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Abstract 

In today’s absence of a vaccine and impactful treatments, the most effective way to combat the 

virus is to find and implement mitigation strategies. An invaluable resource in this task is 

numerical modeling that can reveal key factors in COVID-19 pandemic development. On the 

other hand, it has become evident that regional infection curves of COVID-19 exhibit complex 

patterns which often differ from curves predicted by forecasting models. The wide variations in 

attack rate observed among different social strata suggest that this may be due to social 

heterogeneity not accounted for by regional models. We investigated this hypothesis by 

developing and using a new Stochastic Heterogeneous Epidemic Model (SHEM) that focuses on 

vulnerable subpopulations. We found that the isolation or embedding of vulnerable sub-clusters 

in a major population hub generated complex stochastic infection patterns which included 

multiple peaks and growth periods, an extended plateau, a prolonged tail, or a delayed second 

wave of infection. Embedded vulnerable groups became hotspots that drove infection despite 

efforts of the main population to socially distance, while isolated groups suffered delayed but 

intense infection. Amplification of infection by these hotspots facilitated transmission from one 

urban area to another, causing the epidemic to hopscotch in a stochastic manner to places it 

would not otherwise reach, resembling a microcosm of the situation worldwide as of September 

2020. Our results suggest that social heterogeneity is a key factor in the formation of complex 

infection propagation patterns. Thus, the mitigation of vulnerable groups is essential to control 

the COVID-19 pandemic worldwide. The design of our new model allows it to be applied in 

future studies of real-world scenarios on any scale, limited only by memory and the ability to 

determine the underlying topology and parameters. 
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Author Summary 

COVID-19 is a disease caused by the novel coronavirus SARS-CoV-2 that is both fatal and has a 

high transmission rate (R0), almost twice that of the 2017-2018 common influenza, presenting 

itself as a massive challenge to the world today. Existing mitigation strategies often are not 

efficient, and the mechanisms underlying complex infection patterns that distinguish themselves 

from simple curves remain unclear. Numerical modeling can identify pandemic mechanisms and 

inform policymakers how to improve mitigation strategies. One underexplored mechanism is 

social heterogeneity, specifically the contribution of vulnerable social subgroups, not accounted 

for by regional models. To investigate this, we developed a novel numerical model (dubbed 

SHEM) that examines the evolution of infection spread in a collection of diverse populations, 

connected by a network of links along which infection travels. We found that vulnerable 

subgroups that cannot implement mitigation strategies create infection hotspots which drive 

infection within and among urban areas, defeating mitigations. Furthermore, isolated vulnerable 

populations (which may hold a false sense of security in the real world) can create additional 

delayed infection spikes. This means effective mitigation of the COVID-19 pandemic requires 

close attention to vulnerable subgroups. 

 

 

Introduction 

Coronaviruses represent one of the major pathogens that primarily target the human respiratory 

system. Previous outbreaks of coronaviruses (CoVs) that affected humans include the severe 

acute respiratory syndrome (SARS)-CoV and the Middle East respiratory syndrome (MERS)-

CoV [1]. COVID-19 is a disease caused by the novel coronavirus SARS-CoV-2 virus that is both 
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fatal and has a high transmission rate (R0), almost twice that of the 2017-2018 common influenza 

[2,3]. The World Health Organization stated that this combination of high health risk and 

susceptibility is of great global public health concern, and efforts must be directed to prevent 

further infection while vaccines are still being developed [4]. As of September 2020, there are 

more than twenty five million confirmed COVID-19 cases and close to confirmed one million 

deaths. Older adults seem to be at higher risk for developing more serious complications from 

COVID-19 illness [5,6]. In today’s absence of a vaccine and impactful treatments, the most 

effective way to combat the virus is to find and implement mitigation strategies. An invaluable 

resource in this difficult task is numerical modeling studies that can reveal key factors in 

pandemic development.  

 

What models could be useful? Direct study of the available data of COVID-19 is complicated 

because many cases and deaths are underrepresented. However, a simple model that correctly 

captures large-scale behaviors, but gets some details wrong, is useful, whereas a complicated 

model that gets some details correct but mischaracterizes the large-scale behaviors is misleading 

[7]. Previously, during the H1N1 pandemic, generic (i.e. non-specific) stochastic influenza 

models were important to understand and quantify the full effects of the virus in simulations of 

important scenarios [8]. Open source stochastic models such as FluTE (2010) or GLEaM (2011) 

[9,10] were developed to simulate the spatial interaction and clusterization of millions of people 

to discover epidemic patterns.  
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Now, with respect to COVID-19, the FluTE model has recently been used to offer interventions 

to mitigate early spread of SARS-CoV-2 in Singapore [11], and GLEaM was adopted by 

Chinazzi et al. [12] to model the international propagation of COVID-19 to gain insight into the 

effect of travel restrictions on virus spread. In principle, agent-based models, like the ones 

mentioned above, track the fate of every individual and ought to be the most precise. However, 

they require detailed statistical information about the social interactions and grouping of 

individuals which is well characterized for seasonal influenza, but has been completely disrupted 

by mitigations for COVID-19 and continues to be in flux.  

 

Despite extensive efforts to understand and predict the COVID-19 spread, the key factors that 

determine the multimodal rise patterns, the asymmetry of the recovery phase, and the emergence 

of a distinct second wave remain unclear. Therefore, instead of another data-based forecasting 

model, we chose to develop a scenario model to study the consequences of a set of hypothesis-

driven conditions in a network of populations. One underexplored but important factor of 

pandemic spread is social heterogeneity which is characterized by various subpopulation 

clusterization, societal interaction, and disease mitigation strategies. Our hypothesis is that 

complex infection curves that consist of multiple infection peaks and growth periods are the 

consequence of asynchronous propagation of infection among groups with widely varying 

degrees of intra-group interaction and isolation from main hubs (a metapopulation of infections).  

 

To approach this problem, we developed a novel Stochastic Heterogeneous Epidemic Model 

(dubbed SHEM) which incorporates heterogeneous aspects of society. We also take into account 
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over-dispersed stochasticity (super-spreading) [13], which is usually not incorporated into 

compartmental models but can be critical in small or virgin populations. The model design was 

inspired by our stochastic models of local calcium release dynamics inside heart cells, driven by 

explosive calcium-induced-calcium-release [14,15]. We examine several key scenarios of 

heterogeneity where separate communities of various clusterization and transmission capabilities 

are linked to a large population hub. The basic reproduction number of infection (R0) of the bulk 

of our population was assigned to R0 = 2.5 which is within the range of SARS-CoV-2 basic 

reproduction number based on the early phase of COVID-19 outbreak in Italy [16]. Interplay of 

various degrees of heterogeneity and isolation periods in our model generated various dynamic 

patterns of infection, including a multi-modal growth periods, an extended plateau, prolonged 

tail, or a delayed second wave of infection. Most importantly, we found that vulnerable social 

subgroups play a key role in the propagation and unpredictability of the epidemic, and can defeat 

efforts at social distancing. 

 

Results  

Simulations of infection in isolated clusters driven by an urban cluster 

In the first set of simulations we examined the virus spread in simple hypothetical scenarios with 

equal numbers of individuals in urban and isolated populations (Fig 1A, insert).  The large urban 

cluster was composed of 1 million individuals set to R0=2.5 (open level, but changing throughout 

the simulation). The isolated population consisted of 250 clusters, each with 4000 +/- 500 people 

and with the same internal R0=2.5 that remained constant throughout all simulation stages. The 

urban cluster was weakly connected with 0.001% transient contact into the isolated clusters 

(alphainpop) while isolated clusters had 0.1% contact into the urban cluster (alphaoutpop), see 
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Methods for the definition of transient contact.   This can be visualized as a collection of small 

suburban neighborhoods or nursing homes that are attempting to isolate themselves from the 

city. We investigated 4 scenarios, specified below. In each scenario except #1, the urban cluster 

closed to R0=1.25 at t=40 days (closed level, e.g. this was New York City under lockdown, based 

on 21% antibody positive tests at the peak [17]). 

1) No mitigation, i.e. freely expending pandemic: The large cluster of individuals stays 

always open.  

2) Premature, partial reopening to R0 = 1.9 at 100 days. 

3) Moderate lockdown period with full reopening at 225 days to R0 = 2.5. 

4) Long lockdown period with full reopening at 365 days to R0 = 2.5. 

 

A general tendency throughout all 4 scenarios was that as the lockdown period increased, the 

magnitude of the infection decreased but its duration increased. At the same time the interplay of 

the urban cluster and the isolated clusters generated a variety of specific patterns in virus spread 

dynamics. 

 

In the first “no mitigation” scenario (Fig 1A) the isolated areas generated a strong second peak at 

the time when infection in the urban cluster had gone through its peak and was decaying. The 

second peak substantially extended the overall span of the pattern, nearly twice as much.  

 

The infection rise in the “premature reopening” scenario (Fig 1B) was multi-modal. The initial 

rise of infection substantially slowed in the main cluster during the closed period, but a 

contribution from the isolated areas becomes notable closer to the partial reopening at day 100 
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(Fig 1D, inset). In the reopen period, the infection surged in both the isolated and urban clusters. 

The peak of the isolated clusters happened later than the urban cluster, creating an apparent 

plateau in active infection cases from day 175 to 225.  

 

The infection dynamics in the “moderate lockdown” scenario (Fig 1C) was more complex. 

During the closed stage (of urban center), while infection in the urban cluster declined, the 

delayed infection in isolated clusters continued to rise forming an additional peak in total 

infections (Fig 1E, inset). Yet another peak in total infections emerged in the reopen stage that is 

generated mainly by the urban cluster, but echoed by the isolated subpopulations. 

 

The “late reopening” (Fig 1D), decreased infection during the first wave in both urban and 

isolated clusters, but resulted in a distinct delayed second wave of infection. This second wave 

pattern provides a delay during which the respective second wave of deaths could be intercepted 

and prevented with the timely development of a vaccine or effective treatment (for example a 

year from the time of infection onset in Fig 1E).  

 

We also performed a control simulation to validate that heterogeneity of isolated clusters is 

indeed important for the infection pattern. In the most complex scenario of “moderate lockdown” 

shown in Figure 1C we substitute 250 clusters by one big cluster with the same population of one 

million people keeping all other parameters the same. The simulations showed a different pattern 

in which the second big cluster always generated a peak of substantially larger amplitude (Fig 

S1).  
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Simulations of integrated clusters driving infection in an urban cluster 

By altering parameters in the same topology as Figure 1A, we found that the outlying clusters, if 

they are unable to socially distance, can become potential “hotspots” that can drive the infection 

in the urban population even against efforts of the latter to lock down.  In this scenario the large 

urban cluster was composed of 1 million individuals with R0 = 1.25 throughout all simulation 

stages while the highly susceptible population consists of 250 clusters each with 1200 +/- 500 

people and internal R0 = 3.0 that are partially embedded in the urban cluster. This R0 value is 

based on data from four districts in Germany when essential manufacturing sectors were open – 

95%-prediction interval: 2.16 – 3.73 [18]. The potential hotspot clusters were connected with 

20% out-coupling into the urban cluster (alphaoutpop = 0.20, see Methods).  This mechanism of 

transient contact implements short-term movement of the same people in and out regularly, 

which does not dilute the effect of the conditions in hotspots the way that random bidirectional 

migration would.  In other words, the same people “virtually” move back and forth, but spend 

most of their time in the high- R0 locations where the infection regenerates. In this scenario, the 

small number of infections in the urban area are picked up by hotspots, amplified, and then drive 

a wave of infection among the urban population despite their efforts to keep their internal R0 at 

1.25 by social distancing. 

 

We performed 10 runs of these simulations which demonstrated that the integrated clusters drove 

infection in the urban cluster as shown in a typical example in Fig 2A, B, leading the late 

appearance of the epidemic in places that had seen few cases in a microcosm of the pattern. The 

stochastic nature of infection in individual hotspots is shown in Figure 2C; many hotspots 

“explode” as early as between 50 and 100 days (Movie S1). Hotspots substantially increased the 
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peak of infection and shifted it towards much earlier occurrence from about 400 days to 200 days 

(Fig 2D). 

 

In the second “chain” topology multiple small urban areas (population 100K each) are 

sequentially connected and 30 potential hotspots with R0=2.0 drive infection within in each urban 

cluster and facilitate propagation from cluster to cluster (Fig 3, Fig S2, and Movie S2 show the 

stochastic dynamics of individual hotspots). In this model, the first cluster began with R0 = 2.5, 

then locked down to 1.25 at day 40, while the unsuspecting clusters down the road kept R0 = 1.05 

throughout, signifying low population density and efforts at social distancing, which were 

defeated by the hotspots picking up the small number of arriving infections and amplifying them. 

It is important to note, that in this scenario all four urban areas were ultimately infected (see ten 

consecutive simulation runs superimposed in Fig 3B), except rare cases (about 1 of 20) when the 

last urban cluster did not spike due to stochasticity of infection propagation. However, in the 

case where the hotspots were closed, infection generally didn’t reach the last urban cluster at all 

in the absence of amplification along the way. 

 

Reopening urban cluster after hotspots drive first wave of infection 

We extended the single urban cluster hotspot scenario to reopen when infection numbers 

substantially drop. Here, the main cluster was composed of 1 million individuals which starts off 

closed with R0=1.05 and reopens to R0=2.50 at day 360. The cluster was connected to 30 

potential hotspots each with 1200 +/- 500 people with R0=3.0 which remained constant 

throughout all simulation stages. The urban cluster was connected with 0.1% transient contact 

into the isolated clusters (alphainpop) while isolated clusters had 1% contact into the urban 
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cluster (alphaoutpop). The results show two distinct waves of infection (Fig 4). The hotspots 

drove the first wave of infection, whereas the second wave was almost entirely composed of 

infection from the urban area, demonstrating that the hotspots acquired immunity and did not 

participate at all in the second wave. The ending of the first wave, dominated by the vulnerable 

groups, created the illusion that the epidemic was nearly over, while a large fraction of the 

surrounding populations was in fact still susceptible when reopening occurred.  

 

Discussion 

Interpretations and implications 

As of August 2020, the infection curves of the COVID-19 pandemic in various locations have 

been very different from standard smooth bell curves. Here we tested the hypothesis that 

multiple, asynchronous waves and plateaus are in part due to stochasticity and heterogeneity, as 

well as due to changing efforts at mitigation. Geographic heterogeneity is included in forecasting 

models [12,19,20] which use extensive, public databases of population characteristics and travel 

patterns, but these do not fully account for the stratification of social behaviors that controls the 

spread of the virus. Therefore, instead of building another data-based forecasting and estimation 

model, we developed a numerical scenario model that we used to explore mechanisms of 

infection dynamics with regards to social stratification. The model was built as a network of 

“populations” which represent social and behavioral strata of geographic populations. Our model 

can be considered a metapopulation of SARS-CoV2, when a single species is spread among 

different environments that determine its local survival or extinction.  
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We examined several scenarios which included one or more large urban populations connected 

to vulnerable subgroups that are unable/unwilling to socially distance and thus represent 

potential COVID-19 hotspots. Depending on the degree of interaction, these subgroups were 

either driven by infection from the main population, or acted as major drivers of the epidemic. 

Isolated subpopulations were infection-driven (e.g. nursing homes, prisons, remote suburbs, 

clustered religious groups) and had a substantially delayed contribution to total infection cases, 

ultimately forming an infection curve which could include multi-modal growth periods, an 

extended plateau, a prolonged tail, or a delayed second wave of infection (Fig 1). These 

communities, due to their isolated nature, had low herd immunity that put them at risk for 

explosive scenarios when basic mitigation strategies were not implemented. Alternatively, 

partially integrated subpopulations were driving infection (e.g. employees of factories, 

warehouses, meat packing plants, church groups, campuses, shelters, and other essential 

workers) in its connected urban population by picking up infection and amplifying it by (Fig 2, 

movie S1). We found that these “hotspots” ignite infection even in a locked down population, 

ultimately propagating and igniting other isolated populations (Fig 3, movie S2). The locked 

down population however does not acquire herd immunity, as opposed to the hotspots, and thus 

when lockdown is lifted, a second wave is generated by the main cluster (Fig 4).  

 

There are several implications that arise from our results. We can expect social heterogeneity to 

form delayed local asynchronous epidemics, creating a variety of infection profiles in various 

regions over time, prolonging the pandemic time span, and spreading to new areas unpredictably 

due to the stochasticity of infection in small subgroups. Effective mitigation of the epidemic in 

the main population requires close attention to vulnerable subgroups in order to prevent the 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted September 18, 2020. ; https://doi.org/10.1101/2020.07.10.20150813doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.10.20150813


13 
 
 

formation of COVID-19 infection hotspots. Otherwise vulnerable subgroups that cannot 

implement mitigation strategies spread infection to the socially distanced populations, defeating 

their efforts at mitigation. Despite hotspots possibly acquiring immunity, there still exists a threat 

of a second wave of infection in the socially distanced main population. Thus, an effective 

treatment or vaccination needs to be developed prior to full reopening. 

 

Comparison with other studies 

While our study is focused on vulnerable subpopulations in pandemic development, there are 

other important factors regarding social heterogeneity identified by previous studies.  

The study by Dolbeault et al. [21], using their multi-group SEIR model, underlined the 

importance of mitigation measures on single individuals with a high level of social interactions. 

Indeed, their study showed that even a small group of individuals with high transmission rate can 

trigger an outbreak even if the R0 of the majority is below 1. Althouse et al. [13] identified and 

explored in depth another important factor, explosive super-spreading events originating from 

long-term care facilities, prisons, meat-packing plants, fish factories, cruise ships, family 

gatherings, parties and night clubs. This study further demonstrated the urgent need for targeted 

interventions as routes of effective virus transmission. Taking into account the importance of 

these super-spreading events and individuals, they were included in the design of our model (see 

Methods, Super-spreading) to generate more realistic outcomes of scenarios.  

 

With regard to agent-based models, Chinazzi et al. [12] used GLEaM to demonstrate that travel 

restrictions introduced in Wuhan in January 2020 only delayed epidemic progression by 3 to 5 

days within China, and international travel restrictions only helped slow infectious spread until 
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mid-February. Our simulations of COVID-19 spread also show that ultimately, when enough 

time goes by, isolation does not prevent infection of vulnerable subpopulations (Fig 1). Chinazzi 

et. al. suggests that early detection, hand washing, self-isolation, and household quarantine are 

more effective than travel restrictions at mitigating this COVID-19 pandemic. Our 

recommendations are in accord, and we advocate for communities to take extra care of 

vulnerable subpopulations internally, as so to prevent a possible hotspot formation that may 

evolve into a regional epidemic. 

 

Model features, limitations, and future studies 

An epidemic can be likened to a forest fire, which spreads by diffusion along a front, but can also 

jump by embers that may or may not start a new blaze. Such spread to virgin areas, with a virus 

as with a fire, is intrinsically stochastic and such stochasticity, which is not explicitly included in 

mean-field models, may contribute to the remarkable patchiness of the COVID-19 epidemic. 

This has caused the epidemic to appear entirely different to observers in different locations, 

leading to politicization of the response, which is, itself, a form of social heterogeneity. For rare 

spread to small, isolated subgroups (embers) this stochasticity is crucial. Patchiness is aggravated 

by the over-dispersion (super-spreading) of secondary cases of COVID-19, where the majority of 

infected individuals do not spread the virus, but some can cause up to a hundred secondary 

infections [13]. Our model is explicitly stochastic, with a mechanism to account for over-

dispersion, by keeping a partial history of individual infections. Furthermore, the design of our 

new model allows it to be applied in future studies of real-world scenarios on any scale, limited 

only by memory and the ability to determine the underlying topology and parameters. 
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However in our model, we make no attempt to distinguish between symptomatic and 

asymptomatic cases, despite recent findings by Chao et al. [22] in their agent-based model 

(dubbed Corvid) that demonstrated that most infections actually originate from pre-symptomatic 

people. Since the relative infectivity of symptomatic and non-symptomatic is uncertain, there is 

no direct way to accurately determine the number of asymptomatic infections at present. Such a 

distinction (included in a number of other models) could easily be added by subdividing the 5 

compartments, at the risk of added complexity and more parameters needed in a scenario.  

 

We did not take into account recent suggestions that infectivity is concentrated in a short time 

window just before and after symptom onset. Instead, we used the standard SEIRD assumption 

that infections are generated throughout the period of infection, using a mean clinical duration of 

7 days. The model does not consider the physical mechanisms of transmission of COVID-19, or 

the possibility that many recovered patients do not quickly re-enter their normal social circles, 

delaying herd immunity. An additional compartment, with a pipeline mechanism, could also be 

added to account for this. 

 

Methods 

Model purpose 

In view of the constantly changing behavioral environment for COVID-19 in the United States 

and worldwide, data-based predictive modeling of the future of the epidemic is difficult. Our 

model is specifically intended to examine the effect of heterogeneity, including not only 

geographic but also social heterogeneity, i.e. the existence of groups within one geographic 
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location that have different social interaction patterns and may be partially isolated from 

neighboring groups, e.g. nursing homes, prisons, campuses. Alternatively, subgroups can be 

partially embedded in the main population, e.g. meat processing plants or warehouse employees 

who are unable to socially distance at work, but spend part of their day in the main community 

where they can acquire and amplify infection. The model is fully stochastic and, unlike most 

compartmental models, incorporates the effect of over dispersion of secondary infections (super 

spreading).  

 

Structure of the Model 

The general model consists of a number of subpopulations (“villages”) whose number is limited 

only by memory. The simulation is based on a generalization of the SEIRD representation. The 

state of each village is represented by the numbers of individuals in each of 5 states: Susceptible, 

Exposed (destined to become infected), Infected, Recovered (immune) and Dead (however, see 

below under Super-spreading for additional state-dependence). Each village is, by definition, 

homogeneous and mixed. Villages could represent actual geographic units, but could also be 

groups or sub-regions that have different social interactions or behavior. The mean duration of 

infection (infectious period) was taken to be 7 days and the incubation period 5.5 days. 

 

Each village J is characterized by its population, the expected mortality of virus infections, and 

its local value RINN(J) of the basic reproduction number R0.  R0 is defined as the mean expected 

number of secondary infections spawned by one infected individual over the duration of their 

illness, if the population were totally susceptible. It is a property of both the virus and the 
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behavior of individuals in the population, but is distinct from R(t), the realized, time dependent, 

reproduction number that depends also on the fraction of susceptible individuals remaining 

during the epidemic. 

 

Villages are connected by a user-specified network of unidirectional links along which infection 

or individuals can travel at user-specified rates, including links from each village to itself to 

represent internal infection/recovery processes.  Infection can spread by two processes:  transient 

contact between groups (alpha process) e.g. nursing home staff coming from the city, or actual 

migration of individuals from one village to another (beta process).  Each non-self link is 

characterized by 4 user-supplied parameters: alphain and alphaout describe the degree of 

transient contact (see below) along or against the direction of the link respectively; betain and 

betaout are rates of migration of individuals (time-1). 

 

Transient Contact (alpha) Process   

Infection transmitted by transient contact is modeled as though members of one village spend 

some (small) fraction alpha(in/out) of their time (i.e. of their inter-personal contacts) “visiting” 

the opposite village at the other end of the link, adjusted for any mitigations (an example would 

be staff working at a nursing home, or meat-packing plant employees, treated as a separate, high-

risk population but living in the surrounding county). The spread of infection in each direction of 

the link has two components: (1) exposure of susceptibles by visiting infectious individuals and 

(2) exposure of visiting susceptibles in the visited village, who then carry the infection back to 

their village.  This formulation allows for the possibility that transmission is asymmetric.  The 
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generation of exposure by these “visitors” at home and abroad is scaled so that each infected 

individual, generates (in an otherwise susceptible population) his destined number of secondary 

cases (see below under super-spreading). 

 

This arrangement allows for the possibility that “visitors” from different villages could cross-

infect while visiting a common hub (picture UPS and FEDEX drivers) even if there is no direct 

link between them.  To represent this process, “virtual links” are generated between pairs of 

physical links that meet in a hub (in graph-theory terms these are links of the adjoint graph of the 

network).  Infection by this indirect process is second order in the alpha’s so it makes very little 

contribution in the case of highly isolated sub-populations (e.g. nursing homes, prisons) but 

could be important for embedded sub-populations with high contact with the hub. 

 

Simulation Method 

The entire collection of populations is simulated as a single, continuous-time Markov chain 

(birth-death process). There are 14 types of possible events associated with each link: 

1) Infection from source to target by transient contact 

2) Infection from target to source by transient contact  

3) Infected individual moves from source to target 

4) Exposed individual moves from source to target 

5) Susceptible individual moves from source to target 

6) Infected individual moves from target to source 
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7) Exposed individual moves from target to source 

8) Susceptible individual moves from target to source 

9) Susceptible gets exposed inside village (self-link only) 

10) Exposed converts to infected inside village (self-link only) 

11) Infected recovers inside village (self-link only) 

12) Infected dies inside village (self-link only) 

13) Recovered moves from source to target 

14) Recovered moves from target to source 

 

At each step, rates of these 14 possible events (computed as in classic SEIRD differential 

equations, except as below under Super-spreading) are summed over all links in the network to 

give a total transition rate Rtot. A uniformly distributed random number rn is generated 

and -log(rn)/Rtot is taken to be the waiting time until the next event, considered as a Poisson point 

process. Time t is advanced by that amount and then a particular transition is selected by a 

second random number rn2 by partitioning Rtot into segments proportional to their relative rates 

and finding which segment contains rn2* Rtot. The action associated with the prescribed event 

(e.g. increment/decrement numbers in states SEIRD of the villages connected by the link) is 

taken, and then the above is repeated for the next step. This is continued until t reaches tmax 

specified in the input parameter file or tswitch, the time set for a discrete change in parameters. 

Output is produced whenever t crosses tout, which is then incremented to t plus a user-specified 

interval (usually one day). This time-binning is only for output and plays no role in the 

continuous-time evolution of the epidemic. 
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Super-spreading 

It is known that the distribution of secondary COVID-19 infections generated by a single, 

infected individual is over-dispersed (i.e. has a long tail compared to the Poisson distribution of 

infections expected if transmission were random).  Although the average R0 is estimated to be 

2.5-4 in the absence of social distancing mitigations, contact tracing has shown that single 

individuals have infected up to a hundred others. This is known as super-spreading events, and 

can occur by several possible mechanisms, involving either a predilection of an individual (e.g. a 

celebrity who travels widely and contacts many other people) or a situation in which individuals 

were placed in unusually close contact (e.g. a church choir in an indoor location).  On the other 

hand, the majority of infected individuals do not appear to spread the infection to anyone.  It has 

been shown [13] that this over-dispersed distribution can be approximated by a negative 

binomial distribution, with mean R0 (by definition) and dispersion parameter r<<1, for example 

3 and 0.16. By iterating this distribution for several generations of viral spread, it is found that 

the eventual distribution of epidemic size is predicted to be quite different than found for a 

hypothetical stochastic transmission by Poison-distributed secondary infections with the same 

R0. A recent model of contact tracing assumed, based on data from the Netherlands, that the 

distribution of number of personal contacts outside the family is distributed as a negative 

binomial and used this to generate random changes to infection levels at 1-day intervals [23]. 

 

Unfortunately, viral generations do not remain synchronous in time, so it is not straightforward 

to incorporate super-spreading in a time-dependent epidemic evolution model except by 
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following the interactions and infections of each individual in the population, as done for 

example in the FLuTE simulation for influenza [8].  This is very compute-intensive, but a more 

significant objection from our point of view is that it depends on knowing (statistically) the 

social interaction groups and travel behavior of the population at a fine-grained scale, and these 

have been severely disrupted by mitigation efforts during the current pandemic.  Rather than 

speculate on these variables, we have developed a modified Markov scheme that tries to 

reproduce the observed distribution of secondary infections by replacing R0 in the event-rate 

calculations by an infectivity that is itself stochastic. 

 

Supposing that an individual produces, a posteriori, K secondary infections over the lifetime tdur 

of his infection, the required rate is K/tdur .  However, tdur is itself stochastic:  in our model, as in 

simple SIR models, recovery is treated as a Poisson point process with a rate 1/trec per infected 

individual where trec is the observed mean duration of infections (it is not presently known 

whether that is true of asymptomatic infections).  When there are multiple infected individuals 

present, if recovery events in the population are random with a rate ki/trec, where ki is the number 

of infected individuals in the village, a super-spreader is likely to be “recovered” before (or after) 

doing his “job”.  To avoid this, we have adopted the following scheme: 

• In each village j, at each event, an infectivity inf(j) is maintained that takes the place of 

ki*R0 in the SEIRD rate equations. 

• Whenever a new infection is created (by conversion of an exposed individual), a random 

number K is drawn from a negative binomial distribution of mean R0 and dispersion reff , 
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the latter to be determined.  Inf is incremented by K and the individual infectivity K is 

placed on the top of a linked list. 

• Whenever a random recovery event is generated at the above-mentioned rate, the oldest 

individual infectivity is removed from the bottom of the list and subtracted from inf. 

 

The overall rate of infection events, based on inf, will be a superimposition of the rates of the 

individual infection events generated by each infected individual.  The mean number of 

secondary infections actually realized by one infected individual over the life of his infection will 

be K*tdur/trec.  Since infections recover in the order in which they were created, if there are n 

infections active, tdur will be the nth waiting time of the Poisson point process of rate n/trec 

(where n=ki(j)), whose probability distribution is proportional to poisson(n-1,n/trec).  The 

individual infections generated by individual K are a Poisson point process, so the probability 

that the individual actually generates j secondary infections is poisson(j, K*tdur/trec).  Integrating 

this over the distribution of tdur, multiplying by the probability mass distribution of the negative 

binomial distribution and summing over K we find:  

 

as the distribution of the actual, realized number of secondary infections.  This is a long-tailed 

probability distribution that can be fit, by an appropriate choice of reff, to approximate the 

empirical negative binomial distribution with r=0.16 over the relevant range.  With more than a 

few active infections present, the distribution converges to: 
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We choose reff to give the best least-squares fit on a linear scale of the case n=1, which is the 

most important stochastic case since it governs the chance that a single infected individual can 

start an outbreak, giving the chance that an infected individual causes no secondary infections, 

p(0,1)=0.62 similar to the empirical distribution.  These distributions are all normalized and have 

mean R0 and differ dramatically from the Poisson distribution (Fig S3, dashed line) assumed in 

the classic SEIR model.  Larger values of n are decreasingly important because the aggregate 

distribution of the actual infection rate controlled by the sum inf behaves similarly to 

negbinomial (R0 ,n*r) which converges to Poisson, so stochastic effects become less important 

once there are many active cases. 

 

Super-spreaders vs super-spreading events 

Super-spreading can be a property of the individual or of the circumstances.  What happens when 

an individual infected patient migrates to a new village?  Does he keep his identity or does he 

assume the infectiousness typical of the local R0 of his new environment?  In the model we can 

make the choice, determined by a logical variable SPREADR (default TRUE. controlled in the 

demos by the input parameter spreads).  If SPREADR is true, a migrant keeps his prior K value 

which simply migrates from the top (newest) link to be added to the top of the infection list in 

the new village, thereby preserving his infectious lifetime in his new home.  If SPREADR is false 

then the K value of migrants is re-randomized using the local R0 and reff and the infectivity of 
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transient visitors in the alpha process is re-scaled to the local value of R0.  In the current version 

of the program, SPREADR is a single variable governing all events, but it could easily be made 

specific to individual links to distinguish groups that are vulnerable due to high density in their 

home village (e.g. factory or warehouse) versus groups that are intrinsically super-spreaders due 

to their individual behavior. 

 

Software Considerations 

The model software is written in Fortran 77/95.  The main simulation engine, described above, is 

in the form of a single Fortran module SIMULATOR.  It is intended to be driven by a front-end 

program that sets up the distribution of the populations, topology of the network, and parameter 

changes at discrete time points, and connects to SIMULATOR by calling subroutine EPISIM (28 

variables).  Ideally, the front end should use some kind of scripting language based on network 

concepts.  For purpose of these demonstrations, we hand-coded a front end – epichainF, 

describing a chain of urban clusters (or a single cluster) connected by bidirectional travel, each 

linked to a large set of small subpopulations whose characteristics differ from the urban cluster. 

The single Markov-chain structure of the model is intrinsically serial, and is implemented in a 

single processor thread.  For configuration with a large number of links sharing a common hub, 

the large number virtual links can make this slow.  The main inner loop will be parallelized in 

future versions.  
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Figure legends 

Fig 1: Complex dynamic patterns of SARS-CoV2 infection in simulations in a heterogeneous society 

when infection in isolated clusters are ignited by an urban cluster implementing various lockdown 

strategies. A, isolated clusters generate a second delayed peak when no intervention is implemented. 

Inset schematically illustrates the society structure in this scenario. Contributions are shown by different 

colors. B, an apparent plateau after early reopening and complex rise pattern during close period (inset). 

Green shade shows the lockdown periods. C, A multimodal rise (inset) with additional peak generated by 

rural cluster after full reopening at day 225. D, A delayed second wave emerged after full reopening at 

day 365. E, The dynamics of total number of deaths in each scenario (A-D). 

 

Fig 2: Highly susceptible integrated clusters (hotspots) drive SARS-CoV2 infection in an urban 

cluster. A and B, Initial rise of infection in hotspot clusters is followed by the infection in urban cluster 

with a delay of about 30 days. Y-axis represents active infections in % population reflecting for hotspots 

(red line) the ratio of all active cases in all hotspots to entire population of all 250 hotspots. Inset shows 

schematically the society structure in this scenario. C, Infection in individual hotspots (multiple colors) 

substantially fluctuates in terms of time of ignition and magnitude from the mean (red bold curve). See 

also Movie S1. C, Explosive infection in hotspots within locked urban cluster substantially increased the 

peak of infection in the entire society and shifted it towards much earlier occurrence from about 400 days 

to 200 days. Shown are 10 simulation runs for each scenario.  

 

Fig 3: Complex infection propagation patterns in multiple urban areas containing hotspots.  A, 

Schematic illustration of the heterogeneous society used in simulations. B, Total infection count oscillates 

as infection propagates. While individual oscillations exhibit substantial variations in timing and 

amplitude, the patterns remain the same (i.e. 4 oscillations, reflecting infection surge in each urban 

cluster). C, The infection in hotspots is delayed before the lockdown at day 40, but then is always in the 
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lead (red curves), driving infection in each urban cluster (blue curves) and facilitating infection 

propagation among clusters (Movie S2).  

 

Fig 4: Second wave in the hotspot scenario. Urban cluster generates a second wave of infection when it 

reopens from R0=1.05 to R0=2.50 on day 360 (green line), whereas hotspots with R0=3.0 (red line) have 

acquired immunity in the first wave and do not participate in the second wave. 
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Fig. S1. The distribution of secondary infections generated by infectious individuals. 
Black: Observed negative binomial distribution (Althouse, B. M., et al. 2020; "Stochasticity and 
heterogeneity in the transmission dynamics of SARS-CoV-2." https://arxiv.org/abs/2005.13689); 
Green, blue, magenta, red: The actual realized number of secondary cases generated over the 
lifetime of one infection in the presence of n other infections individuals according to our 
scheme.   All distributions have mean R0 =3.0.  Dashed line: Poisson distribution with mean R0 
as implicit in mean-field SEIR models.
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Fig. S2. Heterogeneity of isolated clusters is important for the infection pattern. In the most complex scenario of “moderate lockdown” (Fig. 1C in 
main text) we substituted 250 clusters by one big cluster with the same population of one million people keeping all other parameters the same. The 
big isolated cluster generated substantial and sharp infection peak (panels A and B) that is absent or very small in case of 250 isolated clusters (panels 
C and D). Each panel shows 10 simulation runs (overlapped multi-color curves). The lockdown period from day 40 to day 225 is shown by green shade. 
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Fig. S3. Stochastic propagation of infection from one urban area to another via hotspots in a society of 4 
connected urban areas, each in lockdown but having hotspots.  Each plot from top to bottom shows 
infection explosions in each individual hotspot for each urban area (specified by labels). See main text 
for details and also Movie S2.
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Movie S1 (separate file). Highly susceptible integrated clusters (hotspots) drive SARS-Cov2 

infection in an urban cluster in stochastic simulations of SHEM model. Infection time-

dependent changes in hotspots (small squares) are coded by red shades saturating (pure red) at 

5% of infection in each individual cluster. Infection in the urban area (big square) are is coded by 

blue shades saturating (pure blue) at 5% of infection in the area. The time is shown in the left 

upper corner in number of days. Large urban cluster had 1 million individuals with R0 = 1.25 

while 250 hotspot clusters with 1200 +/- 500 people had the same internal R0 = 3.0. 

Movie S2 (separate file). Hotspots drive SARS-Cov2 infection in each urban cluster and 

infection propagation among urban clusters in stochastic simulations of SHEM model in a 

society of 4 connected urban areas. Time-dependent changes of infection in hotspots (small 

squares) are coded by red shades saturating (pure red) at 3% of infection in each individual 

cluster. Infection in the urban area (big square) is coded by blue shades saturating (pure blue) at 

3% of infection in the area. The time is shown in the left upper corner in number of days. Each 

urban area of 100,000 people at day 40 became closed from R0 = 2.5 to R0 = 1.25 at day 40. Each 

urban area has 30 hotspots with 1200 +/- 500 people that avoid closing and keep the same 

internal R0 = 2. 
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