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Abstract

We build a parsimonious Crump-Mode-Jagers continuous time branching process of
COVID-19 propagation based on a negative binomial process subordinated by a gamma
subordinator. By focusing on the stochastic nature of the process in small populations,
our model provides decision making insight into mitigation strategies as an outbreak
begins. Our model accommodates contact tracing and isolation, allowing for compar-
isons between different types of intervention. We emphasize a physical interpretation
of the disease propagation throughout which affords analytical results for comparison
to simulations. Our model provides a basis for decision makers to understand the
likely trade-offs and consequences between alternative outbreak mitigation strategies
particularly in office environments and confined work-spaces. Combining the asymptotic
limit of our model with Bayesian hierarchical techniques, we provide US county level
inferences for the reproduction number from cumulative case count data over July and
August of this year.
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1 Introduction

As of June 20, 2020, there have been more than 8 million confirmed global cases
of COVID-19, a respiratory illness caused by the severe acute respiratory syndrome
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coronavirus 2 (SARS-CoV-2). Early indications suggest a case/infection fatality rate of
between 0.5% to 2% [1, 2, 3, 4] with poor prognosis strongly dependent on comorbidity
factors such as advanced age, diabetes, and other poor health conditions [5]. The
Centers for Disease Control and Prevention in the United States gives an overall current
symptomatic case fatality ratio of 0.4% [6] while studies involving seroprevalence indicate
a median infection fatality rate of 0.25% [7]. Canada has seen over 100,000 cases and
the entire world has engaged in costly outbreak mitigation strategies to prevent excess
deaths.

Governments around the world have focused on controlling COVID-19 outbreaks
primarily by reducing direct human-to-human contact through varying degrees of society-
wide lock-downs and strong social distancing measures. By limiting the opportunity for
infectious contacts, the hope is that the infection rate will remain low enough to prevent
medical support systems from becoming overwhelmed while also reducing the effective
reproduction number of the disease. Evidence suggests that government policies are
having a positive effect [8], but some strategies may also become prohibitively expensive
in the not too distant future. An alternative outbreak controlling strategy to lock-downs
is contact tracing with isolation. In this strategy, health authorities trace the human-
to-human contacts of an infected person and isolate those contacts who are at risk of
having become infected. If the probability of isolating potentially infected contacts is
high and the time to isolation is sufficiently short, contact tracing with isolation may
offer better cost benefit performance relative to lock-downs in keeping society safe [9].

Modelling the spread of infectious diseases falls into two broad classes [10]: determin-
istic modelling, which captures the thermodynamic limit and large scale behaviour of
the underlying epidemiological phenomenon, and stochastic modelling, which describes
the microscopic statistical nature of the generative process. Traditional compartmental
models (e.g., SIRD), usually expressed as a set of coupled ordinary differential equations,
fall into the first class while branching processes, in which each infected individual
randomly generates “offspring”, belong to the second class. In this paper, we focus on
a stochastic formulation of COVID-19 following Hellewell et al. [11].

In [11], the authors develop a branching process to model contact tracing with
isolation strategies. The model uses a negative binomial distribution to generate
secondary cases produced by an infected individual with new infections assigned a time
of infection through draws from a serial interval distribution. By truncating the serial
interval distribution through isolation events, the authors show that in most of their
scenarios contact tracing and case isolation is enough to control a new outbreak of
COVID-19 within 3 months.

While the construction in [11] provides a rich base for numerical simulations, to
gain further insight, we extend the model to a fully continuous time setting which
provides us with a complete generative model, including expressions for the generating
and characteristic functions. Furthermore, each part of our model has a direct physical
interpretation of the underlying disease propagation mechanism. The model balances
fidelity and parsimony so that the model can 1) be calibrated to data relatively
easily, 2) provide semi-analytic tractability that allows for trade-off analysis between
different mitigation strategies 3) generate realistic simulated sample paths for comparing
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interventions. Our code is available as R packages1 2.

2 The model

In this paper, we build a Crump-Mode-Jagers (CMJ) branching process model through
a subordinated Lévy process. CMJ constructions contain the triple of random processes
(λx, ξx(·), χx(·)) defined by,

• λx is a random variable that denotes an infected person’s communicable period;

• ξ(t) = #{k : σ(ω, k) ≤ t} counts the number of infected people over event space
Ω(ω) in time t. ξx(t− σx) denotes the random number of infected people created
by an infected person at every moment of her communicable period over the
interval [σx, t); ξ(t− σx) = 0 if t− σx < 0; and

• χx(t− σx) is a random characteristic of the infected person within the interval
[σx, t); χ(t− σx) = 0 if t− σx < 0. (E.g., χ(t) = I{t ∈ [0, λx)} is the number of
infectious existing at moment t).

Our model begins by generating infections from an infected individual through a
compound Poisson process where the event times represent transmission events (σx).
We assume that an individual is infectious from the moment she becomes infected. The
number of new infections at each transmission event is a draw from the logarithmic
distribution [12] (ξ(t)) and consequently, the resulting generative process is the negative
binomial process (see, for example, Quenouille [13]). The stochastic counting processes
remains “on” during the communicable period and then shuts “off” at the end—that is,
the communicable period is the random lifetime (λx) in the CMJ language. We model
the communicable period as a gamma distributed random variable, Γ(a, b), with mean
t̄ = a/b. By subordinating our resulting negative binomial process with a gamma process
for the communicable period, we arrive at our model of COVID-19 propagation—a
gamma negative binomial branching process (GNBBP). (For details on subordinated
Lévy processes, see [14].)

2.1 Construction details

We model the propagation of COVID-19 by assuming that people become infectious
immediately after contracting the virus and that they can infect others throughout the
duration of their communicable period. We assume the population is homogeneous
and that each new infected individual has the same statistical properties as previously
infected people. Specifically, we assume that an infected person infects Q(t) other
people during the given time interval [0, t] according to a compound Poisson process,

Q(t) =

N(t)∑
i=1

Yi, (1)

1https://github.com/pspc-data-science/branchsim.git
2https://github.com/pspc-data-science/branchestimate.git
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where the number of infectious events, N(t), follow a Poisson counting process with
arrival rate λ, and Yi, the number infected at each event, follows the logarithmic
distribution,

P(Yi = k) =
−1

ln(1− p)
pk

k
, k ∈ {1, 2, 3, . . .}. (2)

The characteristic function for Q(t) reads,

φQ(t)(u) = E
[
eiuQ(t)

]
= exp

(
rt ln

(
1− p

1− peiu

))
=

(
1− p

1− peiu

)rt
, (3)

with λ = −r ln(1− p); thus Q(t) follows a negative binomial process,

Q(t) ∼ NB(rt, p). (4)

In this process, during a communicable period, t, an infected individual infects
Q(t) people based on a draw from the negative binomial with mean rtp/(1− p). The
infection events occur continuously in time according to the Poisson arrivals. However,
the communicable period, t, is in actuality a random variable, T , which we model as a
gamma process3 with density,

fT (t)(x) =
bat

Γ(at)
xat−1e−bx, (5)

which has a mean of T̄ = at/b. By promoting the communicable period to a random
variable, the negative binomial process changes into a Lévy process with characteristic
function,

E
[
eiuZ(t)

]
= exp(−tψ(−η(u))) =

(
1− r

b
ln

(
1− p

1− peiu

))−at
, (6)

where η(u), the Lévy symbol, and ψ(s), the Laplace exponent, are respectively given
by,

E
[
eiuQ(t)

]
= exp(t η(u)) (7)

E
[
e−sT (t)

]
= exp(−t ψ(s)), (8)

with,

η(u) = r ln

(
1− p

1− peiu

)
, (9)

ψ(s) = a ln
(

1 +
s

b

)
. (10)

Z(t) is the random number of people infected by a single infected individual over
her random communicable period. Without loss of generality, we absorb t into a (or

3We apply a gamma process subordinator to the negative binomial process.
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alternatively set t = 1, representing a single lifetime) giving a mean communicable
period T̄ = a/b. The gamma process smears out the end of the communicable period.

We see that R0 = E[Z(1)] = arp/(b(1 − p)), and thus our process has the same
mean as the negative binomial process with a fixed stopping time of t = a/b. In fact,
since λ = −r ln(1− p) we have the simple relationship,

R0 =

(
aλ

b

)(
−p

ln(1− p)(1− p)

)
(11)

= Mean number of infectious events in a lifetime× (12)

Mean number infected at each event. (13)

The variance of the our counting process is over-dispersed relative to the the negative
binomial,

Var(Z(1)) =
apr

b(1− p)2

(
1 +

rp

b

)
(14)

= Var(NB(ar/b, p)) +
ar2p2

b2(1− p)2
. (15)

The model has four parameters:

• p sets the number of infected people per infectious interaction. The mean number
of infected people per infectious event is, µ = − p

(1−p) ln(1−p) .

• λ = −r ln(1− p) gives the arrival rate of infectious events.

• a, b together set the mean communicable period, t̄ = a/b, and determine the
variance along with the skewness and kurtosis of the gamma distribution, Γ(a, b).
In the limit b → 0 with a/b finite, the gamma distribution becomes a delta
function at the mean time and we recover the negative binomial process evaluated
at t = a/b.

The characteristic function eq.(6) of the stopped stochastic process allows us to
explore the model’s analytical properties, which can help decision makers better under-
stand trade-offs in small environments.

2.2 Renewal equations and Malthusian parameters

Given a random characteristic χ(t), such as the number of infectious individuals at
time t, (e.g., χ(t) = I(t ∈ [0, λx)) where λx is the random communicable period) the
expectation of the process follows,

E(Z(t)) = E(χ(t)) +

∫ t

0
E(Z(t− u))E(ξ(du)). (16)

Defining the Malthusian parameter, α > 0, if it exists, by,∫ ∞
0

e−αt E(ξ(dt)) = 1, (17)
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we can change eq.(16) into a renewal equation,

e−αtE(Z(t)) = e−αtE(χ(t)) +

∫ t

0
e−α(t−u)Z(t− u)e−αuE(ξ(du)), (18)

which has the solution,

lim
t→∞

e−αtE(Z(t)) =

∫∞
0 e−αuE(χ(u)) du∫ ∞
0

ue−αuE(ξ(du))︸ ︷︷ ︸
β

. (19)

Thus the asymptotic behaviour of the solution is governed by the pair parameters α,
and β.

Recall that ξ(t) = #{k : σ(ω, k) ≤ t} counts the number of infections during the
observation window [0, t] over event space Ω(ω). In our model we have,

E(ξ(t)) = λµt(1−G(t)) + λµ

∫ t

0
ug(u) du, (20)

where λ and µ are respectively the Poisson arrival rate and the mean of logarithmic
distribution, and where,

g(u) =
ba

Γ(a)
ua−1e−bu; G(t) =

∫ t

0
g(u) du. (21)

Therefore,
dE(ξ(t)) = λµ(1−G(t)) dt, (22)

which leads to the expected result for the mean of direct infections per individual,∫ ∞
0

λµ(1−G(t)) dt = λµ
(a
b

)
. (23)

Using eq.(22) and eq.(17) we find that,

α = λµ

(
1−

(
b

α+ b

)a)
(24)

β =
1

α

(
1− aλµ

b

(
b

α+ b

)a+1
)
, (25)

which we can solve for the Malthusian parameter, α, by Newton-Raphson. The
asymptotic solution to eq.(16) given that the Malthusian parameter exists is,

E(Z∞) ∼ eαt

αβ
. (26)

If R0 < 1 the branching process will not experience asymptotic exponential growth,
instead we can solve eq.(16) for its long term limit,

E(Z∞) =
E(χ(∞))

1− λµa/b
. (27)
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2.3 Extinction probabilities and component sizes

In the CMJ framework, we have the generating function,

G(t; s) = E
[
sZ(t) | Z(0) = 1

]
, (28)

with the number of infected by time t composed of infections at time σi,

ξ(t) = #{σi : σi ≤ t} =
∞∑
i=1

I{σi ≤ t}. (29)

The probability of extinction reads,

Q = P
(

lim
t→∞

Z(t) = 0
)

= lim
t→∞

G(t; 0); (30)

Q = lim
t→∞

E

ξ(t)∏
i=1

G(t− δi; 0)

 = E
[
QN
]
, (31)

and for our model, we arrive at the transcendental relationship,

Q =

(
1− r

b
ln

(
1− p

1− pQ

))−a
. (32)

Again, we can apply Newton-Raphson and solve for the extinction probability Q.
In addition to the extinction probability for our branching process, we can estimate

the average number of total infected people at extinction if extinction occurs by
considering the theory random graphs. The branching process is a directed bipartite
graph (it is a tree) and given the generating function for the process, we know the
distribution of the outgoing edges from a randomly chosen vertex. In [15], the authors
extend Erdos-Renyi constructions of random graphs to graphs with arbitrary vertex
degree. They compute the mean component size for graphs, including graphs excluding
the giant component, if it exists.

The total number infected corresponds to the random characteristic E(χ(t)) = 1
and thus eq.(27) has the non-Malthusian growth solution,

E(Z∞) =
1

1− λµa/b
. (33)

In [15], the authors consider two generating functions,

• G0(s): the generating function for the probability distribution of the vertex’s
degree; and

• G1(s) = G′0(s)/G′0(1): the generating function for the probability distribution of
the outgoing edges from a randomly chosen vertex.

Eq.(6) with eiu → s is G1(s) in the notation of [15] and for our purposes we do not
need an explicit formula for G0(s). The average component size of the graph, in the
absence of a giant component, is [15]

x̄ = 1 +
G0(1)′

1−G′1(1)
, (34)
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which matches the renewal equation solution eq.(33) if G′0(1) = G′1(1)—that is, the
generating two functions intersect tangentially at s = 1.

At G′1(1) = 1 a phase transition occurs and the giant component emerges. The
fraction of the graph occupied by the giant component is,

S = 1−G0(Q), (35)

where Q is the extinction probability for the distribution of outgoing edges, Q = G1(Q).
Since the fraction of the graph that does not belong to the giant component is composed
precisely of those graphs which have gone extinct in our process, we impose G0(Q) = Q.
Thus, we demand that the two generating functions intersect on the 45◦ line at Q < 1
when α > 0. The average component size in this case becomes [15],

x̄ = 1 +
zu

1−G′1(1)
, (36)

where,

z =
1−Q∫ 1

u G1(s) ds
. (37)

As Q → 1 we see that G1(Q) and G0(Q) increasingly intersect tangentially, finally
becoming tangent at Q = 1, which is consistent with our observation in eq.(34). We
take x̄ to be the average size of the total infected population at extinction, if extinction
occurs.

3 Contact tracing and propagation interruption

The process in eq.(6) represents the spread of the disease from an infected individual
without any mitigation strategies. Imagine that we can trace, contact, and isolate
infected individuals with a success probability q and with an mean time to isolation
of m̄ < t̄ = a/b after the infectious event. We assume that once isolated, there is no
chance for the infected individual to spread the disease any further. We again imagine
that the isolation time is gamma distributed but with parameters (a′, b′) leading to the
isolation process, Z ′(1̄),

E[eiuZ
′(1)] =

(
1− r

b′
ln

(
1− p

1− peiu

))−a′
. (38)

Notice that the branching process for a successful isolation event has the same form as
the original process with a mean time of the random communicable period of m̄ = a′/b′.
Thus, the trace-contact-isolate branching process becomes,

N =

1∏
j=0

[Zj(1)]I{y=j}; y ∼ Bin(1, q); (39)

E(N) = q E(Z(1)) + (1− q)E(Z ′(1)), (40)

where N is the number of infections produced by an infected person during her com-
municable period, and q is the probability of a successful isolation event. Instead of
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arbitrarily cutting the communicable period’s density function based on an isolation
event as prescribed in [11], our model maintains the same form of the generating function
throughout by shifting the mean and variance of the communicable period’s gamma
process. In a contact-trace-isolate policy, the expected number of infections per infected
individual becomes,

Reffective = E[N ] = q E[Z ′(1)] + (1− q)E[Z(1)],

=

(
q

(
a′/b′

a/b
− 1

)
+ 1

)
(a/b)rp

(1− p)

=

(
q

(
a′/b′

a/b
− 1

)
+ 1

)
︸ ︷︷ ︸

suppresion factor

(
−p

ln(1− p)(1− p)

)
((a/b)λ)︸ ︷︷ ︸

R0

=

(
q

(
a′/b′

a/b
− 1

)
+ 1

)
︸ ︷︷ ︸

suppresion factor

×

Mean number infected at event×Mean number of events. (41)

Eq.(41) provides intuition for comparing competing courses of action by affording
trade-off analyses. In a lock-down, health authorities control the spread of the disease
by lowering the human-to-human interaction rate λ. If λ can be made sufficiently small,
R0 will drop below unity and the outbreak will come under control. The first term in
eq.(41) represents a suppression factor, which by construction is less than unity, and
results from an isolation policy with success probability q. Alternatively, that same
reduction in Reffective can also be achieved by a lock-down scenario if the infection event
rate, λ, is reduced4 by the same suppression factor. Thus, we see an equivalence in
generating Reffective from the two different mitigation strategies, each of which may
come at different economic costs.

To make the observation concrete, suppose λ = .20 implying an average of 0.20
infectious events per day, p = 0.5 implying an average of 1.44 infections per infectious
event, and a mean communicable period of a/b = 5.5 days. The parameters imply
R0 = 1.59. Figure 1 shows iso-contours of fixed suppression factor in the a′/b′− q plane.
We can now see the trade-off between a lock-down policy with a fixed suppression factor
and a contact tracing with isolation policy which generates the suppression factor from
successful contact tracing events. For a fixed suppression factor figure 1 shows the
equivalent curve in the a′/b′ − q plane. The economic costs of generating the same
value the suppression factor among the two strategies (lock-down vs contact tracing
with isolation), with its corresponding reduction in the effective R0, will in general
not be the same. From the figure we see in this example that a contact tracing with
isolation policy with an isolation probability of 0.75 and a mean isolation time of 4
days is equivalent to reducing the rate of human-to-human infection events by a factor

4We recognize that a lock-down would probably reduce p in the logarithmic distribution as well, but we
suspect that effect is secondary. We suspect that p, which sets the number of people infected during an event,
is not nearly as sensitive to a lock-down scenario as compared to the expected number of events during the
communicable period.
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of approximately 1.25. A lock-down that reduces human interactions by a factor of
1.25 will almost certainly cost much more than the corresponding contact tracing with
isolation strategy [9].
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Figure 1: Iso-contours in the a′/b′ − q plane with equivalent lock-down factor f .

4 A scenario planing exercise: Policy input for return to work

One area of application for our model is helping decision makers understand counterfac-
tual outcomes in a return-to-work policy exercises. In setting policies, decision makers
must weigh the operational needs of their business against the possibility of an outbreak
in the work environment. In addition to the analytical results that our model provides,
simulation can further help ring-fence difficult decisions.

Our model requires four parameters, the arrival rate of infectious interactions,
the average number infected at each event, and two parameters which govern the
communicable period’s density function. We use the open literature [16] as a guide
to fix the communicable period; we fix a = 4.7 days with b = 0.85; these parameter
choices give a mean communicable period of 5.5 days with 97.5% of the communicable
period ending in 11.5 days. In figure 2, we show the density function arising from our
parameter settings. The decision maker has control over the remaining two parameters.
By limiting meeting sizes, restricting the number of employees interactions, and by
mandating the use of personal protective equipment, the decision maker can set the
variables controlling the arrival rate of infectious events and the number infected at
each event. We treat the population as homogeneous, holding fixed the arrival rate
for infections and the number infected per event over time. In a small setting, in
reality, we expect that as people become infected the social network will change, even
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in the limit of an unmitigated outbreak. Those changes will have an effect on the basic
parameters of our branching model as the population becomes infected, but exactly how
the network changes is a complicated phenomena. Feedback can move the arrival rate
and the number infected at each event in competing directions. By ignoring any time
dependence in the basic parameters, our model provides a baseline understanding on
how COVID-19 propagates in a small populations and over time scales not hierarchically
larger than the communicable period.
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Figure 2: The communicable period: a = 4.7, b = 0.85. The mean of 5.5 days is indicated by
the read vertical line.

Imagine a scenario in which a decision maker has an office space with 100 employees
and she must decide on mitigation strategies. Suppose a baseline scenario with λ = 0.2
and p = 0.5 (corresponding to an average of 1.44 infected per event). Given the
properties of the communicable period, this scenario corresponds to R0 = 1.59, which
implies that if an infected person arrives in the population, in expectation, the branching
process will lead to exponential growth in infections. In figures 3a and 3b we display the
solution to the renewal equation with this parameter choice for the expected number of
infected people and the expected size of the active infectious population respectively.

Let us suppose that the decision maker can change the model parameters λ and p
through policy considerations, creating two possible alternative scenarios, each coming
at different financial costs. Our model allows the decision maker to investigate trade-
offs between starting from one undetected infected individual in the workplace. We
summarize model outputs between two scenarios in table 1.

In some office environments, we can also imagine a scenario in which management
introduces an aggressive testing scheme to isolate infected employees. Suppose our
manager faces the baseline scenario in table 1 but instead of manipulating the interaction
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(b) Active infections

Figure 3: The expected number of total and active infections as function of time in the
baseline planning scenario.

scenario properties

description symbol baseline scenario 1 scenario 2

Poisson arrival rate λ 0.20 0.24 0.1

Logarithmic distribution parameter p 0.50 0.30 0.5

communicable period shape parameter a 4.7 4.7 4.7

communicable period rate parameter b 0.85 0.85 0.85

mean number of new infections per infected individual R0 1.59 1.59 0.80

extinction probability Q 0.60 0.53 1

mean size at extinction x̄ 3.1 2.9 4.9

mean number infected after one week N1w 6 6 2.3

mean number infected after two weeks N2w 22 22 3.3

Table 1: Model properties of the planning scenarios. Each scenario starts with one undetected
infected individual.

rate or meeting sizes, the manager implements a test with a 90% chance of a successful
isolation that is sharply peaked around a mean of 0.69 days. We approximate the effect
of testing with a successful isolation event by setting a′ = 1.17, and b′ = 1.7 in eq.(41)
and we show the comparison to the baseline density function established from [16] in
figure 4. Using eq.(41) we see that Reffective = 0.21× 1.59 = 0.33, and thus this isolation
strategy turns an exponentially growing configuration into a process that will go extinct
almost surely. Figure 5 shows 1,000 sample paths of the isolation process over 30 days.
Most paths go extinct within ten days and the average total number of infected is 3.8
people.
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Figure 4: The communicable period density function with a successful isolation event
(a = 1.17, b = 1.7) compared to the baseline scenario.
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Figure 5: A contract tracing with isolation strategy: 1,000 simulations over 30 days. The
probability of successful isolation is q = 0.90, with gamma distribution parameters a = 1.17,
and b = 1.7. Red lines indicated extinct paths from the moment of extinction. All paths
eventually go extinct as the result of the intervention.
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5 A note on parameter inference and an example with US
county data

This paper describes a gamma negative binomial branching process (GNBBP) on the
number of new infections generated by an infected individual. Given a set of observed
{nk}Kk=1 infection counts for K individuals, a complete Bayesian analysis of the model
is possible, in which all model parameters are identifiable, using for example, the
infrastructure provided in [17]. Under this scheme, all four parameters (r, p, a, b) can
be resolved, allowing for a full posterior predictive analysis.

Define a complete history of an outbreak as a set of N observations taking the form
of a 6-tuple:

(i, j, Bi, Di,mi, oi), (42)

where

i index of individual
j index of parent
Bi time of birth
Di time of death
mi number of offspring birth events
oi number of offspring.

With the following summary statistics

L =
∑
i

Di −Bi Λ =
∏
i

(Di −Bi) M =
∑
i

mi O =
∑
i

oi,

we can build a Gibbs sampler over the GNBBP parameters as follows:

p | r, L,O ∼ Beta (a0 +O, b0 + rL)

r | p, L,M ∼ Gamma (η0 +M,ρ0 − L log(1− p))
b | a, L,N ∼ Gamma (γ0 + aN, δ0 + L)

a | b,Λ, N ∼ GammaShape (ε0Λ, ζ0 +N, θ0 +N) (43)

where a0, b0, η0, ρ0, γ0, ζ0, ε0, θ0 are hyper-parameters.
Unfortunately, under real world conditions, we are rarely fortunate enough to have

such complete and pristine data. Readily available COVID-19 data almost always takes
the form of cumulative case count data by geographic region, but if public health officials
can collect data in the form of eq.(42) during a local outbreak, Gibbs sampling will
yield posteriors for all model parameters. The underlying propagation mechanism of
the GNBBP affords additional interpretability to the model, which, in turn, facilitates
incorporation of other prior information. For example, knowing that it is unlikely that
multiple thousands of individuals could be infected in a single interaction allows us to
set a prior with more mass on values of p closer to 0; moreover, direct experimental
measurement of this parameter might be possible in a laboratory setting or augmented
by fine grained clinical data. Similar considerations apply to the rate of infectious
events, λ. The parameters which govern the communicable period, (a, b), can be inferred

14

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted September 3, 2020. ; https://doi.org/10.1101/2020.07.08.20149039doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.08.20149039
http://creativecommons.org/licenses/by-nc-nd/4.0/


from clinical observations. Likewise, information on probable ranges of R0 from other
comparable infections could also be leveraged to provide a joint constraint on r, p, a,
and b.

Even with limited data we can still estimate parts of the model. In particular, we
can estimate the Malthusian parameter of eq.(17) from cumulative count data that
exhibits exponential growth by applying the asymptotic solution, eq.(26). Since the
Malthusian parameter depends on the product of the infection arrival arrival rate and
the average number infected per event, λµ, an estimate of the Malthusian parameter
yields an estimate of Reff through the parameters a and b of the communicable period’s
gamma distribution,

Reff = λµ · a
b
,

=
aα

b
[
1−

(
b

α+b

)a] . (44)

Based on the clinical literature [16], we take a = 4.66 and b = 0.85 giving a mean
communicable period of approximately 5.5 days with a 97.5% of 11.5 days.

The New York Times provides a COVID-19 case count dataset for the United States
resolved on the county level [18]. A team at the New York Times curates the data
from multiple sources and ensures data accuracy. Using the New York Times data, we
estimate the Malthusian parameter for US counties which exhibit exponential growth
over the period July 1, 2020 to August 20, 2020. We use a hierarchical Bayesian
construction with a county level random effect,

log(Z) = αt+ γ + ait+ gi + ε

ai ∼ N(0, σ2
1)

gi ∼ N(0, σ2
2)

ε ∼ N(0, σ2), (45)

where i is the county label; the variance parameters use half-Cauchy priors and the fixed
and random effects use normal priors. We estimate the model and generate posterior
distributions for all parameters using JAGS [19]. Our code is publicly available in an R
package. The posterior means of the Malthusian parameter for each county gives Reff

over the time interval through eq.(44). In figure 6, we display the US county results for
Reff. Over the mid-summer, we see that the geographical distribution of Reff across the
US singles out the Midwestern states and Hawaii as hot-spots while Arizona sees no
county with exponential growth.

6 Discussion

In small settings with localized outbreaks, a branching model offers a stochastic view of
the propagation. To be useful in a decision making setting, the branching model must
be parsimonious yet contain appropriate features which match clinical observations and
bounds on key parameter such as Reff.
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R effective
(NA: sub−exp growth)

[1.00 to 1.03)
[1.03 to 1.05)
[1.05 to 1.07)
[1.07 to 1.09)
[1.09 to 1.11)
[1.11 to 1.15)
[1.15 to 1.39]
NA

US counties with R effective > 1
2020−07−01 to 2020−08−20

Figure 6: Summer 2020 geographical distribution of Reff across the United States: 2020-07-01
to 2020-08-20.

Our model contains physically motivated mechanisms that link to macroscopic
observables. For instance, our model generates the negative binomial count process
by coupling Poisson infectious event arrivals with the logarithmic distribution for
the number infected at each event. We extend the model of [11] by including the
serial interval distribution within a complete generative continuous time stochastic
branching process. Furthermore, our model allows for an exploration of trade-offs
between mitigation strategies at the microscopic level, especially in light of the model’s
analytical tractability. Because our model includes the generating function of the
underlying branching process, it easy to build a continuous time simulation engine,
model the effect of intervention strategies, and estimate model parameters through
Bayesian hierarchical methods.
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