Junko Kurita¹, Tamie Sugawara², Yoshiyuki Sugishita², Yasushi Ohkusa²

1 Department of Nursing, Tokiwa University, Ibaraki, Japan

Keywords: excess mortality; influenza; all cause death; stochastic frontier estimation;

NIID model

*) Correspondence to:

Corresponding author: Junko Kurita, kuritaj@tokiwa.ac.jp

² Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan

Abstract

Background: As of the end of June, 2020, the COVID-19 outbreak exhibited its highest peak on April 3. Nevertheless, no remarkable excess mortality attributable to COVID-19 has been observed.

Object: We sought to quantify excess mortality in April using the National Institute of Infectious Diseases (NIID) model.

Method: We applied the NIID model to deaths of all causes from 1987 up through May, 2020.

Results: Results show no significant excess mortality in March, April or May, 2020, when the COVID-19 outbreak affected Japan most.

Discussion and Conclusion: Because changes in application rule of the International Classification of Diseases in 2017 affected the number of pneumonia deaths drastically, we were unable to use pneumonia deaths to estimate excess mortality. it might be important to continue to monitor excess mortality of COVID-19 carefully after June 2020.

1. Introduction

To date, excess mortality has mainly been used to assess the social effects of influenza activity [1–6]. However, since the emergence of COVID-19, excess mortality attributable to COVID-19 has been attracting attention [7] as a measure of the total effects of the disease because it can reflect cases which have not been identified as polymerase chain reaction (PCR) positive. Especially in Japan, PCR tests administered per capita have been few. Therefore, concern has arisen about the possibility that some deaths caused by COVID-19 have not been recognized heretofore. Moreover, excess mortality related to COVID-19 might be expected to contribute to evaluation of vaccine effects. For these evaluations, the estimated excess mortality without the effects of a vaccine should be regarded as a baseline. Nevertheless, no such a trial has been undertaken to date. This study might be the first trial to measure that figure in Japan.

As of the end of June, 2020, the COVID-19 outbreak showed its highest peak on April 3. In all, about 17 thousand patients and about one thousand deaths from the outbreak have been reported in Japan. Although Japan has about one third of the population of the U.S., these figures are vastly different in scale from those of the U.S., which has reported 1.93 million cases of morbidity and 110 thousand cases of mortality (deaths) [8]. In light of the much lower number of patients in Japan, some criticism has arisen that low PCR testing rates might have led to the lower number of documented patients [9]. In this sense, one might regard the number of deaths as reflecting the actual situation in Japan, but with no testing-related bias.

Concerning deaths, the case-fatality rate (CFR) is about 5%. In fact, the CFRs in both countries are not much different. The lower PCR testing in Japan might be related to some problems. Therefore, we specifically examined excess mortality attributable to

COVID-19 in Japan, irrespective of the cause of death.

In Japan, excess mortality was estimated using the National Institute of Infectious Diseases (NIID) model [10], which has been the official procedure for more than ten years. It was applied to two data sources: the national monthly deaths of all causes and the respective weekly pneumonia and influenza deaths in the 21 largest cities and their total. The latter is published regularly in Japanese during the influenza season as https://www.niid.go.jp/niid/ja/flu-m/2112-idsc/jinsoku/131-flu-jinsoku.html. Unfortunately, that publication ceased in March 2020 because it is intended for influenza. The first peak in Japan was April 3[11]: excess mortality cannot be detected later than April. Instead, we applied the former to the all causes of death in April and May in Japan.

2. Method

Excess mortality is defined as the difference between the actual number of deaths and an epidemiological threshold. The epidemiological threshold is defined as the upper bound of the 95% confidence interval (CI) of the baseline. The baseline is defined as the number of deaths that are likely to have occurred if an influenza outbreak had not occurred. Therefore, if the actual deaths are fewer than the epidemiological threshold, then excess mortality is not inferred.

The data used for this study were monthly deaths of all causes from 1987 through May 2020 [12]. Our NIID model, the Stochastic Frontier Estimation [13–19], is

4

presented as

$$\log D_t = \alpha + \beta T_t + \gamma T_t^2 + \sum \eta_i M_{it} + \varepsilon_t \quad \text{and}$$
 (1)

$$\varepsilon_{t}=v_{t}+|\omega_{t}|,$$
 (2)

where D_t represents all causes of death in month/year t, T_t denotes the linear time trend, and M_{it} is the dummy variable for a month, which is one if t is the i-th month and otherwise zero. Moreover, v_t and ω_t are stochastic variables as $v_t \sim N(0, \mu^2)$ and $\omega_t \sim N(0, \zeta^2)$; they are mutually independent. Although v_t represents stochastic disturbances, ω_t denotes non-negative deaths attributable to influenza. These disturbance terms in this model are parameterized by two parameters: ξ/μ and $(\mu^2 + \xi^2)^{0.5}$. If the null hypothesis $\xi/\mu = 0$ is not rejected, then the Stochastic Frontier Estimation model is inappropriate.

3. Results

Figure 1 presents observed deaths, the estimated baseline, and its threshold. Figure 2 specifically depicts the last year. Because the totals in April and May were lower than the baseline and therefore the threshold, no significant excess mortality was found in March–Mayl, 2020, when the COVID-19 outbreak occurred in Japan.

4. Discussion

This study applied the NIID model to all causes of death to detect excess mortality attributable to COVID-19. Estimation results indicate no significant excess mortality in March-May, 2020 when the COVID-19 outbreak occurred in Japan. Actually, 5, 52, 375, and 460 mortality cases caused by COVID-19, and confirmed by PCR testing, were reported officially in February–May throughout Japan. These were 0.4% or less than the average number of total deaths in the corresponding months. Therefore, even if COVID-19 actually caused external mortality, neither the NIID model nor another statistical model might would detect significant effects attributable to COVID-19. Of course, some deaths from COVID-19 might not have been tested and might have been excluded from these official numbers of mortality cases. However, total deaths might include deaths without diagnosis as COVID-19, but actually those associated with COVID-19. Estimation results suggest that such unrecognized deaths associated with COVID-19 are not significant, even if they exist.

In Tokyo, 1, 16, and 122 deaths were attributed to COVID-19 during February–April. Tokyo accounted for more than one fourth of the COVID-19-related deaths nationwide. However, the population in Tokyo is only one-tenth of the national population. Therefore, the proportion of deaths attributable to COVID-19 might be higher than 1%. In Tokyo, one might find some significant excess mortality because of

COVID-19. Unfortunately, total deaths by prefecture for April or May, 2020 have not

Using pneumonia death data instead of total death data might be better to evaluate excess mortality caused by COVID-19. However, application rule of the International Classification of Diseases was revised on January 2017, after which pneumonia deaths decreased by approximately 25%. April 2020 was the fourth April since that of 2017. Therefore, April 2020 data must be compared to data of only three earlier years. Therefore, it might be inappropriate to measure excess mortality attributable to COVID-19 using pneumonia deaths only.

5. Conclusion

been reported yet.

No significant excess mortality was found in March or April, 2020 when the COVID-19 outbreak occurred in Japan. Nevertheless, it might be important to continue to monitor excess mortality of COVID-19 carefully after May 2020.

6. Acknowledgement

We acknowledge Dr. Nobuhiko Okabe, Kawasaki City Institute for Public Health,
Dr.Kiyosu Taniguchi, National Hospital Organization Mie National Hospital, and
Dr.Nahoko Shindo, WHO for their helpful support.

7

7. Conflict of interest

The authors have no conflict of interest to declare.

8. Ethical considerations

All information used for this study was published on the web site of MHLW [12].

Therefore, no ethical issue is presented.

9. References

- Lin HC, Chiu HF, Ho SC, Yang CY. Association of influenza vaccination and reduced risk of stroke hospitalization among the elderly: a population-based case-control study. Int J Environ Res Public Health 2014; 11: 3639-49.
- Asghar Z, Coupland C, Siriwardena N. Influenza vaccination and risk of stroke:
 Self-controlled case-series study. Vaccine. 2015; 33: 5458-63.
- Riedmann EM. Influenza vaccination reduces risk of heart attack and stroke. Hum
 Vaccin Immunother 2013; 9: 2500.
- 4) Kwok CS, Aslam S, Kontopantelis E, Myint PK, Zaman MJ, Buchan I, Loke YK, Mamas MA. Influenza, influenza-like symptoms and their association with cardiovascular risks: a systematic review and meta-analysis of observational studies. Int J Clin Pract. 2015;69:928-37.

- Muhammad S, Haasbach E, Kotchourko M, Strigli A, Krenz A, Ridder DA, Vogel AB, Marti HH, Al-Abed Y, Planz O, Schwaninger M. Influenza virus infection aggravates stroke outcome. Stroke. 201142 783-91.
- 6) Assad F, Cockburn WC, Sundaresan TK. Use of excess mortality from respiratory diseases in the study of influenza. Bull WHO 1973; 49: 219-33.
- 7) US Center for Disease Control and Prevention. Excess Deaths Associated with COVID-19. https://www.cdc.gov/nchs/nvss/vsrr/covid19/excess_deaths.htm [accessed on June 15, 2020]
- 8) Japan Times. Japan's daily PCR test capacity tops 20,000. https://www.japantimes.co.jp/news/2020/05/16/national/japans-daily-pcr-test-capa city-20000/#.XuAwImeP6AA [accessed on June 10, 2020]
- 9) World Health Organization. Coronavirus disease (COVID-2019) situation reports. https://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/ ts/ [accessed on April 13,2020]
- 10) Sugawara T, Ohkusa Y. Comparison of Models for Excess Mortality of Influenza Applied to Japan. Journal of Biosciences and Medicines, 2019, 7, 13-23. doi:10.4236/jbm.2019.76002
- 11) Kurita J, Sugawara T, Ohkusa Y. Mobility data can explain the entire COVID?19

- outbreak course in Japan. medRxiv 2020.04.26.20081315; doi: https://doi.org/10.1101/2020.04.26.20081315
- 12) Ministry of Health, Labour and Welfare. Preliminary statistics on demographicshttps://www.mhlw.go.jp/toukei/list/81-1a.html (in Japanese) [accessed on June 26, 2020]
- 13) Aiger AD, Lovell K, Schmitidt P. Formulation and estimation of stochastic frontier production function models. Journal of Econometrics 1977; 21-37.
- 14) Jondrow J, Lovell K, Materov S, Schmidt P. On the estimation of technical inefficiency in the stochastic frontier production function model. Journal of Econometrics 1982; 233-9.
- 15) Li T, Rosenman R. Cost inefficiency in Washington Hospitals: A stochastic frontier approach using panel data, Health Care Management Science 2001; 4: 73-81.
- 16) Newhouse JP. Frontier Estimation: How useful a tool for health economics?

 Journal of Health Economics 1994; 13: 317-22.
- 17) Shelton Brown H. Managed care and technical efficiency. Health Economics. 2003; 12: 149-58.
- 18) Jacobs R. Alternative methods to examine hospital efficiency: Data envelopment

analysis and stochastic frontier analysis. Health Care Management Science. 2001;

4: 103-15

19) Rosko MD. Cost efficiency of US hospitals: A stochastic frontier approach.

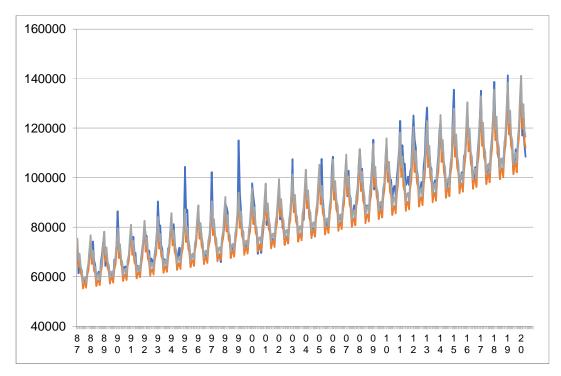

Health Economics. 2001; 539-51.

Table 1 NIID Model estimation results

Explanatory variables	Estimated coefficients	<i>p</i> -value
Constant	11.12	< 0.0004
Time trend	0.001506	< 0.0004
Time trend ²	0.0000001944	0.126
January	0.07068	< 0.0004
February	-0.05656	< 0.0004
March	-0.01723	0.0041
April	-0.1032	< 0.0004
May	-0.1217	< 0.0004
June	-0.2103	< 0.0004
July	-0.1756	< 0.0004
August	-0.1710	< 0.0004
September	-0.2079	< 0.0004
October	-0.1194	< 0.0004
November	-0.08747	< 0.0004
ξ/μ	2.352	< 0.0004
$(\mu^2 + \xi^2)^{0.5}$	0.04874	< 0.0004

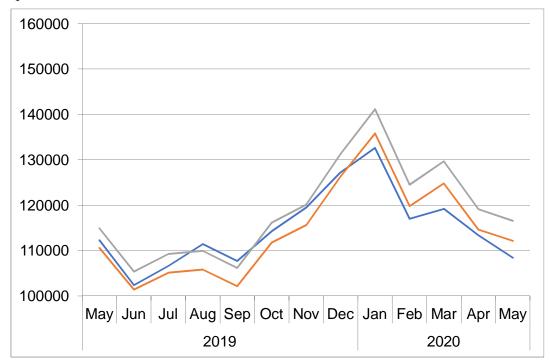

Note: For the 400 observations, the log likelihood was 895.486. ξ^2 denotes the variance of the non-negative disturbance term. μ^2 is the variance of the disturbance term.

Figure 1: Observations of the estimated baseline and threshold since 1987 until April 2020. (persons)

Note: The blue line represents observations. The red line represents the estimated baseline. The green line shows its threshold.

Figure 2: Observation of the estimated baseline and threshold in the last one year. (persons)

Note: The blue line represents observations. The red line represents the estimated baseline. The green line shows its threshold.