates the observed and predicted part of the time series, before and after 04 July. 763 

The dashed vertical line identifies 03 November 2020. The red line represents the estimated time trend for 764 

infections in the “mandates easing” scenario, the purple line the “plausible reference” scenario, and the green line 765 

the “universal mask” scenario. Numbers are the means and uncertainty interval (UI) for the plausible reference 766 

scenario on dates highlighted. State panels are ordered by decreasing population size. Two-letter state 767 

abbreviations are provided in panels and the inset map. An asterisk next to state abbreviation indicates a state 768 

with one or more urban agglomerations exceeding two million persons. State panels are scaled to accommodate 769 

the state with the highest value (CA here), ranging from zero to 14,000,000. This map was generated with RStudio 770 

(R Version 3.6.3). 771 

EDF 6. Estimated cumulative SARS-CoV-2 infection rate (per 100,000 population) by state for three 772 

scenarios. 773 

The inset map displays the estimated peak in cumulative infections from COVID-19 per 100,000 population by 774 

state between 04 July and 31 December. The light yellow background separates the observed and predicted part of 775 

the time series, before and after 04 July. The dashed vertical line identifies 03 November 2020. The red is the 776 

“mandates easing” scenario, the purple line the “plausible reference” scenario, and green line the “universal 777 

mask” scenario. Numbers are the means and uncertainty interval (UI) for the plausible reference scenario on dates 778 

highlighted. State panels are ordered by decreasing population size. Two-letter state abbreviations are provided in 779 

panels and the inset map. An asterisk next to state abbreviation indicates a state with one or more urban 780 

agglomerations exceeding two million persons. State panels are scaled to accommodate the state with the highest 781 

value (MA here), ranging from zero to 60,000. This map was generated with RStudio (R Version 3.6.3). 782 

EDF 7. Estimated daily infections from SARS-CoV-2 from 01 February to 31 December 2020 by state 783 

for three scenarios.  784 

The inset map displays the daily infections under the “plausible reference” scenario on 31 December 2020. The 785 

light yellow background separates the observed and predicted part of the time series, before and after 04 July. The 786 

dashed vertical line identifies 03 November 2020. The red line represents the estimated time trend for daily 787 

infections in the “mandates easing” scenario, the purple line the “plausible reference” scenario, and the green line 788 

the “universal mask” scenario. Numbers are the means and uncertainty interval (UI) for the plausible reference 789 

scenario on dates highlighted. State panels are ordered by decreasing population size. Two-letter state 790 

abbreviations are provided in panels and the inset map. An asterisk next to state abbreviation indicates a state 791 

with one or more urban agglomerations exceeding two million persons. State panels are scaled to accommodate 792 

the state with the highest value (CA here), ranging from zero to 350,000. This map was generated with RStudio (R 793 

Version 3.6.3). 794 

EDF 8. Estimated daily SARS-CoV-2 infection rate (per 100,000 population) by state for three scenarios. 795 

The inset map displays the estimated peak in daily infections from COVID-19 per 100,000 population by state 796 

between 04 July and 31 December. The light yellow background separates the observed and predicted part of the 797 

time series, before and after 04 July. The dashed vertical line identifies 03 November 2020. The red is the 798 
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“mandates easing” scenario, the purple line the “plausible reference” scenario, and green line the “universal 799 

mask” scenario. Numbers are the means and uncertainty interval (UI) for the plausible reference scenario on dates 800 

highlighted. State panels are ordered by decreasing population size. Two-letter state abbreviations are provided in 801 

panels and the inset map. An asterisk next to state abbreviation indicates a state with one or more urban 802 

agglomerations exceeding two million persons. State panels are scaled to accommodate the state with the highest 803 

value (WA here), ranging from zero to 900. This map was generated with RStudio (R Version 3.6.3). 804 

EDF 9. Modeled SARS-CoV-2 infection prediction totals compared with survey-derived seroprevalence 805 

rates in select locations.  806 
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Fig. 1 Number of social distancing mandates by state in the US on a timeline starting on 807 

01 February 2020 through to July 04 2020. States are ordered by decreasing population 808 

size on the y-axis. 809 

 810 

  811 
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Fig. 2 Cumulative deaths from 01 February to 31 December 2020.  812 

The inset map displays the cumulative deaths under the “plausible reference” scenario on 31 December 2020. A 813 

light yellow background separates the observed and predicted part of the time series, before and after 04 July. The 814 

dashed vertical line is 03 November. The red line is the “mandates easing” scenario, the purple line the “plausible 815 

reference” scenario, and green line the “universal mask” scenario. Numbers are the means and UIs for the 816 

plausible reference scenario on dates highlighted. The UIs are not shown for “mandates easing” and mask use 817 

scenario for clarity. State panels are ordered by decreasing population size. Two-letter state abbreviations are 818 

provided in panels and the inset map. An asterisk next to state abbreviation indicates a state with one or more 819 

urban agglomerations exceeding two million persons. State panels are scaled to accommodate the state with the 820 

highest value (CA here), ranging from zero to 68,000 cumulative deaths. This map was generated with RStudio (R 821 

Version 3.6.3). 822 

 823 
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Fig. 3 Daily deaths from 01 February to 31 December 2020. 824 

The inset map displays the daily deaths under the “plausible reference” scenario on 31 December 2020. A light 825 

yellow background separates the observed and predicted part of the time series, before and after 04 July. The 826 

dashed vertical line is 03 November. The red line is the “mandates easing” scenario, the purple line the “plausible 827 

reference” scenario, and the green line the “universal mask” scenario. Numbers are the means and UIs for the 828 

plausible reference scenario on dates highlighted. The UIs are not shown for the “mandates easing” and “universal 829 

mask” scenarios for clarity. State panels are ordered by decreasing population size. Two-letter state abbreviations 830 

are provided in panels and the inset map. An asterisk next to state abbreviation indicates a state with one or more 831 

urban agglomerations exceeding two million persons. State panels are scaled to accommodate the state with the 832 

highest value (CA here), ranging from zero to 2,500 daily deaths. This map was generated with RStudio (R Version 833 

3.6.3). 834 

 835 
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Fig. 4 Time series for values of Reffective by state in the US. Inset maps display the value 836 

of Reffective  on 03 November and 31 December 2020; time series of Reffective are 837 

presented for each state as separate panels. 838 

Time series for values of Reffective by state in the US. Inset maps display the value of Reffective on 03 November and 31 839 

December 2020; time series of Reffective are presented for each state as separate panels. A light yellow background 840 

separates the observed and predicted part of the time series, before and after 04 July. The dashed vertical line is 841 

03 November. The red line is the “mandates easing” scenario, the purple line the “plausible reference” scenario, 842 

and green line the “universal mask” scenario. The UIs are not shown for “mandates easing” and mask use scenario 843 

for clarity. State panels are ordered by decreasing population size. Two-letter state abbreviations are provided in 844 

panels and the inset maps. An asterisk next to state abbreviation indicates a state with one or more urban 845 

agglomerations exceeding two million persons. For legibility purposes, the y-axes of the state panels go from 0.25 846 

to 2 and the x-axes go from 01 March to 31 December. These maps were generated with RStudio (R Version 3.6.3). 847 
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EDF 1. Estimated daily COVID-19 death rate (per 100,000 population) by state for three 849 

scenarios. 850 

The inset map displays the estimated peak in daily deaths from COVID-19 death per 100,000 population by state 851 

between 04 July and 31 December. The light yellow background separates the observed and predicted part of the 852 

time series, before and after 04 July. The dashed vertical line identifies 03 November 2020. The red line is the 853 

“mandates easing” scenario, the purple line the “plausible reference” scenario, and the green line the “universal 854 

mask” scenario. Numbers are the means and uncertainty interval (UI) for the plausible reference scenario on dates 855 

highlighted. State panels are ordered by decreasing population size. Two-letter state abbreviations are provided in 856 

panels and the inset map. An asterisk next to state abbreviation indicates a state with one or more urban 857 

agglomerations exceeding two million persons. State panels are scaled to accommodate the state with the highest 858 

value (WA here), ranging from zero to 7.2. This map was generated with RStudio (R Version 3.6.3). 859 
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EDF 2. Estimated total hospital beds needed for COVID-19 patients by state from 01 861 

February to 31 December 2020 for three scenarios.  862 

The inset map displays the estimated peak number of all COVID-19 beds above capacity by state between 04 July 863 

and 31 December. The light yellow background separates the observed and predicted part of the time series, 864 

before and after 04 July. The dashed vertical line identifies 03 November 2020. The purple line shows the time 865 

trend in estimated total hospital beds needed for COVID-19 patients under the “plausible reference” scenario; the 866 

horizontal red line identifies estimated total COVID-19 bed capacity for each state. Numbers are the mean and 867 

uncertainty interval (UI) for the plausible reference scenario on dates highlighted. State panels are ordered by 868 

decreasing population size. Two-letter state abbreviations are provided in panels and the inset map. An asterisk 869 

next to state abbreviation indicates a state with one or more urban agglomerations exceeding two million persons. 870 

State panels are scaled to accommodate the state with the most available all COVID beds (TX here), ranging from 871 

zero to 30,000. This map was generated with RStudio (R Version 3.6.3). 872 

873 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 14, 2020. ; https://doi.org/10.1101/2020.07.12.20151191doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.12.20151191
http://creativecommons.org/licenses/by/4.0/


 41

EDF 3. Estimated total ICU beds needed for COVID-19 patients by state from 01 874 

February to 31 December 2020 for three scenarios. 875 

The inset map displays the estimated peak number of all ICU COVID-19 beds above capacity by state between 04 876 

July and 31 December. The light yellow background separates the observed and predicted part of the time series, 877 

before and after 04 July. The dashed vertical line identifies 03 November 2020. The purple line shows the time 878 

trend in estimated total ICU beds needed for COVID-19 patients under the “plausible reference” scenario; the 879 

horizontal red line identifies estimated COVID-19 ICU bed capacity for each state. Numbers are the mean and 880 

uncertainty interval (UI) for the plausible reference scenario on dates highlighted. State panels are ordered by 881 

decreasing population size. Two-letter state abbreviations are provided in panels and the inset map. An asterisk 882 

next to state abbreviation indicates a state with one or more urban agglomerations exceeding two million persons. 883 

State panels are scaled to accommodate the state with the most ICU COVID beds needed (NY here), ranging from 884 

zero to 6,300. This map was generated with RStudio (R Version 3.6.3). 885 
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EDF 4. Estimated cumulative deaths from COVID-19 per 100,000 population from 01 887 

February to 31 December 2020 by state for three scenarios.  888 

The inset map displays the cumulative deaths under the “plausible reference” scenario on 31 December 2020. The 889 

light yellow background separates the observed and predicted part of the time series, before and after 04 July. The 890 

dashed vertical line identifies 03 November 2020. The red line represents the estimated time trend for deaths in 891 

the “mandates easing” scenario, the purple line the “plausible reference” scenario, and the green line the 892 

“universal mask” scenario. Numbers are the mean and uncertainty interval (UI) for the plausible reference scenario 893 

on dates highlighted. State panels are ordered by decreasing population size. Two-letter state abbreviations are 894 

provided in panels and the inset map. An asterisk next to state abbreviation indicates a state with one or more 895 

urban agglomerations exceeding two million persons. State panels are scaled to accommodate the state with the 896 

highest value (MA here), ranging from zero to 500 deaths per 100,000. This map was generated with RStudio (R 897 

Version 3.6.3). 898 
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EDF 5. Estimated cumulative infections from SARS-CoV-2 from 01 February to 31 900 

December 2020 by state for three scenarios.  901 

The inset map displays the cumulative infections under the “plausible reference” scenario on 31 December 2020. 902 
The light yellow background separates the observed and predicted part of the time series, before and after 04 July. 903 
The dashed vertical line identifies 03 November 2020. The red line represents the estimated time trend for 904 
infections in the “mandates easing” scenario, the purple line the “plausible reference” scenario, and the green line 905 
the “universal mask” scenario. Numbers are the mean and uncertainty interval (UI) for the plausible reference 906 
scenario on dates highlighted. State panels are ordered by decreasing population size. Two-letter state 907 
abbreviations are provided in panels and the inset map. An asterisk next to state abbreviation indicates a state 908 
with one or more urban agglomerations exceeding two million persons. State panels are scaled to accommodate 909 
the state with the highest value (CA here), ranging from zero to 14,000,000. This map was generated with RStudio 910 
(R Version 3.6.3).911 
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EDF 6. Estimated cumulative SARS-CoV-2 infection rate (per 100,000 population) by 914 

state for three scenarios. 915 

The inset map displays the estimated peak in cumulative infections from COVID-19 per 100,000 population by 916 

state between 04 July and 31 December 31. The light yellow background separates the observed and predicted 917 

part of the time series, before and after 04 July. The dashed vertical line identifies 03 November 2020. The red line 918 

is the “mandates easing” scenario, the purple line the “plausible reference” scenario, and green line the “universal 919 

mask” scenario. Numbers are the means and uncertainty interval (UI) for the plausible reference scenario on dates 920 

highlighted. State panels are ordered by decreasing population size. Two-letter state abbreviations are provided in 921 

panels and the inset map. An asterisk next to state abbreviation indicates a state with one or more urban 922 

agglomerations exceeding two million persons. State panels are scaled to accommodate the state with the highest 923 

value (MA here), ranging from zero to 60,000. This map was generated with RStudio (R Version 3.6.3). 924 
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EDF 7. Estimated daily infections from SARS-CoV-2 from 01 February to 31 December 926 

2020 by state for three scenarios 927 

The inset map displays the daily infections under the “plausible reference” scenario on 31 December 2020. The 928 

light yellow background separates the observed and predicted part of the time series, before and after 04 July. The 929 

dashed vertical line identifies 03 November 2020. The red line represents the estimated time trend for daily 930 

infections in the “mandates easing” scenario, the purple line the “plausible reference” scenario, and the green line 931 

the “universal mask” scenario. Numbers are the mean and uncertainty interval (UI) for the plausible reference 932 

scenario on dates highlighted. State panels are ordered by decreasing population size. Two-letter state 933 

abbreviations are provided in panels and the inset map. An asterisk next to state abbreviation indicates a state 934 

with one or more urban agglomerations exceeding two million persons. State panels are scaled to accommodate 935 

the state with the highest value (CA here), ranging from zero to 350,000. This map was generated with RStudio (R 936 

Version 3.6.3). 937 
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EDF 8. Estimated daily SARS-CoV-2 infection rate (per 100,000 population) by state for 939 

three scenarios 940 

The inset map displays the estimated peak in daily infections from COVID-19 per 100,000 population by state 941 

between 04 July and 31 December. The light yellow background separates the observed and predicted part of the 942 

time series, before and after 04 July. The dashed vertical line identifies 03 November 2020. The red is the 943 

“mandates easing” scenario, the purple line the “plausible reference” scenario, and green line the “universal 944 

mask” scenario. Numbers are the means and uncertainty interval (UI) for the plausible reference scenario on dates 945 

highlighted. State panels are ordered by decreasing population size. Two-letter state abbreviations are provided in 946 

panels and the inset map. An asterisk next to state abbreviation indicates a state with one or more urban 947 

agglomerations exceeding two million persons. State panels are scaled to accommodate the state with the highest 948 

value (WA here), ranging from zero to 900. This map was generated with RStudio (R Version 3.6.3). 949 
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EDF 9. Modeled SARS-CoV-2 infection prediction totals compared with survey-derived 951 

seroprevalence rates in select locations 952 

 953 

 954 
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Table 1. Cumulative deaths 04 July 2020 through 31 December 2020, maximum estimated daily deaths per million population, date of maximum daily deaths, and 956 

estimated Reffective on 31 December 2020 for three scenarios 957 

 958 

  

“Mandates easing” scenario (SDM are removed and not 

reinstated) 

“Reference” scenario (SDM imposed at daily death rate threshold of 

8/million population) 

“Universal mask use” scenario (95% of population wears masks and SDM re-imposed at daily 

death rate threshold of 8/million) 

Location 

Cumulative deaths 

through 31 

December 2020 

Maximum 

estimated 

daily deaths 

per million  

Date of 

maxim

um 

daily 

deaths 

Estimated 

Reffective on 

31 

December 

2020 

Cumulative deaths 

through 31 

December 2020 

Maximum 

estimated 

daily deaths 

per million  

Date of 

maximum 

daily deaths 

Estimated 

Reffective on 31 

December 

2020 

Cumulative deaths 

through 31 December 

2020 

Maximum estimated 

daily deaths per 

million  

Date of maximum 

daily deaths 

Estimated Reffective on 

31 December 2020 

United States of 

America 

430494 (288,046 - 

649,582) 

22.6 (9.4 - 

42.1) 

12/31/

20 NA 

294,565 (233,885 - 

398,397) 

5.6 (2.7 - 

10.9) 12/5/20 NA 

191,771 (175,160 - 

223,377) 3.1 (1.4 - 6.5) 12/31/20 NA 

California 

65408 (29,525 - 

146,665) 

56.4 (15.7 - 

135.1) 

12/31/

20 

0.98 (0.65 - 

1.15) 

37,016 (21,755 - 

73,145) 

17.2 (6.0 - 

46.2) 12/5/20 

0.77 (0.68 - 

0.81) 

20,900 (15,189 - 

33,133) 10.3 (3.6 - 27.5) 12/31/20 0.60 (0.55 - 0.64) 

Florida 

57685 (24,841 - 

116,664) 

32.1 (11.4 - 

60.8) 

12/27/

20 

0.90 (0.73 - 

0.99) 

18,868 (12,371 - 

34,415) 

10.4 (4.1 - 

27.1) 10/3/20 

1.07 (0.95 - 

1.17) 

15,335 (10,655 - 

28,367) 6.9 (2.6 - 19.7) 12/31/20 1.00 (0.87 - 1.14) 

Texas 

43336 (20,081 - 

86,964) 

33.5 (11.6 - 

66.5) 

12/31/

20 

0.96 (0.76 - 

1.08) 

24,687 (13,871 - 

47,796) 

12.6 (4.7 - 

30.9) 11/24/20 

0.85 (0.76 - 

0.90) 10,038 (7,776 - 14,920) 4.1 (1.9 - 9.0) 12/31/20 1.09 (0.94 - 1.27) 

New York 

33462 (32,770 - 

34,377) 2.6 (1.3 - 4.9) 

12/31/

20 

1.22 (1.04 - 

1.45) 

33,462 (32,770 - 

34,377) 2.6 (1.3 - 4.9) 12/31/20 

1.22 (1.04 - 

1.45) 

32,440 (32,202 - 

32,746) 1.0 (0.9 - 1.1) 7/4/20 1.08 (0.95 - 1.24) 

Massachusetts 

30990 (20,155 - 

43,981) 

55.9 (29.6 - 

90.6) 

12/20/

20 

0.80 (0.63 - 

0.94) 

13,223 (11,236 - 

17,357) 

12.1 (5.4 - 

28.8) 10/17/20 

1.17 (1.07 - 

1.22) 

12,794 (10,761 - 

17,887) 15.6 (5.7 - 42.2) 12/23/20 0.54 (0.45 - 0.62) 

New Jersey 

18731 (17,314 - 

21,245) 

7.7 (3.5 - 

17.0) 

12/31/

20 

1.21 (1.04 - 

1.43) 

18,731 (17,314 - 

21,245) 

7.7 (3.5 - 

17.0) 12/31/20 

1.21 (1.04 - 

1.43) 

16,787 (16,296 - 

17,502) 4.0 (3.6 - 4.6) 7/4/20 1.16 (1.02 - 1.33) 

Virginia 

18687 (6,815 - 

40,765) 

49.1 (13.8 - 

98.1) 

12/31/

20 

0.93 (0.65 - 

1.17) 

8,508 (4,226 - 

19,351) 

13.8 (3.2 - 

44.9) 11/17/20 

0.90 (0.79 - 

0.95) 4,860 (3,003 - 10,307) 9.7 (1.8 - 36.9) 12/31/20 0.63 (0.54 - 0.68) 

Pennsylvania 

18089 (10,377 - 

44,570) 

26.1 (5.5 - 

88.1) 

12/31/

20 

1.14 (0.82 - 

1.40) 

15,913 (9,900 - 

35,021) 

15.2 (3.4 - 

57.3) 12/17/20 

0.69 (0.57 - 

0.75) 9,378 (8,158 - 12,926) 3.2 (1.0 - 11.2) 12/31/20 1.17 (1.01 - 1.39) 

Washington 

13715 (5,491 - 

29,757) 

67.1 (19.9 - 

136.1) 

12/31/

20 

0.96 (0.64 - 

1.17) 

6,803 (3,690 - 

13,342) 

16.2 (5.5 - 

41.5) 11/30/20 

0.86 (0.75 - 

0.91) 2,474 (1,979 - 3,323) 5.4 (2.0 - 12.3) 12/31/20 1.22 (1.04 - 1.45) 

Arizona 

11928 (6,927 - 

22,146) 

33.5 (11.9 - 

76.3) 

12/31/

20 

1.07 (0.87 - 

1.25) 

8,819 (5,580 - 

15,392) 

13.2 (5.7 - 

30.0) 12/4/20 

0.79 (0.71 - 

0.84) 4,249 (3,464 - 5,605) 6.2 (4.2 - 9.3) 7/15/20 1.09 (0.93 - 1.28) 

Illinois 

11032 (9,198 - 

14,450) 

5.8 (2.3 - 

13.7) 

12/31/

20 

1.14 (0.99 - 

1.33) 

11,032 (9,198 - 

14,450) 

5.8 (2.3 - 

13.7) 12/31/20 

1.14 (0.99 - 

1.33) 8,336 (7,939 - 8,893) 2.6 (2.1 - 3.1) 7/4/20 0.98 (0.88 - 1.09) 

Ohio 

10045 (4,849 - 

29,965) 

12.6 (1.6 - 

51.9) 

12/31/

20 

1.10 (0.89 - 

1.30) 

10,037 (4,849 - 

29,965) 

12.3 (1.6 - 

50.6) 12/30/20 

0.64 (0.51 - 

0.70) 4,053 (3,604 - 5,020) 2.4 (1.6 - 3.5) 7/18/20 1.01 (0.88 - 1.18) 

Alabama 

9540 (4,408 - 

18,994) 

42.0 (15.8 - 

86.2) 

12/31/

20 

0.98 (0.77 - 

1.19) 

5,706 (2,987 - 

11,537) 

12.5 (4.1 - 

32.4) 11/21/20 

0.96 (0.87 - 

1.01) 1,852 (1,489 - 2,590) 3.5 (2.3 - 5.4) 7/18/20 1.12 (1.00 - 1.27) 

South Carolina 

9412 (4,064 - 

19,281) 

28.5 (9.6 - 

58.3) 

12/31/

20 

0.98 (0.82 - 

1.13) 

5,121 (2,590 - 

10,405) 

10.4 (3.2 - 

28.1) 11/8/20 

0.95 (0.83 - 

1.01) 1,838 (1,329 - 2,936) 3.9 (2.4 - 6.0) 7/19/20 1.08 (0.97 - 1.22) 

Michigan 

8221 (7,177 - 

11,999) 

3.7 (1.0 - 

17.1) 

12/31/

20 

1.09 (0.96 - 

1.27) 

8,221 (7,177 - 

11,999) 

3.7 (1.0 - 

17.1) 12/31/20 

1.09 (0.96 - 

1.27) 6,889 (6,691 - 7,297) 1.2 (0.9 - 1.5) 7/14/20 0.94 (0.82 - 1.12) 

Louisiana 7059 (4,670 - 23.3 (5.7 - 12/31/ 1.14 (0.87 - 6,720 (4,591 - 16.0 (3.8 - 12/22/20 0.76 (0.64 - 4,064 (3,754 - 4,633) 3.6 (2.3 - 5.5) 7/16/20 1.14 (0.99 - 1.32) 
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“Mandates easing” scenario (SDM are removed and not 

reinstated) 

“Reference” scenario (SDM imposed at daily death rate threshold of 

8/million population) 

“Universal mask use” scenario (95% of population wears masks and SDM re-imposed at daily 

death rate threshold of 8/million) 

Location 

Cumulative deaths 

through 31 

December 2020 

Maximum 

estimated 

daily deaths 

per million  

Date of 

maxim

um 

daily 

deaths 

Estimated 

Reffective on 

31 

December 

2020 

Cumulative deaths 

through 31 

December 2020 

Maximum 

estimated 

daily deaths 

per million  

Date of 

maximum 

daily deaths 

Estimated 

Reffective on 31 

December 

2020 

Cumulative deaths 

through 31 December 

2020 

Maximum estimated 

daily deaths per 

million  

Date of maximum 

daily deaths 

Estimated Reffective on 

31 December 2020 

12,576) 66.0) 20 1.39) 11,496) 45.8) 0.81) 

Maryland 5012 (4,291 - 6,616) 

7.5 (3.4 - 

18.3) 

12/31/

20 

1.17 (1.01 - 

1.38) 5,012 (4,291 - 6,616) 

7.5 (3.4 - 

18.3) 12/31/20 

1.17 (1.01 - 

1.38) 3,754 (3,625 - 3,960) 1.9 (1.6 - 2.1) 7/4/20 1.04 (0.94 - 1.17) 

Connecticut 5010 (4,671 - 5,915) 2.7 (0.8 - 9.1) 

12/31/

20 

1.10 (0.98 - 

1.28) 5,010 (4,671 - 5,915) 2.7 (0.8 - 9.1) 12/31/20 

1.10 (0.98 - 

1.28) 4,629 (4,536 - 4,798) 1.7 (1.4 - 2.0) 7/4/20 0.96 (0.85 - 1.11) 

Georgia 4970 (3,528 - 9,578) 

3.9 (0.6 - 

16.8) 

12/31/

20 

1.15 (1.00 - 

1.35) 4,970 (3,528 - 9,578) 

3.9 (0.6 - 

16.8) 12/31/20 

1.15 (1.00 - 

1.35) 3,521 (3,206 - 4,143) 1.9 (1.4 - 2.4) 7/4/20 1.03 (0.90 - 1.18) 

North Carolina 

4521 (2,471 - 

11,537) 

8.7 (2.0 - 

33.3) 

12/31/

20 

1.17 (1.00 - 

1.40) 

4,521 (2,471 - 

11,537) 

8.7 (2.0 - 

33.3) 12/31/20 

0.64 (0.56 - 

0.70) 1,974 (1,737 - 2,499) 1.2 (1.2 - 1.2) 7/4/20 1.07 (0.94 - 1.23) 

Indiana 4371 (3,605 - 5,904) 

5.0 (2.2 - 

12.4) 

12/31/

20 

1.14 (1.00 - 

1.32) 4,371 (3,605 - 5,904) 

5.0 (2.2 - 

12.4) 12/31/20 

1.14 (1.00 - 

1.32) 3,025 (2,902 - 3,199) 1.8 (1.6 - 2.0) 7/4/20 0.94 (0.85 - 1.04) 

Tennessee 

4038 (1,420 - 

10,235) 

11.7 (1.7 - 

40.1) 

12/31/

20 

1.12 (0.95 - 

1.32) 

4,038 (1,420 - 

10,235) 

11.7 (1.7 - 

40.1) 12/31/20 

0.70 (0.60 - 

0.75) 1,087 (861 - 1,565) 1.7 (1.0 - 2.8) 7/17/20 1.08 (0.98 - 1.16) 

Nevada 

3738 (1,039 - 

11,987) 

26.7 (3.2 - 

80.1) 

12/31/

20 

1.07 (0.73 - 

1.36) 2,750 (909 - 8,884) 

13.6 (1.5 - 

54.0) 12/8/20 

0.76 (0.57 - 

0.83) 846 (665 - 1,452) 1.3 (0.6 - 2.6) 7/18/20 1.14 (0.99 - 1.36) 

Mississippi 3702 (2,275 - 7,113) 

12.9 (4.0 - 

34.0) 

12/31/

20 

1.07 (0.92 - 

1.24) 3,674 (2,264 - 7,046) 

11.7 (3.7 - 

32.3) 12/27/20 

0.70 (0.60 - 

0.75) 1,798 (1,531 - 2,302) 5.0 (3.4 - 7.6) 7/18/20 1.01 (0.91 - 1.15) 

Missouri 2470 (1,487 - 5,199) 

4.4 (0.7 - 

18.2) 

12/31/

20 

1.16 (1.01 - 

1.36) 2,470 (1,487 - 5,199) 

4.4 (0.7 - 

18.2) 12/31/20 

1.16 (1.01 - 

1.36) 1,452 (1,278 - 1,744) 1.4 (0.9 - 2.1) 7/11/20 1.01 (0.89 - 1.15) 

Colorado 2280 (1,812 - 4,656) 

2.7 (0.2 - 

15.8) 

12/31/

20 

1.18 (0.99 - 

1.41) 2,280 (1,812 - 4,656) 

2.7 (0.2 - 

15.8) 12/31/20 

1.18 (0.99 - 

1.41) 1,855 (1,761 - 2,092) 0.7 (0.5 - 1.1) 7/4/20 1.01 (0.82 - 1.23) 

Oregon 2277 (651 - 8,715) 

24.8 (3.1 - 

107.1) 

12/31/

20 

1.20 (0.84 - 

1.45) 2,142 (635 - 8,215) 

19.0 (2.5 - 

89.0) 12/26/20 

0.73 (0.60 - 

0.79) 422 (326 - 619) 1.1 (0.3 - 2.9) 12/31/20 1.21 (1.01 - 1.49) 

Wisconsin 2216 (1,344 - 4,966) 

5.0 (1.2 - 

19.1) 

12/31/

20 

1.15 (1.00 - 

1.34) 2,216 (1,344 - 4,966) 

5.0 (1.2 - 

19.1) 12/31/20 

1.15 (1.00 - 

1.34) 1,107 (1,004 - 1,308) 1.1 (0.7 - 1.6) 7/17/20 0.99 (0.89 - 1.12) 

Minnesota 2202 (1,847 - 3,507) 1.5 (1.2 - 1.7) 7/5/20 

1.11 (1.00 - 

1.28) 2,202 (1,847 - 3,507) 1.5 (1.2 - 1.7) 7/5/20 

1.11 (1.00 - 

1.28) 1,788 (1,706 - 1,926) 1.5 (1.2 - 1.7) 7/5/20 0.90 (0.79 - 1.06) 

Kentucky 1944 (920 - 5,652) 

6.1 (0.9 - 

25.1) 

12/31/

20 

1.11 (0.95 - 

1.29) 1,944 (920 - 5,652) 

6.1 (0.9 - 

25.1) 12/31/20 

1.11 (0.95 - 

1.29) 867 (716 - 1,250) 1.0 (0.5 - 1.8) 7/19/20 1.02 (0.90 - 1.18) 

New Mexico 1930 (694 - 7,359) 

18.7 (0.9 - 

82.3) 

12/31/

20 

1.17 (0.80 - 

1.47) 1,829 (684 - 6,791) 

14.6 (0.7 - 

67.9) 12/24/20 

0.68 (0.48 - 

0.75) 724 (602 - 1,039) 1.9 (0.9 - 3.6) 7/13/20 1.11 (0.90 - 1.34) 

Kansas 1619 (516 - 5,697) 

14.2 (1.5 - 

60.5) 

12/31/

20 

1.16 (0.91 - 

1.41) 1,619 (516 - 5,697) 

14.2 (1.5 - 

60.5) 12/31/20 

0.65 (0.51 - 

0.71) 400 (338 - 524) 0.9 (0.5 - 1.4) 7/18/20 1.15 (1.03 - 1.28) 

Rhode Island 1604 (1,304 - 2,231) 

12.4 (4.8 - 

31.5) 

12/31/

20 

1.20 (1.04 - 

1.41) 1,604 (1,304 - 2,231) 

12.4 (4.8 - 

31.5) 12/31/20 

0.56 (0.48 - 

0.61) 1,193 (1,118 - 1,314) 5.0 (4.3 - 5.8) 7/4/20 1.14 (1.02 - 1.29) 

New Hampshire 1506 (625 - 4,212) 

23.3 (3.3 - 

80.0) 

12/31/

20 

1.12 (0.83 - 

1.38) 1,303 (594 - 3,484) 

14.3 (2.0 - 

55.3) 12/17/20 

0.69 (0.56 - 

0.75) 579 (467 - 841) 2.1 (2.1 - 2.1) 7/4/20 1.15 (1.01 - 1.36) 

Arkansas 1232 (459 - 3,495) 

5.6 (0.2 - 

25.4) 

12/31/

20 

1.14 (1.00 - 

1.31) 1,232 (459 - 3,495) 

5.6 (0.2 - 

25.4) 12/31/20 

1.14 (1.00 - 

1.31) 476 (377 - 675) 1.7 (1.3 - 2.3) 7/4/20 1.06 (0.91 - 1.16) 
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“Mandates easing” scenario (SDM are removed and not 

reinstated) 

“Reference” scenario (SDM imposed at daily death rate threshold of 

8/million population) 

“Universal mask use” scenario (95% of population wears masks and SDM re-imposed at daily 

death rate threshold of 8/million) 

Location 

Cumulative deaths 

through 31 

December 2020 

Maximum 

estimated 

daily deaths 

per million  

Date of 

maxim

um 

daily 

deaths 

Estimated 

Reffective on 

31 

December 

2020 

Cumulative deaths 

through 31 

December 2020 

Maximum 

estimated 

daily deaths 

per million  

Date of 

maximum 

daily deaths 

Estimated 

Reffective on 31 

December 

2020 

Cumulative deaths 

through 31 December 

2020 

Maximum estimated 

daily deaths per 

million  

Date of maximum 

daily deaths 

Estimated Reffective on 

31 December 2020 

Utah 1163 (427 - 3,705) 

11.9 (2.0 - 

48.4) 

12/31/

20 

1.19 (0.94 - 

1.47) 1,163 (427 - 3,705) 

11.9 (2.0 - 

48.4) 12/31/20 

0.53 (0.40 - 

0.59) 268 (230 - 339) 0.7 (0.5 - 0.8) 7/4/20 1.19 (1.05 - 1.33) 

Nebraska 1068 (478 - 2,743) 

9.9 (1.2 - 

37.8) 

12/31/

20 

1.15 (0.99 - 

1.36) 1,068 (478 - 2,743) 

9.9 (1.2 - 

37.8) 12/31/20 

0.61 (0.53 - 

0.66) 436 (371 - 564) 1.6 (1.2 - 2.2) 7/4/20 1.04 (0.89 - 1.19) 

Iowa 889 (815 - 1,057) 0.9 (0.7 - 1.0) 7/4/20 

1.05 (0.92 - 

1.24) 889 (815 - 1,057) 0.9 (0.7 - 1.0) 7/4/20 

1.05 (0.92 - 

1.24) 813 (788 - 851) 0.9 (0.7 - 1.0) 7/4/20 0.82 (0.68 - 0.98) 

Oklahoma 888 (589 - 1,862) 

3.2 (0.7 - 

12.5) 

12/31/

20 

1.19 (1.01 - 

1.42) 888 (589 - 1,862) 

3.2 (0.7 - 

12.5) 12/31/20 

1.19 (1.01 - 

1.42) 522 (480 - 600) 0.6 (0.4 - 0.8) 7/11/20 1.00 (0.87 - 1.16) 

District of 

Columbia 759 (649 - 1,122) 

5.1 (1.1 - 

20.2) 

12/31/

20 

1.13 (0.99 - 

1.32) 759 (649 - 1,122) 

5.1 (1.1 - 

20.2) 12/31/20 

1.13 (0.99 - 

1.32) 633 (609 - 679) 3.0 (2.5 - 3.5) 7/4/20 1.00 (0.88 - 1.18) 

Delaware 668 (592 - 876) 1.9 (0.5 - 6.7) 

12/31/

20 

1.04 (0.91 - 

1.22) 668 (592 - 876) 1.9 (0.5 - 6.7) 12/31/20 

1.04 (0.91 - 

1.22) 587 (565 - 625) 1.5 (1.1 - 1.9) 7/4/20 0.86 (0.74 - 1.03) 

South Dakota 428 (162 - 1,194) 

8.6 (0.8 - 

35.0) 

12/31/

20 

1.19 (1.02 - 

1.40) 428 (162 - 1,194) 

8.6 (0.8 - 

35.0) 12/31/20 

0.52 (0.43 - 

0.57) 165 (130 - 227) 1.6 (0.8 - 2.9) 7/17/20 1.05 (0.89 - 1.21) 

Idaho 150 (107 - 305) 0.8 (0.0 - 4.5) 

12/31/

20 

1.27 (1.09 - 

1.53) 150 (107 - 305) 0.8 (0.0 - 4.5) 12/31/20 

1.27 (1.09 - 

1.53) 107 (102 - 118) 0.2 (0.1 - 0.3) 7/9/20 1.14 (0.99 - 1.26) 

Maine 132 (117 - 175) 0.2 (0.1 - 0.3) 7/7/20 

1.09 (0.99 - 

1.24) 132 (117 - 175) 0.2 (0.1 - 0.3) 7/7/20 

1.09 (0.99 - 

1.24) 119 (115 - 127) 0.2 (0.1 - 0.3) 7/7/20 1.00 (0.83 - 1.09) 

West Virginia 129 (105 - 190) 0.2 (0.0 - 0.9) 

12/31/

20 

1.13 (1.01 - 

1.31) 129 (105 - 190) 0.2 (0.0 - 0.9) 12/31/20 

1.13 (1.01 - 

1.31) 108 (102 - 117) 0.2 (0.1 - 0.3) 7/5/20 1.02 (0.85 - 1.12) 

North Dakota 103 (92 - 125) 0.3 (0.2 - 0.5) 

7/11/2

0 

0.89 (0.68 - 

1.08) 103 (92 - 125) 0.3 (0.2 - 0.5) 7/11/20 

0.89 (0.68 - 

1.08) 94 (90 - 100) 0.3 (0.2 - 0.5) 7/11/20 0.68 (0.50 - 0.83) 

Vermont 64 (58 - 81) 0.4 (0.0 - 2.2) 

12/31/

20 

1.40 (1.14 - 

1.78) 64 (58 - 81) 0.4 (0.0 - 2.2) 12/31/20 

1.40 (1.14 - 

1.78) 59 (58 - 60) 0.0 (0.0 - 0.1) 7/4/20 1.29 (1.12 - 1.51) 

Montana 22 (21 - 24) 0.1 (0.0 - 0.2) 7/4/20 

0.90 (0.53 - 

1.20) 22 (21 - 24) 0.1 (0.0 - 0.2) 7/4/20 

0.90 (0.53 - 

1.20) 22 (21 - 24) 0.1 (0.0 - 0.2) 7/4/20 0.72 (0.40 - 1.04) 

Wyoming 18 (18 - 19) 0.1 (0.0 - 0.1) 7/4/20 

0.76 (0.36 - 

1.12) 18 (18 - 19) 0.1 (0.0 - 0.1) 7/4/20 

0.76 (0.36 - 

1.12) 18 (18 - 19) 0.1 (0.0 - 0.1) 7/4/20 0.57 (0.26 - 0.88) 

Hawaii 18 (17 - 19) 0.0 (0.0 - 0.1) 7/4/20 

0.97 (0.55 - 

1.23) 18 (17 - 19) 0.0 (0.0 - 0.1) 7/4/20 

0.70 (0.46 - 

0.79) 18 (17 - 19) 0.0 (0.0 - 0.1) 7/4/20 1.00 (0.71 - 1.28) 

Alaska 14 (13 - 15) 0.1 (0.1 - 0.2) 7/4/20 

0.87 (0.64 - 

1.16) 14 (13 - 15) 0.1 (0.1 - 0.2) 7/4/20 

0.87 (0.64 - 

1.16) 14 (13 - 15) 0.1 (0.1 - 0.2) 7/4/20 0.73 (0.51 - 1.00) 
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