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What can the ideal gas say about global pandemics? Reinterpreting the basic
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Through analysis of the ideal gas, we construct a random walk that on average matches the
standard susceptible-infective-removed (SIR) model. We show that the most widely referenced
parameter, the “basic reproduction number” (Ro), is fundamentally connected to the relative odds
of increasing or decreasing the infectives population. As a consequence, for Ry > 1 the probability
that no outbreak occurs is 1/Ro. In stark contrast to a deterministic SIR, when Ro = 1.5 the random
walk has a 67% chance of avoiding outbreak. Thus, an alternative, probabilistic, interpretation of
Ro arises, which provides a novel estimate of the critical population density v/r without fitting
SIR models. We demonstrate that SARS-CoV2 in the United States is consistent with our model
and attempt an estiamte of v/r. In doing so, we uncover a significant source of bias in public data
reporting. Data are aggregated on political boundaries, which bear no concern for dispersion of
population density. We show that this introduces bias in fits and parameter estimates, a concern
for understanding fundamental virus parameters and for policy making. Anonymized data at the
resolution required for contact tracing would afford access to v/r without fitting. The random walk
SIR developed here highlights the intuition that any epidemic is stochastic and recovers all the key
parameter values noted by Kermack and McKendrick in 1927.

Keywords:

INTRODUCTION

The past few months have been dominated by
the global pandemic caused by SARS-CoV2. The
susceptible-infective-removed (SIR) model[1] has become
popularized and is frequently seen in the media. Reports
are emerging that aim to control misinterpretation of the
model and motivate further developments of models, even
alternative models, for infectious disease.[2-6]

Estimation of critical values, those defining the like-
lihood of an outbreak, are reguarded as difficult to es-
timate for various reasons.[7] As we build increasingly
complex models to better fit empirical data and estimate
crititcal parameters, one has to also manage the extent
to which the models correctly account for 'the physics’
underlying the empirical data. With this in mind, our
current goal is to enable evaluation of critical parame-
ters directly from empirical data with as few assump-
tions as possible. In the end, our key assumption is that
we have access to data that can indicate the population
density at which illness causing exposures occurred. Re-
cent projects are emerging with the hopes of making this
data a reality.[8] At the moment however, we do not have
access to such data.

Toward our aim, this article introduces a version of
the SIR model from the perspective of statistical me-
chanics. We show that the ideal gas system, a common
benchmark in statistical physics, can give rise to a ran-
dom walk that on average recovers all the results of the
standard SIR model. The random walk leads to new
interpretations of Ry, the “base reproductive number.”
Importantly, we find Ry as the ratio of instantaneous
probabilities for increasing or decreasing the number of

infectives and therefore it controls the odds of outbreak
for fixed population density. As a mild departure from
the deterministic statement that ’outbreak will occur if
Ro > 1’ we find that an outbreak will occur with proba-
bility 1 — 1/Ro. We demonstrate that SARS-CoV2 data
in the United States likely conforms to this interpretation
but our ability to accurately evaluate threshold values is
limited by the fact that publicly available data is aggre-
gated on taxation and political boundaries, disregarding
population dispersion. We note that the ideal gas has
appeared in previous literature for epidemic modelling,
though we take a different route of analysis here.[9]

In what follows we will introduce the standard SIR
model and restate its key observations. We then define a
random walk that is on average consistent with the stan-
dard model. We present the average number of initial
secondary infections, the average time-to-peak infection,
and a novel observation on Ry regarding the odds of out-
break. Finally, we consider applying the results to the
United States SRAS-CoV2 data.

THEORY AND RESULTS

Standard SIR model

Following the language of Kermack and McKendrick][1]
we define the susceptible (5), infective (I), and removed
(R) populations. The population S are the members
of the population that are not immune to the disease
in question. Like Kermack and McKendrick we assume
that is the whole population. The infective popula-
tion I are those currently infected and actively spread-
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ing the disease. The removed R population are those
who have recovered or succumbed to the illness, or have
simply decided to stay home while sick so as to miti-
gate spread. In what follows all of these populations
are in fact population densities. It is clear on inspec-
tion of equation 4 in reference 1 that Kermack and McK-
endrick also formulated their model in terms of popula-
tion density. In a fixed area, we have the conservation
law N = S+ R+ 1 = Sy + Iy where the total population
density N is fixed at all time. Sy and Iy are the initial
values for suceptible and infective. The initial removed
population is always set to naught.

Kermack and McKendrick noted that there is a critical
density N*. Densities below N* do not experience full
outbreak if exposed to one (Iy = 1) initial infection. Den-
sities above N* will experience an epidemic, the severity
of which increases with the density until the population
is fully saturated.

The SIR model for the dynamics of an outbreak, un-
der the assumption of constant rates of infectivity r and
removal 7, is

dsS/dt = —rSI
dI/dt = rST —~I (1)
dR/dt = 71

In the present, the initial values for this system of equa-
tions are always understood to be Sp = N — 1, Iy = 1,
and Ry = 0. The critical density found by Kermack and
McKendrick was N* = ~/r. The units of r are then
[dt]~[N]~!, which is reciprocal unit time by reciprocal
unit density. In a discrete system ST is the number of
pairs between members of the S and I populations, so r
can be seen as setting the fraction of those pairs that will
transition from status S to status [ in a unit time. The §
and I are continuous in the standard SIR model, however.
The parameter v has units of [dt]~! and sets the rate of
leaving status I for status R. The widely known “base
reproduction number” (or ratio), Ro, is Ro = rSp/ and
is observed by considering dI/dt. Our definition is con-
sistent with Daley and Gani, see problem 1.2 on page 17
for example.[10] We note that interpretation of Rg is a
source of some debate[11, 12]. If dI/dt < 0, rS/y < 1
and the infectives do not expand in number. If dI/dt > 0,
then 7S/ > 1 and the infectives do expand in number.
The critical density is N* = ~/r which corresponds to
Ro=1.

The number of infectives generated by the first lone
infective, in the first unit time, is rSy. On average it takes
1/~ time units to remove this initial infective. Thus,
Ro = rSp/7 is the average number of infectives created
by the initial infective assuming that Ry is a negligible
fraction of Sy so that there is a constant rate of infection
during the 1/+ time interval.

The above model is formulated on continuous variables
S, R, and I and with a more or less macroscopic notion of

the individuals in the population. At any instant of time
the rate of change of S is —r ST which need not be an inte-
ger nor be greater than unity depending on the choice of
unit time and r. What we consider next is how to define
the SIR model wherein each individual of the population
is explicit and the change —rST is limited to integer val-
ues. Thus, in a unit time the number of susceptible S,
infective I and removed R change by integers as they
would in the “real world.” Ultimately, treating the pop-
ulation as individuals would allow a number of advances
toward more realistic particle-based modelling. Contact
tracing, sub-populations with poor mixing, variations in
dwell times, etc., could be studied in a full particle-based
model.

Ideal gas

Consider an ideal gas model of a particle system in the
canonical ensemble with fixed number of particles, fixed
area containing the particles, and fixed temperature 7T'.
In the ideal gas, the particles spread randomly with uni-
form probability density over the area they occupy and
they exert no force on one another. Each particle carries
with it a small circular boundary defining the radius of
contact. If another particle is found within this bound-
ary, the two particles are considered to be in contact. We
use A; to indicate the i-th particle’s area of contact and
we write A for the total area. All the radii of contact are
equal.

One can simulate all the particles in the system, just
as is done in molecular dynamics simulations. The sim-
ulation would solve two stochastic differential equations,
two Langevin equations, for each particle to obtain the
change in particle position as a function of time. Disease
transmission can be modelled in this system by includ-
ing an attribute for each particle. The attribute is just
a label, S, I, or R which indicates whether the particle
is susceptible, infective, or removed. If one particle with
label S is found in contact with a particle labeled I, we
can model probabilistic disease transmission with a “coin
toss.” We assign the probability of transmission to be pp
and let the “coin” come up heads with py probability. If
one S particle is in contact with an I particle, the coin
toss is performed and the S attribute transitions to I if
the coin is heads. The label change does not impact the
dynamics of the particles at all, it is only a label.

Rather than do the full particle simulations, we devel-
oped expressions for the dynamics of this system. This
reduces simulation time, by avoiding the simulation, and
ultimately allows us to treat millions of particles ex-
tremely rapidly. The particle simulations, we know, will
sample the Boltzmann distribution p o exp|—H/kpT]
with H the system Hamiltonian and kp the Boltzmann
constant. So we may approach this problem from the
stand point of statistical mechanics in the canonical
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ensemble.[13]
Let there be one infected particle, say the [-th particle,
and set the number of infected particles to I = 1. For

J

the ideal gas, the probability that a number x of the S
particles are in contact with the one infected particle, can
be evaluated with the following configuration integral|[14]

pe(z,5,1) = (

8

X

The indicator function 1 is unity if its argument is sat-
isfied and zero otherwise. The momenta integrate away
in this case and we let g¢; denote the 2-dimensional po-
sition of the i-th particle. Integrals are understood to
be over the fixed area occupied by the particles. In the
ideal gas, increasing infectives in turn increases the area
that is potentially infectious. If there are 3 infectives, the
probability of contacting an infective goes up three fold.
The probability of contacting one infective is A4;/A and
so the odds of contacting any of the three infectives is
3A;/A. When the contact radius is measured in square
feet and the containing area in square miles, as is the case
here, the particle-particle contact area A; is sufficiently
small compared to the total area A so that IA;/A <1
even if I = N. If the probability of disease transmis-
sion upon contact is pr < 1, then the joint probability
of contacting a single infective and contracting illness is
r = prA;/A. risthe odds of contracting illness per infec-
tive. Thus, the parameters of the standard SIR model are
mixing what we consider fundamental measurements of
the illness (pr) and attributes of the population (A;/A).
Sampling r from a distribution then can be viewed as
a coarse-grained treatment of behavioral differences in
individuals of the population. The total probability of
contracting x new illnesses is then

pr(x,8,1) = <i> (r1)*(1—r0)°" (2)

This is just the binomial distribution, as expected for the
ideal gas.[14] The binomial distribution can give rise to
a Poisson distribution when S is very large compared to
xz and A = r1S. Here the Poisson parameter will be a
function of I, as intuitively captured by the ideal gas.
The expected number of new infections for this system
with S susceptible and I infectives is

S
prr(m,s, IN=rSI (3)

x=0

This result shows that on average, the ideal gas sys-
tem with S susceptible and I infective will generate the
same number of new infectives rST as the standard SIR

S) 7, fA l[inAz]dquf=x+l fA 1[4.1€A1]danf=1 fA dg; fA dau
Hf:l fA dquf‘:l fA dg; fA dq

- a2

model of equation (1). In Reference 1 equation 29, k is
r here. We have explicitly connected the parameter r to
the probability of contact in the particle system A;/A. r
contains information about the total area confining the
population as well as information about the contact dis-
tance. In what follows our contact area is set as a circle
of a seven foot radius and the total area is one square
mile, A;/A = 6x1075. We also arbitrarily take pr = 0.1
to assign a 10% chance of contracting illness on infective
contact. The above results place physical interpretations
and limitations on r.

A note about “time.” The ideal gas is at equilibrium
and the only things changing are the S, I, R labels but
these labels do not alter the dynamics (or distribution)
of the gas particles. We can then invent a “unit time”
by stating that this unit amount of time has passed each
time we evaluate equation (2). If we were to perform
molecular dynamics simulations of the ideal gas, evalu-
ating equation (2) amounts to observing the system con-
figuration and reassigning the S, I, R labels according to
our contact and transmission criteria. The next observa-
tion and label exchanges can take place on any timescale
longer than the dynamical correlation time. In our case
we will evaluate equation (2) every unit time 7 = 1 rather
than do explicit simulations of the ideal gas. This time
unit could be calibrated to real data recorded by match-
ing timescales. The time passing before the first infective
is removed can be used to tune . Obviously real world
situations are more complex as we expect v to change
as awareness of deadly disease heightens. Nevertheless,
we henceforth absorb 7 in 7 which becomes the odds of
contracting illness per infective per unit time. Consistent
with the standard SIR we assume interactions last for
some average length of time.

For the I infective particles we may also define the
probability that any one (or more) of them will transition
to the removed set

nen=()e0-0"

Again consistent with the SIR model, the instantaneous
number of particles transitioning to the removed set in
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a unit time is yI. Like r above, we let v absorb the
arbitrary unit time to represent the odds of removing an
infective per unit time. In terms of the ideal gas, this
is treated as a change of label only and does not impact
the dynamics of the gas. With respect to configuration
integrals, the process of transitioning to removed matches
the probability of finding infected particles in an area
of size yA. Once an infected particle hits this area, it
becomes “removed.” So far we have an ideal gas that on
average behaves as the SIR model with respect to r and

Y-

A random walk for S, I, and R

Consider building a random walk of the label /attribute
updates based on p,(x) and p,(x). We define the random
variables

X(2,8,1) = {—i—x with probability p,.(x, S, I)

0 otherwise

(5)

[ +4ax with probability p(z, I)

Yo, I) = { 0 otherwise

Let {X;}M, be a sequence of independent observations
of X for a fixed #, S, and I. Then & M St x; =
rSI for large M and L. For the random variable Y
we have a similar result. Thus, the random walk is
Iy = Iy + Zf;l Zi:o[Xz —Y;] is comprised of incre-
ments dIZ = Zi‘ZO[Xi((E,Sifl,Iifl) - Y;(IE,L;,l)] that
on average increase infectives by 7SI while decreasing
infectives on average by —vyI at each unit time. Yet, the
susceptible, infective, and removed populations change
by integer counts.

The M-th step of the random walk is

L
Su=5-30 )X,
r=1

i

L
IM—IO+ZZ ()] (6)
RM:RO'FZZY;‘@?)

where 7 time passes at each update. Notice that if we
average the change in infectives at the first step

<Il ZZ 1‘ SO,IO K(JE,I())] (7)

zlwl

=1rSolo — vl

If (I, — Ip) > 0, then rSo/y > 1. If (I; — Iy) < 0, then
rSo/v < 1. If we define Ry = rSp/v, then we arrive
at the expected conclusions: If Ry > 1 infectives will
increase (outbreak), and if Ry < 1 infectives will decrease

(no outbreak). For the random walk however, this is only
true on the average. It would not be impossible to see no
outbreak even if Ry > 1 and vice versa. We make these
statements more concrete in the next subsection.
On average, the random walk generates its first sec-
ondary infective in
1 1

i pr(1,80,10)  Solor ®

iterations, Al = 1 new infective. The initial infective,
Iy, generates its second infective after another
1

2 g e )

iterations. We can build ¢;3 and so on. The number of
iterations to, on average, generate n infectives is

i / L4
n= oo dr
+ 0 (SQ—.”L')I()’I‘

1
= Ly hS "
B 7“[0 ’I“IQ(S() — n)
Iy appears here to make the units clear, but Iy = 1.

We can solve for the number of secondary infectives, n,
generated by [ after 1/ iterations to find

n, = So(1 —e~") (11)

Expanding the exponential to first order shows that Iy
generates n., = rSy/y new infectives. The standard SIR
model suggests [y will generate Ry = rSp/7v infectives
before being removed and we have just obtained the same
result for the random walk.

A new interpretation of Rg

For the random walk of equation (6) we can express
the relative odds that infectives, Ip;, will next increase
or decrease by an amount x as

pr(2, Sar, Iar) _
p’y(x7SM;IM) (12)

_ TI)SMff(l _ 7)17I]u

P ({,E SK,IM)

_1Sm —Jrl\e
=17, —) (1
j=0 IM_]('Y) (
Importantly, when 1 —r/ ~1and 1 —~v ~ 1,

r
Pi(l,SM,IM)%SM;:RAI (13)

More specifically, this gives us
P:t(LSO»IO = 1) ~ Ro (14)

Thus the widely used base reproduction number, R, is
equal to the ratio of odds that the next update to equa-
tion (6) will increase or decrease by one infective. The in-
verse function P 1 P~ is also a useful quantity. When
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FIG. 1: Fraction of early outbreak termination: 100
random walks were generated at different N with r = 6x 1077
and v = 0.00002. (A) The fraction of walks terminated by
tpeak, F(t < tpeak) With tpeax is defined in equation (17),
plotted with P4 (1, So, lo) and 1/Ro. (B) Critical density ~/r
is estimated from F(t < tpeak)-

Py > 1, P+(1,5,1) is the fraction of all realizations of
the random walk at Ip;, Sp; that will decrease in the
next non-zero update.

The equivalence Py(1,S0,Ip = 1) = Ry provides a
new interpretation of Ry. If Ry < 1 the process Iy is
more likely to remove the initial infective in the first non-
zero update than it is to generate new infectives. When
Ro > 1 the process I is more likely to generate a new
infective in the first non-zero update than it is to remove
the initial infective. The generation of a new infective
is equally likely as the removal of the initial infective
on a non-zero update when Ry = 1. On average then,
min[1, 1/Rp] is the fraction of realizations of I, that will
terminate without significant increase beyond the initial
infective for any Ry > 1. The fraction of realizations
that end before a time t* will be called F(t < t*). We

J

Transitions out of the susceptible state are indepen-
dent from transitions into the removed state and we have
equation (12) for the likelihood of new infectives. From
this likelihood we can estimate the average number of
iterations required to gain one infective from the initial

illustrate this result in Figure 1A, showing that the frac-
tion of realizations ending early without widespread out-
break are given by 1/Ry. Recently extreme value theory
has been motivated as a tool for studying epidemics and
here we have shown the odds of escaping outbreak follow
a “fat-tail” distribution.[5]

The standard SIR model concludes there will be an
outbreak when dI/dt = rSI—~I > 0. This condition for
growth of the infectives leads directly to the conclusion
that Rg = rSp/v > 1 leads to outbreak. The stochastic
interpretation of this condition is that there may be an
outbreak with odds not greater than 1—1/Rg for Rg > 1.
When Ry = 1.5, the odds of outbreak are not more than
33%. For the standard SIR, though, the conclusion is not
probabilistic and thus there must be growth in infectives.
The random walk appreciates that while it is 1.5 times
more likely to increase infectives it is not impossible nor
even all that unlikely to see instead a reduction in in-
fectives. In the initial phase of an epidemic the number
of infectives is small and thus at early times it is likely
that these infectives will be removed before causing mas-
sive spread even if Ry > 1. Stochastic effects are known
to elevate the threshold of outbreak relative to the deter-
ministic case, and our findings are consistent with this.[7]

Estimating time to peak infectives

The random walk model presents two timescales. The
set of walks that end without outbreak terminate at early
times. The walks that increase initial infectives end at
late times, but only after consuming enough of the sus-
ceptible population that Sp; ~ v/r so that Py ~ 1.
When this threshold is met, decreasing infectives and
increasing infectives are equally likely (equation (13))
and the momentum for new infectives breaks. We de-
fine the critical population S}, = ~/r for which Py = 1.
Once Sy — «/r susceptibles have been removed from Sy
the epidemic will peak and removal of infectives will be-
come more likely than generation of new infectives. This
critical threshold is the same as found in reference 1,
N* = 5%, = ~/r, see the text following equation 32
there. Figure 1B demonstrates that where F(t < t*)
can be measured, it affords an estimate of the critical
value v/r = N x F(t < t*).

conditions as

1 1
t 1 = =~
* pr(l,So,Io) S()I()T

AT (15)

where Al = 1 is the new infective. The average number
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FIG. 2: Random walk and SIR: 100 random walks are shown for fixed r = 6 x 10”7 and ~ = 0.00002 for various population
densities. Standard SIR model is shown in red for the same parameters. Circles indicate where each random walk terminated
with zero infectives. Black vertical line corresponds to tpeak for each panel. Recall Ro = Sor/7.

of iterations to generate an additional new infective is

1
G DT (16)

and so on. The epidemic spread breaks momentum when
the susceptible population reaches the threshold v/r, as
noted above. The cumulative number of infectives, which
also counts those infectives that have transitioned to re-
moved, is therefore Sy — v/r when the system reaches
this threshold. We estimate the number of iterations to
reach the threshold as

So—~/r 1
theak = d
peak / (So — )T +y)r"Y

S3+S02+Solo
ln( 0 o2 )

B ’I"(SQ +Io)

(17)

We keep the I explicit in this formula for clarity of units
but remember Iy = 1. This is an estimate for the point
in time where the random walk will lose momentum and
P, ~ 1, leaving increase or decrease in infectives equally
likely. As an aside we note that the time-to-peak is also a
fat-tail distribution.[5] Ideally, tpear should separate the
two timescales discussed above. Those walks ending early
will end before tpcak. Those walks that reach peak infec-
tives will end some time later, only after they dissipate
all current infectives.

Figure 2 shows how the estimate {pcax performs and
compares the random walk to the standard SIR model.
The vertical line in each panel indicates tpcaky for that
choice of Sy and Iy. Both r and  are fixed. In each case,
as shown in Figure 1, 1/Ry is the fraction of trajectories

ending before tpeary time units. When R = 2, 50% of
the walks end before t,c.1y yet the standard SIR model
characterizes the behavior of the walks that do express an
outbreak. At Ry = 3, one third of the walks end without
outbreak and at Ry = 5 one fifth avoid outbreak. In
all three of these cases the standard SIR describes the
random walk behavior well and shows a slight delay in
peak infectives timing as R is decreased. However, when
Ro = 1.5 67% of the random walks end before ¢,cax7.
This means that more than half the time there will be
no outbreak at this Ry even though Ry > 1. This is the
limit in which we would expect discrepancy between the
random walk and the deterministic SIR model.

Application to SARS-CoV2

The above model motivates concern for fitting SARS-
CoV2 data. The data at state-level is the aggregate
of many counties as they encounter a common disease.
Each county is in turn a composite of many communi-
ties. The above model, and the standard SIR model,
are formulated on an area of uniform population density.
Ideally, the model would be applied to, and fit to, real
data that has been aggregated to maximize uniformity
of population density. These densities may be transient
in time, corresponding to gathering for an event, work,
transportation, etc. When data is instead aggregated by
political or taxation boundaries significant heterogeneity
of population density is encountered.

To mimic this situation, we set up C = 4 individual and
independent “communities” each with distinct popula-
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tion densities. Each community has its own initiation or
lag time because each community in the SARS-CoV2 out-
break did not get seeded with its initial infection at the
exact same time. Assuming that once disease is detected
in an individual that individual is “removed,” then track-
ing the removed class of the above model would amount
to tracking observed cases. Giving each community an
index, Rjps(i) being the i-th community’s cummulative
case density at time M, > . Rar(i)A(4) is the total case
load in the mock “state.” Each community is assumed
to present a more or less uniform density over some area
A(i), which might be where people of the community
work or live depending on the data and known location
of transmission events.

Figure 3 displays 100 realizations of equation (6) for
each of the communities, along with the “state-level” ag-
gregate. Simulation details are given in Figure 3 cap-
tion. We solved the standard SIR model at 50 person
per square mile and multiplied case density by 4 square
miles to obtain the standard SIR model shown in blue in
Figure 3. The standard SIR model used the exact same
parameters as did each community simulation, but was
performed at the state-level density. The standard SIR
model will only indicate the worst possible outcome when
the correct parameters are used. This owes in part to the
fact that stochastic effects elevate threshold density, as
discussed above and noted by others.[3, 7] Additionally,
fitting to any one of the realizations in gray could pro-
duce parameter estimates that are not accurate. Con-
cerns over fitting Ry and ignoring the dependence on
density has been raised by others[2], and here we cau-
tion against ignoring dispersion and that a distribution
of outcomes is possible for a fixed parameter set.

In Figure 1 we put forward a new way to estimate
~/r that does not require fitting. That procedure re-
quires that we compute the fraction of realizations that
end early as a function of population density. For the
state-level aggregate shown in Figure 3, the odds of end-
ing early are controlled by the most dense community,
where there are N =67 people per square mile. However,
any observation on the state-level outcome will be associ-
ated with the state population density of 50 persons per
square mile.

For the given choice of r and ~, and Figure 2, we know
Ry = 2 for the most dense community and so the odds of
ending early are 1/2. At the state-level, the population
density is 50 persons per square mile. Given only the
state-level data in Figure 3, we would measure a 50%
chance of ending early. Indeed, counting the gray lines
that extend above roughly 5 cases shows that only about
half of the realizations displayed an outbreak of any kind.
Given that half the realizations end early and a state
density of 50, we obtain the estimate 777‘ =N xF =25.
This is an incorrect estimate of v/r and the error stems
from using the state population density rather than the
density of the most dense community. Had we used N =
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FIG. 3: State-level vs. community-level: Community
densities were: 38, 45, 67, and 50 in order. Initial seed times
were: 10000, 150000, 1, and 550 iterations respectively. r =
6 x 1077 and v = 0.00002.

67 for our estimate we would have found 777" = 33.5,
which is extremely close to the actual value of v/r =
33.333.

This demonstrates that mixing heterogeneous popula-
tion densities into an aggregate, such as a state or county,
will produce inaccurate estimates of v/r. Moreover, es-
timates will almost surely be an exaggeration of the true
underlying values making the disease appear more ag-
gressive than it is. This will be the case any time the
state-level population density is lower than the most
dense community in the state. A more accurate result
could be made if the community densities are known.

Fully aware of the bias generated by aggregating
data on arbitrary taxation and political boundaries, we
present here an estimate of v/r from SARS-CoV2 data
in the United States. We collected all United States
county-level data from www.usafacts.org and gathered all
county population density from www.census.gov. These
data were aggregated by hand and are available at
github.com/cpommer/Covid19_County Data. We de-
tected early-end outbreaks by checking for a 20 day
plateau in reported cases. That is, if a county had at least
1 case and then had 20 days of zero new cases then we
consider that county’s outbreak as having ended. Out-
breaks may re-seed later but after 20 days of no new
cases, we assume the only way to generate a new case
is a re-seeding event. At the time of writing, none of
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FIG. 4: SARS-CoV2 critical density: All county data was
binned on a 1 person per square mile bin-width. A) The num-
ber of U.S. counties at each population density is shown for
all counties (green) and for counties that also reported SARS-
CoV2 (black). B) The fraction of counties with reported
SARS-CoV2 also exhibiting a 20 day plateau in cases before
day 30, 50, 70, or 100. C) The critical density Sy, = v/r es-
timated as N x F. There are not enough counties at density
over 50 person per square mile for trustworthy sampling.

the counties showing plateau by 30 days had a re-seeding
event.

We tested for a 20 day plateau within the first 30,
50, 70, and 100 days since the initial case was reported.
Thus, we can estimate F (¢ < t*) for t* = 30, 50, 70, 100
days. We suggest that plateau falling in the first 30 days
are unlikely to reflect perturbation from stay-at-home or-
ders whereas a plateau that falls in the 70 to 100 day
range may well reflect perturbation from such orders.
With that in mind, we expected that at the 70 to 100
day time frame the fraction of counties with “early-end”
outbreaks may not follow the law expressed by equation
(13). It is also observed from Figure 4(A), that beyond 40
persons per square mile there may not be enough counties
at each density to allow good sampling of results.

The county based data seems to express fairly rea-
sonable correspondence to the model result suggesting
a 1/x profile in F (Fig. 4B). Plotting N x F for this
data we see that ~/r is between 1 and 3 persons per
square mile (Figure 4C). This result is analogous to the
model result in Figure 1B. The estimate for SARS-CoV?2
is somewhat horrifying when considering the density in
New York City, for example, as it suggests that if un-
checked this disease will consume the susceptible popu-

lation until the density of susceptibles is 1 to 3 people
per square mile. However, we know that this estimate is
biased.

It is trivial to argue this estimate is low by orders of
magnitude. For example, New York State has a popula-
tion density of around 420 people per square mile. New
York County is reported to have 71886 people per square
mile. Any results measured on state-level data at a den-
sity of 420 is going to be dominated by trends at the 171
times larger county density. When we measure F at a
county or state density, it is dominated by the highest
density community (even if transient). Shifting the value
of F to that higher density would produce much more
accurate estimates.

Unfortunately, improving our estimate of v/r by ap-
plying such a shift is highly subjective. Easily, one can
argue for a scaling of 100 to 1000 and obtain the range
100 < 77r < 3000, where the claim is that population
mixing in grocery stores, churches, social events raises the
average density during contact by up to 1000 fold. This
estimate could be improved if high resolution data suit-
ible for contact tracing were available. The large range
of possible values here demonstrates how little we know
about densities within counties. We noticed that San
Juan county in UT, which has about 2 persons per square
mile on average, has more SARS-CoV?2 cases reported in
the rural areas outside its most dense region. Very lit-
tle can be gleaned from public data about the functional
density of communities outside the areas of Blanding and
Monticello, yet most of the reported cases are found out-
side those cities.

Our crude, subjective, estimate can be compared to a
recent application of a sophisticated model for the U.S.
state of Georgia.[6] Specifically, Lau and company re-
port fitted estimates of Ry in Cobb, Dekalb, Fulton,
Gwinett, and Dougherty counties. Since they also esti-
mate a strong degree of dispersion and ’super-spreading’
in those counties we understand these Ro values as a
sort of average taking only a representative value. Since
v/r = N x F = N/Ry, we can use county density and
their estimates of Ry to validate our crude estimate of
100 < ~/r < 3000. In order, census data gives the follow-
ing population densities for those counties: 2203, 2777,
1940, 2096, 288 persons per square mile. We note that
the city of Albany in Dougherty county has a density
of 1354 persons per square mile. These densities com-
bined with the fits of Ry reported by others[6] produce
the following critical density estimates in order: 759,
925, 808, 1103, 58 persons per square mile. Npte that
in Dougherty county we obtain the estimate ~v/r = 58

at the county density of 288 and 777“ = 276 using the
density of Albany city, again showing that population
dispersion is important. The cases in Dougherty county
have largely been rationalized as resultant to a “super-
spreading” event, where a single infective interacts with
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suceptibles in a situation where population density is ex-
tremely high. With an average of 11 feet between peo-
ple, population density is 76923 persons per square mile.
With an average of 3 feet between people the density
jumps to 10% persons per square mile. Super-spreading
events likely occur at this later density where people are
mingling and interacting. These transient, high-density
situations (like special events) make it impossible to ac-
curately evaluate «/r with only county and state-level
population densities.

Our approach does not use fitting, but rather cat-
egorizes data by population density and measures the
number of communities (or counties in this case) that
have early-end outbreaks. Limited by the accuracy of
county-level population density, our estimate falls in
rough agreement with the fitted R values (where in the-
ory Rg = Syr/v) obtained by others[6] fully acknowl-
edging the subjective nature of correcting county den-
sities. With better resolution of transient organization
of population density it may be that ~/r is actually in
the tens of thousands, consistent with the current view
that super-spreading plays a key role in the SARS-CoV2
outbreak.[6] One can imagine that if SARS-CoV2 case
status was linked to anonymized cell phone data, highly
accurate acounting of transient population density and
super-spreading events would emerge. Calculating F
then arises as an accurate way to estimate key param-
eters directly from data without fitting to models. Cur-
rently, we are limited to public data which only reports
cases at the resolution of county and we have no way to
account for the dispersion of population within county
boundaries.

Equation (17) cannot exactly be applied to the current
pandemic because we do not have separate accounts of
r and . Moreover, the time-to-peak is more sensitive
to perturbation by stay-at-home order. However, there
is a clear dependence on density in the time-to-peak,
with higher densities generally reaching peak sooner than
lower densities. This provides some basis for understand-
ing the large distribution of peak-times being observed
across the United States, even though the observed times
are sure to be further perturbed by stay-at-home orders
and changing opinions as to whether or not those orders
should be followed.

CONCLUSION

We have put forward a random walk that is on average
consistent with the standard SIR model. The key inter-
pretations of the standard model were introduced for the
random walk. This led directly to a new way to esti-
mate the critical population of susceptibles defining the
threshold of outbreak without requiring model fitting.
We used this technique to estimate the critical threshold
for the SARS-CoV?2 outbreak in the United States based

on county-level data, and made light of the associated
caveats. We also rationalize the disparities in time-line
of the outbreak through equation (17), which gives an
estimate for the time of peak infectives.

CODE AND DATA AVAILABILITY

and data pre-
GitHub

The code, gnuplot scripts,
sented above can be found @ at
github.com/BradleyDickson/ideal gas_and_sir
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