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Brief: 
The early clinical course of SARS-CoV-2 infection can be difficult to distinguish from 
other undifferentiated medical presentations to hospital, however viral specific real-
time polymerase chain reaction (RT-PCR) testing has limited sensitivity and can take 
up to 48 hours for operational reasons. In this study, we develop two early-detection 
models to identify COVID-19 using routinely collected data typically available within 
one hour (laboratory tests, blood gas and vital signs) during 115,394 emergency 
presentations and 72,310 admissions to hospital. Our emergency department (ED) 
model achieved 77.4% sensitivity and 95.7% specificity (AUROC 0.939) for COVID-
19 amongst all patients attending hospital, and Admissions model achieved 77.4% 
sensitivity and 94.8% specificity (AUROC 0.940) for the subset admitted to hospital. 
Both models achieve high negative predictive values (>99%) across a range of 
prevalences (<5%), facilitating rapid exclusion during triage to guide infection control. 
We prospectively validated our models across all patients presenting and admitted to 
a large UK teaching hospital group in a two-week test period, achieving 92.3% (n= 
3,326, NPV: 97.6%, AUROC: 0.881) and 92.5% accuracy (n=1,715, NPV: 97.7%, 
AUROC: 0.871) in comparison to RT-PCR results.  Sensitivity analyses to account 
for uncertainty in negative PCR results improves apparent accuracy (95.1% and 
94.1%) and NPV (99.0% and 98.5%). Our artificial intelligence models perform 
effectively as a screening test for COVID-19 in emergency departments and hospital 
admission units, offering high impact in settings where rapid testing is unavailable. 
 
Abstract: 
Background: Rapid identification of COVID-19 is important for delivering care 
expediently and maintaining infection control. The early clinical course of SARS-CoV-
2 infection can be difficult to distinguish from other undifferentiated medical 
presentations to hospital, however for operational reasons SARS-CoV-2 PCR testing 
can take up to 48 hours. Artificial Intelligence (AI) methods, trained using routinely 
collected clinical data, may allow front-door screening for COVID-19 within the first 
hour of presentation. 
 
Methods: Demographic, routine and prior clinical data were extracted for 170,510 
sequential presentations to emergency and acute medical departments at a large UK 
teaching hospital group. We applied multivariate logistic regression, random forests 
and extreme gradient boosted trees to distinguish emergency department (ED) 
presentations and admissions due to COVID-19 from pre-pandemic controls. We 
performed stepwise addition of clinical feature sets and assessed performance using 
stratified 10-fold cross validation. Models were calibrated during training to achieve 
sensitivities of 70, 80 and 90% for identifying patients with COVID-19. To simulate 
real-world performance at different stages of an epidemic, we generated test sets with 
varying prevalences of COVID-19 and assessed predictive values. We prospectively 
validated our models for all patients presenting or admitted to our hospital group 
between 20th April and 6th May 2020, comparing model predictions to PCR test results. 
 
Results: Presentation laboratory blood tests, point of care blood gas, and vital signs 
measurements for 115,394 emergency presentations and 72,310 admissions were 
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analysed. Presentation laboratory tests and vital signs were most predictive of COVID-
19 (maximum area under ROC curve [AUROC] 0.904 and 0.823, respectively). 
Sequential addition of informative variables improved model performance to AUROC 
0.942. 
We developed two early-detection models to identify COVID-19, achieving sensitivities 
and specificities of 77.4% and 95.7% for our ED model amongst patients attending 
hospital, and 77.4% and 94.8% for our Admissions model amongst patients being 
admitted. Both models offer high negative predictive values (>99%) across a range of 
prevalences (<5%). In a two-week prospective validation period, our ED and 
Admissions models demonstrated 92.3% and 92.5% accuracy (AUROC 0.881 and 
0.871 respectively) for all patients presenting or admitted to a large UK teaching 
hospital group. A sensitivity analysis to account for uncertainty in negative PCR results 
improves apparent accuracy (95.1% and 94.1%) and NPV (99.0% and 98.5%). Three 
laboratory blood markers, Eosinophils, Basophils, and C-Reactive Protein, alongside 
Calcium measured on blood-gas, and presentation Oxygen requirement were the 
most informative variables in our models. 
 
Conclusion: Artificial intelligence techniques perform effectively as a screening test for 
COVID-19 in emergency departments and hospital admission units. Our models 
support rapid exclusion of the illness using routinely collected and readily available 
clinical measurements, guiding streaming of patients during the early phase of 
admission. 
 
Funding: This research was supported by the Engineering and Physical Sciences 
Research Council (EPSRC) via grants EP/P009824/1 and EP/N020774/1. 
Conflicts of interest: DWE reports lecture fees from Gilead, outside the submitted 
work. DC reports Consultancy for Oxford University Innovation, Biobeats, and 
Sensyne Health. No other authors report any conflicts of interest. 
 
Abbreviations: 
AI Artificial Intelligence 
AUROC Area under receiver operating characteristic curve 
COVID-19 Coronavirus Disease 2019 
CCI Charlson Comorbidity Index 
CRP C-Reactive Protein 
EHR Electronic Health Records 
LR Logistic Regression 
NPV Negative Predictive Value 
OUH Oxford University Hospitals NHS Foundation Trust 
POCT Point of Care Test 
PPV Positive Predictive Value 
RF Random Forest 
RT-PCR Real Time Polymerase Chain Reaction 
SARS-CoV-2 Severe Acute Respiratory Syndrome Coronavirus 2 
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Background: 
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), a novel 
coronavirus, is responsible for the Coronavirus Disease-2019 (COVID-19) pandemic 
of 20201. The early clinical course of COVID-19, which often includes common 
symptoms such as fever and cough, can be challenging for clinicians to distinguish 
from other respiratory illnesses 2–4.  
 
Testing for SARS-CoV-2 through real-time polymerase chain reaction (RT-PCR) 
assay of nasopharyngeal swabs, most commonly targeting the viral RNA-dependent, 
RNA polymerase (RdRp) or nucelocapsid genes,  has been widely adopted, but has 
limitations 3,5,6. These include limited sensitivity5,7, prolonged turnaround time of up to 
72 hours in some centres, and requirements for specialist laboratory infrastructure and 
expertise8. There therefore exists an urgent clinical need for rapid, point-of-care 
identification of COVID-19 to support expedient delivery of care, and assist front door 
triage and patient streaming for infection control purposes9.  
 
The increasing use of electronic healthcare record (EHR) systems in hospitals has 
improved the richness of available clinical datasets available to study COVID-19. 
However, many studies to date have relied on manual collection of selected clinical 
variables10–12. In contrast, high-throughput electronic data extraction and processing 
techniques can enable curation of rich datasets from EHRs13, incorporating all clinical 
data available on presentation, and may combine with advanced machine learning 
techniques to produce a rapid screening tool for COVID-19 that fits within existing 
clinical care pathways11,14.  
 
Approaches to produce a rapid screening tool, with utility during the early phase of 
hospital presentations, should use only clinical data available prior to the point of 
prediction15. Basic laboratory blood test data and physiological clinical measurements 
(vital signs) are amongst routinely collected healthcare data typically available within 
the first hour of presentation to hospital, and patterns of changes have been described 
in retrospective, observational studies of COVID-19 patients (variables including 
lymphocyte count, ALT, CRP, D-Dimer and Bilirubin3,4,16,17). Moreover, prior 
healthcare data available within the EHR may have utility in identifying risk factors for 
COVID-19 or underlying conditions which may cause alternative, but similar 
presentations. 
 
We applied artificial intelligence methods to a rich clinical dataset with the aim of 
developing a rapidly deployable model for identifying and ruling out COVID-19 using 
routinely collected healthcare data, typically available within one hour. Such a tool 
would meet urgent clinical needs in developed countries and resource-poor settings 
where molecular testing is less readily available.  
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Methods: 
  
Data Collection 
Linked de-identified demographic and clinical data for all patients presenting to 
emergency and acute medical services at Oxford University Hospitals (OUH) between 
1st December 2017 and 19th April 2020, were extracted from EHR systems. OUH 
consists of 4 teaching hospitals, serving a population of 600,000 and providing tertiary 
referral services to the surrounding region. 
 
For each presentation, data extracted included admission blood tests, blood gas 
testing, vital signs, results of SARS-CoV-2 RT-PCR assays (Public Health England 
designed RdRp and Abbott Architect [Abbott, Maidenhead, UK]) of nasopharyngeal 
swabs, and PCR for influenza and other respiratory viruses. Where available, baseline 
health data were included: (i) the Charlson Comorbidity index was calculated from co-
morbidities recorded during all previous hospital encounters since 1st December 2017 
(if any existed), and (ii) changes in blood test values relative to pre-presentation 
results. Patients under the age of 18, not consenting to EHR research, or who did not 
receive laboratory blood tests on presentation to hospital were excluded from analysis. 
We confined all analyses to clinical and laboratory data that are routinely available 
within the first hour of presentation to hospital. 
 
Adult patients presenting prior to the 1st December 2020, and therefore prior to the 
global outbreak, were considered as the COVID-19-negative cohort. A subset of this 
cohort was admitted to hospital, forming the COVID-19-negative admissions cohort. 
Patients presenting between the 1st December and 19th April 2020 with PCR-
confirmed SARS-CoV-2 infection were considered the COVID-19-positive cohort, with 
the subset admitted considered the COVID-19-admissions cohort. Due to incomplete 
penetrance of testing during early stages of the pandemic and limited sensitivity of the 
PCR swab test, there is uncertainty in the viral status of patients presenting during the 
pandemic who were untested or tested negative. These patients were therefore 
excluded from analysis. 
 
Feature Sets 
Five “feature sets” of clinical variables were investigated (Table 1) including 
presentation laboratory blood tests, point-of-care blood gas readings, changes in 
laboratory blood results from pre-admission baseline, vital signs and Charlson 
Comorbidity Index (CCI).  
 
 
 
 
Table 1: Clinical parameters included in each feature set 
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  Feature Sets 
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Presentation Laboratory 
Bloods (PB) 

Haemoglobin, Haematocrit, Mean Cell Vol., White 
Cells, Neutrophils, Lymphocytes, Monocytes, 
Eosinophils, Basophils, Platelets 
Prothromb. Time, INR, APTT 
Sodium, Potassium, Creatinine, Urea, eGFR, CRP, 
Albumin, Alk. Phosphatase, ALT, Bilirubin 

Presentation Point of 
Care ‘Blood Gas’ (BG) 

Base Excess Act,  Base Excess Std, Bicarb, 
Calcium ++, Cl-, Estimated Osmolality, FCOHb, 
Glucose, Hb, Hct, K+, MetHb, Na+, O2 Sat, cLAC, 
ctO2c, p5Oc, pCO2 POC, pH, pO2 

Vital Signs (Obs) Diastolic Blood Pressure, Heart Rate, Oxygen 
Saturation, Respiratory Rate, Systolic Blood 
Pressure, Temperature, Oxygen Flow Rate 

Pr
io

r H
ea

lth
 D

at
a  

Change (“delta”) in 
Blood Tests from 
baseline (DB) 

Delta Albumin, Delta Alk.Phosphatase, Delta ALT, 
Delta Basophils, Delta Bilirubin, Delta Creatinine, 
Delta Eosinophils, Delta Haematocrit, Delta 
Haemoglobin, Delta Lymphocytes, Delta Mean Cell 
Vol., Delta Monocytes, Delta Neutrophils, Delta 
Platelets, Delta Potassium, Delta Sodium, Delta 
Urea, Delta White Cells, Delta eGFR 

Baseline Comorbidity 
Data 

Charlson Comorbidity Index 

 
Presentation blood tests and blood gas considered were result from the first blood 
draw on arrival to hospital, with tests not routinely available within one hour of receipt 
of sample excluded from analysis. Changes in blood tests were computed from pre-
illness laboratory samples taken at minimum 30 days prior to presentation (available 
from 1st December 2017 onwards). Tests where data was missing for ≥40% of all 
presentations were excluded and are not included in the feature sets in Table 1. 
 
Missing data imputation 
Several imputation strategies, population mean, population median and age-based 
imputation, were used to impute missing data. Mean and standard deviations across 
imputation strategies are reported. A full description of the data processing pipeline is 
available in the supplementary information. 
 
Prediction of COVID-19 presentations 
Linear (logistic regression) and non-linear ensemble (random forest & extreme 
gradient boosted trees, XGBoost) classifiers were trained to distinguish patients 
presenting or admitted to hospital with confirmed COVID-19 from pre-pandemic 
controls. Separate models were developed to predict COVID-19 in all patients 
attending the ED, and then in just the subset of those who were subsequently admitted 
to hospital. 
 
Training, Calibration and Testing 
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Models were trained and tested using data from 1st December 2017 to 19th April 2020 
inclusive (Table 2). An 80:20% stratified split was performed to generate a training set 
and held-out test set. Using the training set, we first trained models with each 
independent feature set (Table 1) to identify presentations of COVID-19 from pre-
pandemic controls. Next, we initialised model training using the presentation blood 
results feature set and sequentially added further feature sets (Table 1). Area under 
receiving operating characteristic curve (AUROC) achieved during training with 
stratified 10-fold cross validation is reported alongside standard deviations. During 
training, controls were matched for age, gender and ethnicity. Model thresholds were 
calibrated to achieve sensitivities of 70%, 80%, and 90% for identifying patients with 
COVID-19 in the training set prior to evaluation. 
We assessed performance of our models using the held-out test set. Firstly, we 
configured the test set with equal numbers of COVID-19 cases and pre-pandemic 
controls and reported AUROC alongside sensitivity and specificity at each calibrated 
threshold. Secondly, to simulate model performance at varying stages of the 
pandemic, we generated a series of test sets with a variety of prevalences of COVID-
19 (1-50%) amongst controls using the held-out set. Positive and negative predictive 
values are reported for each model at the 70% and 80% sensitivity thresholds. 
 
AUROC, sensitivity, specificity and precision are reported for candidate models at the 
three thresholds described above. Positive predictive value (PPV) and negative 
predictive value (NPV) are reported for the simulated test sets. 
 
Validation 
Models were validated independently using data for all adult patients presenting or 
admitted to OUH between 20th April and 6th May 2020, by direct comparison of model 
prediction against SARS-CoV-2 PCR results. Due to incomplete penetrance of testing 
and limited sensitivity of the PCR swab test, there is uncertainty in the viral status of 
patients untested or testing negative. We therefore performed a sensitivity analysis to 
ensure disease freedom in controls, switching patients untested or testing negative 
with pre-pandemic ‘true-negatives’ matched for age, gender and ethnicity. Accuracy, 
AUROC, NPV and PPV are reported during validation. 
 
Ethics 
The study protocol, design and data-requirements were approved by the National 
Health Service (NHS) Health Research Authority (IRAS ID: 281832) and sponsored 
by the University of Oxford. 
 
Data & Code availability 
The data studied are available from the Infections in Oxfordshire Research Database 
(https://oxfordbrc.nihr.ac.uk/research-themes-overview/antimicrobial-resistance-and-
modernising-microbiology/infections-in-oxfordshire-research-database-iord/), subject 
to an application meeting the ethical and governance requirements of the Database. 
Code and supplementary information for this paper are available online.  
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Results: 
 
Dataset & Cohorts 
Figure 1 provides a schematic overview of cohorts in our analysis. 155,689 adult 
presentations were considered between 01 December 2017 and 19th April 2020. 
114,957 presentations to hospital prior to the 1st December 2019, and therefore 
preceding the SARS-CoV-2 pandemic, formed the COVID-19-negative cohort. 534 
patients had a RT-PCR confirmed diagnosis of COVID-19 between 1st December 2019 
and 19th April 2020, forming the COVID-19-positive cohort. 43,378 presentations 
during the pandemic with no SARS-CoV-2 PCR or only negative result(s) were 
excluded from analysis due to uncertainty in viral status. 
 
Table 2 demonstrates summary characteristics of presentations included within our 
dataset. Patients presenting to hospital with COVID-19 had a higher median age (IQR) 
than pre-pandemic controls (69 (37) versus 60 (38), Kruksal-Wallis test p<0.001). 
Similarly, patients admitted due to COVID-19 were comparatively older, having a 
median age of 71 (26) versus 65 (33) for pre-pandemic admissions (p<0.001). A high 
proportion of patients presenting to hospital, 74.1%, had had a previous clinical 
encounter at the four-centre hospital group. 
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Figure 1: CONSORT diagram showing inclusion of patients and derivation of cohorts 
during model development to form (a) training and (b) test sets, and a fully 
independent, prospective (c) validation cohort. 
 
 
 

 

Study Population 

All presentations to OUH receiving blood tests 
(n= 170,510) up to 19 Apr 2020: 
§ Pre-pandemic cohort: 01 Dec 2017 to 30 

Nov 2019 (n= 126,009) 
§ Pandemic cohort: 01 Dec 2019 to 19 Apr 

2020 (n= 44,501) 

Excluded 
§ Under age of 18 (n= 14,821) 
§ Untested, or testing negative, by 

SARS-CoV-2 RT-PCR assay during 
global outbreak (n= 40,295) 
 

Arrivals prior to global outbreak of SARS-CoV-2 
meeting inclusion criteria (n= 114,957) 
§ Testing positive for Influenza (n=484) 
§ Admitted to hospital (n=71,927) 

Testing positive for SARS-CoV-2 (n= 437) 
• Admitted to hospital (n= 383) 

Arrivals during global outbreak of SARS-CoV-2 
meeting inclusion criteria (n= 40,732) 
§ Testing positive for SARS-CoV-2 (n=437)  
§ Testing positive for SARS-CoV-2 & Influenza (n=0) 
 

Study Population (n= 115,394) 

§ Testing positive for SARS-CoV-2 (n= 437)  
§ Admitted to hospital (n= 72,310) 
§ 80%:20% Stratified Train-Test Split to generate 

Training Set (80%) and Test Set (20%) 
 

Pre-Pandemic 
Controls 

Cases 

Model Development: Training & Testing 

Validation 

Adult presentations to OUH receiving blood tests 
between 20 Apr – 06 May 2020 (n= 3,326): 
§ Testing positive for SARS-CoV-2 (n=107) 
§ Admitted to hospital (n= 1,715) 
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Table 2: Population characteristics for (a) study cohorts and (b) the independent 
validation set. The results are presented as percentages for categorical data and as 
median and interquartile range for age 
 

 
 
Presentation bloods and vital signs are most predictive of COVID-19  
Table 3 shows a summary of the relative performance of models trained using each 
independent feature set at identifying presentations due to COVID-19, reported in 
terms of AUROC achieved during stratified 10-fold cross validation alongside standard 
deviations (SDs). Both ensemble methods outperform logistic regression due to their 
intrinsic ability to detect non-linear effects of the feature sets. XGBoost classifiers 
trained on presentation laboratory blood tests and vital signs demonstrate highest 
predictive performance for COVID-19, achieving AUROCs of 0.904 (0.000) and 0.823 
respectively (0.005). Narrow standard deviations demonstrate model stability. 
 
Table 3: AUROC (SD) achieved for each independent feature set using stratified 10-
fold cross validation during training. 
 

 
 
 

(a) Study Population (b) Prospective Validation Cohorts
Presenting to Hospital Admitted to Hospital Presenting to Hospital Admitted to Hospital

Cohort Pre-Pandemic COVID-19 Pre-Pandemic COVID-19
n Patients (n COVID-19 Positive) 114,957 (0) 437 (437) 71,927 (0) 383 (383) 3,326 (107) 1,715 (91)
Age, years 60 (38) 69 (26) 65 (33) 71 (26) 56 (37) 64 (34)
Fraction male, % 46.6 56.3 47.8 55.1 45.5 48.5
Prior EHR Encounter, % 74.1 84.0 74.2 86.4 80.3 79.7
Ethnicity, %
White British
Not stated
Any other White background
Pakistani
Any other Asian background
Indian or British Indian
White Irish
African
Any other Black background
Bangladeshi
Chinese
Any other ethnic group

76.0
11.8
5.0
1.3
0.9
0.8
0.7
0.6
0.3
0.2
0.2
2.0

65.4
17.4
3.7
1.1
2.5
1.1
0.7
3.0
0.9
0.7
0.2
3.2

78.5
11.0
4.0
1.1
0.8
0.7
0.7
0.6
0.3
0.2
0.2
1.8

68.4
16.2
3.4
1.0
1.8
0.8
0.8
2.9
0.5
0.8
0.3
3.2

66.3
19.5
6.5
1.2
1.4
0.9
0.7
0.6
0.5
0.3
0.4
1.6

68.2
20.5
4.7
1.0
1.2
0.8
0.8
0.8
0.3
0.3
0.3
1.3

Influenza Positive 484 0 466 0 0 0

Presentation 
Bloods (PB)

Blood Gas 
(BG)

Vital Signs 
(Obs)

Delta bloods 
(DB)

Logistic 
Regression 0.897 (0.003) 0.730 (0.001) 0.810 (0.003) 0.805 (0.008)

Random 
Forest 0.901 (0.004) 0.780 (0.000) 0.815 (0.005) 0.835 (0.006)

XG Boost 0.904 (0.000) 0.770 (0.000) 0.823 (0.005) 0.808 (0.050)
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Increasing feature sets improves predictive performance for COVID-19 
Stepwise addition of routinely collected clinical data supports improvement in model 
performance at discriminating presentations due to COVID-19 (Table 4) to a peak 
AUROC of 0.929 (0.003), achieved with 10-fold cross validation during training using 
the XGBoost classifier. Incorporating previous blood results further improves model 
performance to an AUROC of 0.942 (0.002), however having added previous blood 
tests addition of the CCI did not further improve performance. 
 
Table 4: AUROC (+/- SD) achieved with increasing feature sets using stratified 10-
fold cross validation during training. 
 

 
 
Developing context-specific diagnostic models 
Our preliminary results (Table 4) suggest a non-linear modelling approach with clinical 
data routinely available on presentation (presentation blood tests, blood gas results 
and vital signs) achieves high classification performance (AUROC 0.929). Although 
incorporating prior health data supports a small increment in model performance 
(AUROC 0.942), missingness could limit generalisability. Detailed performance 
metrics for all feature set combinations, at each reported threshold, is available in the 
Supplementary Information. 
  
We therefore developed and optimised context-specific models using the XGBoost 
classifier, using only clinical data sets routinely available on presentation, training 
separate models to predict COVID-19 in patients attending ED (ED Model) and the 
subset subsequently admitted to hospital (Admissions model). This approach has the 
advantage of requiring no previous health data, therefore being applicable to all 
patients, and is specific to the clinical contexts in which models use is intended. 
 
Our ED and Admissions models identify COVID-19 effectively in test sets of 
patients presenting and admitted to hospital 
Performance of our ED model was assessed on a held-out test set, generated using 
a stratified 80%:20% test-train split of cases and configured initially with equal 
numbers of COVID-19 cases and pre-pandemic controls, i.e. 50% prevalence. Our ED 
model, calibrated during training to sensitivity of 80%, achieved an AUROC of 0.939, 
sensitivity of 77.4% and specificity of 95.7%.  

Feature Sets Routinely Performed on Presentation Integrating Prior Health Data
Presentation 
Blood Tests (PB)

+
Blood Gas (BG)

+ 
Vital Signs (Obs)

+ 
Delta Bloods (DB)

+ 
CCI (CCI)

Logistic
Regression 0.897 (0.003) 0.898 (0.003) 0.919 (0.002) 0.920 (0.004) 0.920 (0.004)

Random
Forest 0.901 (0.004) 0.907 (0.003) 0.922 (0.002) 0.941 (0.004) 0.937 (0.002)

XG Boost 0.904 (0.000) 0.916 (0.003) 0.929 (0.003) 0.942 (0.002) 0.942 (0.002)
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Table 5: Assessment of performance (SD) of (a) our ED and (b) Admissions models, 
calibrated to 70, 80 and 90% sensitivities during training, at identifying COVID-19 
amongst patients presenting to or admitted hospital emergency departments in a held-
out test set with 50% assumed prevalence. 
 

 
 
 

 
 
Figure 2: Receiver Operating Characteristic Curves for (a) our ED and (b) Admissions 
models. 
 

(a) ED Model
Calibrated Threshold During Training

Te
st

 S
et

Achieved: Se 0.70 [Config 1] Se 0.80 [Config 2] Se 0.90
Sensitivity 0.697 (0.009) 0.774 (0.019) 0.847 (0.014)
Specificity 0.986 (0.005) 0.957 (0.009) 0.917 (0.018)
Precision (PPV) 0.979 (0.007) 0.944 (0.012) 0.905 (0.018)
NPV 0.777 (0.005) 0.820 (0.013) 0.866 (0.011)
AUC 0.939 (0.003) 0.939 (0.003) 0.939 (0.003)

(b) Admissions Model
Calibrated Threshold During Training

Te
st

 S
et

Achieved: Se 0.70 [Config 1] Se 0.80 [Config 2] Se 0.90
Sensitivity 0.663 (0.029) 0.774 (0.013) 0.854 (0.007)
Specificity 0.973 (0.000) 0.948 (0.005) 0.891 (0.009)
Precision (PPV) 0.950 (0.002) 0.922 (0.006) 0.861 (0.010)
NPV 0.785 (0.014) 0.841 (0.007) 0.886 (0.005)
AUC 0.940 (0.001) 0.940 (0.001) 0.940 (0.001)

(a) ED Model (b) Admissions Model
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Relative feature importance analysis demonstrated that all feature sets contributed to 
the most-informative variables for model predictions (Figure 3). In the ED model, three 
laboratory blood markers (eosinophils, basophils, and C-Reactive Protein [CRP]) were 
amongst the highest-ranking variables. Blood gas measurements (calcium and 
methaemoglobin) and vital signs (oxygen requirement and respiratory rate) were 
additionally amongst the variables most informative to model predictions. 
Similar top-ranking features are seen in the Admissions model, however notably with 
greater relative weights for CRP and White Cell counts and lesser weights for blood 
gas measurements (calcium and methaemoglobin). 
 
 

 

(a) ED Model
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Figure 3: Relative feature importances within our (a) ED model and (b) Admissions 
model for identifying COVID-19 in patients presenting or admitted to hospital. 
 
Our models achieve clinically useful predictive values at varying stages of an 
epidemic to support clinical decision making 
To reflect performance at varying stages of an epidemic, positive and negative 
predictive values are assessed on test sets configured to a variety of prevalences of 
COVID-19. Results are reported in Table 6 for ED and Admissions models, calibrated 
to two sensitivity thresholds (70% and 80%). 
 
For both models, the higher sensitivity configuration (80%, Config 2.) achieves high 
NPV (>99%) where the disease is relatively uncommon (< 5% prevalence), supporting 
safe exclusion of the disease. At high disease prevalances (>20%), the 70% sensitivity 
configuration optimises for high PPV (>83%) at good NPV (>92%). 
 
The 70% sensitivity configurations (Config. 1) of our models achieved high PPV, of 
76.3% and 83.0%, and NPV, of 95.3% and 96.2%, at the prevalence of COVID-19 
observed in patients presenting and admitted to hospital respectively at the study 
hospitals during the first week of April 2020 (1st – 8th April 2020) (Table 6).  
 

(b) Admissions Model
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Table 6: PPV and NPV of our (a) ED model and (b) Admissions model, calibrated 
during training to (Config. 1) 70% and (Config. 2) 80% sensitivities, for identifying 
COVID-19 in test sets with a variety of prevalences. The 10% and 20% scenarios (*) 
approximate the observed prevalence of COVID-19 in patients (a) presenting and (b) 
admitted to the study hospitals during the first week of April 2020 (1st April – 8th April 
2020). 
 
Validation: Prospective validation of our ED & Admission models confirms high 
accuracy and negative predictive performance 
To assess real-world performance of our ED and Admission models, calibrated during 
training to 80%, we validated our models for all patients presenting or admitted across 
the study hospital group (OUH) between 20th April and 6th May 2020. Prevalences of 
COVID-19 in patients presenting and admitted to hospital in the validation set were 
3.2% and 5.3% respectively. Our ED model performed with 92.3% accuracy (AUROC: 
0.881) and Admission model with 92.5% accuracy (AUROC: 0.871) on the validation 
set assessed against results of formal PCR testing. PPVs were 46.7% and 40.0%, and 
NPVs were 97.6% and 97.7% respectively. 
 
We performed a sensitivity analysis to account for uncertainty in the viral status of 
patients in the validation set testing negative by PCR or who were not tested. Our ED 
model demonstrated an apparent improvement in accuracy to 95.1% (AUROC: 0.960), 
and admission model to 94.1% accuracy (AUROC: 0.937) on the adjusted validation 
set. NPVs achieved were also improved, at 99.0% and 98.5% respectively. 

(A) ED Model Prevalence of COVID-19 in Test Set
1% 2% 5% 10%* 20% 25% 33% 50%

Config. 1
[Se 0.7]

PPV 0.203 0.383 0.613 0.763 0.834 0.902 0.888 0.979

NPV 0.996 0.990 0.985 0.953 0.932 0.871 0.886 0.778

Config. 2
[Se 0.8]

PPV 0.133 0.282 0.493 0.638 0.767 0.831 0.823 0.944

NPV 0.997 0.993 0.991 0.962 0.946 0.909 0.908 0.820

(b) Admissions Model Prevalence of COVID-19 in Test Set
1% 2% 5% 10% 20%* 25% 33% 50%

Config. 1
[Se 0.7]

PPV 0.175 0.304 0.513 0.595 0.830 0.859 0.876 0.950

NPV 0.996 0.992 0.982 0.969 0.926 0.905 0.881 0.785

Config. 2
[Se 0.8]

PPV 0.098 0.211 0.390 0.509 0.755 0.797 0.812 0.922

NPV 0.998 0.994 0.986 0.977 0.942 0.920 0.907 0.841
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Assessment of Misclassification 
To assess for biases in model performance, we assessed rates of patient 
misclassification during validation of our ED and Admissions models. We observed 
that rates of misclassification were similar between white British (9% and 10%, 
respectively) and black, Asian and minority ethnic group patients (11 and 13%; 
Fishers’ Exact test p= 0.374 & 0.358), and between men (11% and 11%) and women 
(8% and 8%; p=0.147 and 0.091). We also found no difference between 
misclassification of patients aged over 60 (10% and 10%) and patients aged between 
18 and 60 (9% and 8%; p=0.187 & 0.191). 
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Discussion: 
Limitations of the gold-standard PCR test for COVID-19 have challenged healthcare 
systems across the world. There remains an urgent clinical need for rapid and 
accurate testing on arrival to hospitals, with the current test limited by prolonged 
turnaround times18, shortages of specialist equipment and operators, and relatively 
low sensitivity8.  
 
In this study, we develop and assess two Artificial Intelligence (AI) driven screening 
tools for in-hospital COVID-19 screening, in the clinical context intended for use. Our 
Emergency Department and Admission models effectively identify patients with 
COVID-19 amongst all patients presenting and admitted to hospital, using data 
typically available within the first hour of presentation (AUROC 0.939 & 0.940). On 
validation using appropriate prospective cohorts of all patients presenting or admitted 
to a large UK teaching centre group between 20th April and 6th May 2020 (n=3,326 & 
1,715), our models achieve high accuracies (92.3% and 92.5%) and negative 
predictive values (97.6% and 97.7%). A sensitivity analysis to account for uncertainty 
in negative PCR results improves apparent accuracy (95.1% and 94.1%) and NPV 
(99.0% and 98.5%). Simulation on test-sets with varying prevalences of COVID-19 
shows that our models achieve clinically useful negative predictive values (>0.99) at 
low prevalences (<5%), supporting safe exclusion of the disease. At higher 
prevalences (>25%), our models can be configured to meet clinical needs for higher 
positive predictive values (>0.83). Our models’ negative predictive performance 
supports use as a screening test to rapidly exclude COVID-19 in emergency 
departments, assisting immediate care decisions, guiding safe patient streaming and 
serving as a pre-test for formal RT-PCR testing where availability is limited. 
 
Strengths of our AI approach include an ability to scale rapidly to meet the urgent 
clinical need, taking advantage of cloud computing platforms, and working with 
laboratory tests widely available and routinely performed within the current standard 
of care. Moreover, at higher prevalances of COVID-19, clinical need may favour higher 
PPV; we demonstrate that our models can be calibrated to meet changing clinical 
requirements as the pandemic progresses. 
 
To date early-detection models have overwhelmingly focussed on assessment of 
radiological imaging, such as Computerised Tomography (CT)5,18–20, that is less 
readily available and involves patient exposure to ionising radiation.  Few studies have 
assessed routine laboratory tests, with studies to-date including small numbers of 
confirmed COVID-19 patients, using RT-PCR results for data labelling thereby failing 
to ensure disease freedom in ‘negative’ patients, and are not validated in the clinical 
population intended for use11,12,21. A significant limitation of existing works is the use 
of narrow control cohorts during training, inadequately exposing models to the breadth 
and variety of alternative infectious and non-infectious pathologies, including seasonal 
pathologies. Moreover,  though the use of AI techniques for early detection holds great 
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promise, many published models to date have been assessed to be at high risk of 
bias19. 
 
Our study includes the largest dataset of any COVID-19 laboratory AI study to date, 
considering over 115,000 hospital attendances and 5 million laboratory 
measurements, and is prospectively validated using the appropriate patient cohorts 
for the models’ intended clinical contexts. The breadth of our pre-pandemic control 
cohort gives exposure to a wide range of undifferentiated presentations, including 
other seasonal infectious pathologies (e.g. Influenza), and offers confidence in SARS-
CoV-2 freedom. Additionally, our study is the first to integrate presentation laboratory 
blood results with blood gas and vital signs measurements, maximising richness of 
the dataset available within the acute clinical setting. 
 
Our results demonstrate that integrating prior health data, such as calculated 
differences in blood tests, incrementally improved performance of our ED and 
Admission models (AUROC 0.944 and 0.946, Supplementary Information). However, 
prior health data was unavailable for 15.6% of patients presenting with COVID-19 
(Table 2), and may be less readily available at other sites. As clinically adequate 
performance was achieved on presentation data alone, without compromising 
generalisability, we did not include prior health data in our final models. 
 
We select interpretable linear and non-linear modelling approaches, achieving highest 
performance with extreme gradient boosted tree methods. Information variables from 
all sets were important in model predictions, including three measured biochemical 
quantities (Eosinophils, Basophils and CRP), blood gas measurements 
(Methaemoglobin and Calcium), and vital signs (Respiratory Rate and Oxygen 
Delivery). Where features are highly correlated, any one of the correlated features 
may be selected during training and ascribed importance. After selecting one such 
feature, the relative importance of other correlated features is decreased as the 
relationship is encoded within the value of the selected correlate. Interpretation of 
significance for variable absence should therefore be cautious. 
 
Existing literature has reported an association between lymphopenia and COVID-19 
3,17. We observe that lymphopenia is frequently absent on first-available laboratory 
tests performed on admission (Supplementary Information, Table C1), and is not a 
highly-ranked feature in our models (Figure 3). Univariate analysis identifies that low 
Eosinophil count on presentation is more strongly correlated with COVID-19 diagnosis 
than the Lymphocyte count (Supplementary Information, Appendix B; chi-squared 
scores 41.61 and 31.56 respectively).  
 
Recognising concerns of biases within AI models, we assessed cases misclassified 
during validation for evidence of ethnic, age or gender biases. Our results showed 
misclassification was equally likely between white British and black, Asian and minority 
ethnic patients, males and females and elderly (>60) and younger (18-59) patients. 
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Our study seeks to address limitations common to EHR research. We use multiple 
imputation for missing data, taking a mean of three strategies (age-based imputation, 
population mean, population median). We queried whether our results were sensitive 
to imputation strategy and found similar model performance across the three 
strategies.  
 
A potential limitation of the present study is the relatively limited ethnic diversity of 
patients included. 76.0% of patients presenting to the hospital group prior to the 
pandemic, and 65.4% of patients with confirmed COVID-19, reported their ethnicity to 
be white British (Table 2). Although our models do not appear to be more likely to 
misclassify ethnic minority patients, integrating data from international centres would 
increase confidence in model generalisability. 
 
Our work demonstrates that an AI-driven screening test can effectively triage 
patients presenting to hospital for COVID-19 while confirmatory laboratory PCR 
testing is awaited. Our approach is rapidly scalable, fitting within the existing 
laboratory testing infrastructure and standard of care, and additionally serves as 
proof-of-concept for a rapidly deployable software tool in future pandemics. 
Prospective clinical trials would further assess model generalisability and real-world 
performance.  
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Supplementary Material 
 
Appendix A 
Additional Methods & Data Processing: 
Data Extraction 
De-identified demographic, microbiology and laboratory records from the first 24 hours 
of presentation to the hospital were extracted retrospectively from electronic health 
records for all cohorts. Where available, pre-morbid blood tests were extracted for 
patients, dated at minimum 30 days prior to acute presentation to hospital. The curated 
data set included 71 features (24 laboratory blood tests, 21 Blood gas readings, six 
routinely measured physiological parameters, 19 changes in laboratory blood results 
from the baseline, and the Charlson Comborbidity Index), for 170,510 hospital 
presentations across a four-site NHS trust in Oxfordshire, UK.  
 
Data Cleaning 
Non-numerical readings were replaced with clinically appropriate values. Where a lab 
value was reported as being below the threshold of detection of the laboratory assay, 
the value was replaced with a numerical zero value. Where values were reported as 
being above the threshold of detection, clinically appropriate values were selected to 
maintain the significance of the high result. The distribution of features in terms of 
mean and interquartile ranges can be seen in Tables C1-C3. 
 
Table C1 Distribution of the Blood Test features reported as mean and interquartile 
ranges for COVID-19 cases and pre-pandemic controls 
Features COVID-19 Cohort  Pre-Pandemic Controls 
ALBUMIN (g/L) 31.38 (28.0 - 35.0)  35.21 (32.0 - 39.0) 
ALK.PHOSPHATASE (IU/L) 97.87 (62.0 - 106.0) 99.99 (64.0 - 106.0) 
ALT (IU/L) 36.5 (18.0 - 40.0) 30.67 (13.0 - 29.0) 
APTT (s) 25.28 (22.45 - 26.9) 25.31 (22.6 - 26.6) 
BASOPHILS (109 l-1)  0.02 (0.01 - 0.03) 0.05 (0.03 - 0.06) 
BILIRUBIN (umol/L) 11.45 (7.0 - 14.0) 12.28 (6.0 - 13.0) 
CREATININE (umol/L) 106.41 (65.0 - 107.0) 94.18 (60.0 - 92.0) 
CRP(mg/L) 105.98 (28.95 - 153.15) 36.77 (2.2 - 39.5) 
EOSINOPHILS (109 l-1) 0.03 (0.0 - 0.03) 0.15 (0.04 - 0.2) 
HAEMATOCRIT 0.4 (0.36 - 0.44) 0.39 (0.35 - 0.42) 
HAEMOGLOBIN (g/L) 130.99 (116.5 - 146.0) 128.51 (116.0 - 143.0) 
INR  1.09 (1.0 - 1.1) 1.14 (1.0 - 1.1) 
LYMPHOCYTES (109 l-1) 1.39 (0.59 - 1.35) 1.7 (1.0 - 2.12) 
MEAN CELL VOL. (fl) 90.16 (86.3 - 93.95) 89.93 (86.2 - 93.6) 
MONOCYTES (109 l-1) 0.59 (0.34 - 0.7) 0.72 (0.49 - 0.86) 
NEUTROPHILS (109 l-1) 6.1 (3.34 - 7.58) 6.82 (4.04 - 8.5) 
PLATELETS (109 l-1) 221.84 (157.0 - 269.5) 260.9 (201.0 - 308.0) 
POTASSIUM (mM) 4.0 (3.7 - 4.3) 4.05 (3.7 - 4.3) 
Prothromb. Time (s) 11.32 (10.3 - 11.4) 11.99 (10.3 - 11.4) 
SODIUM (mM) 135.9 (133.0 - 139.0) 137.56 (136.0 - 140.0) 
UREA (mM) 8.04 (4.2 - 9.3) 6.63 (3.9 - 7.2) 
WHITE CELLS (109 l-1) 8.22 (5.06 - 9.74) 9.56 (6.52 - 11.29) 
eGFR (ml/min) 88.05 (52.0 - 150.0) 101.06 (64.0 - 150.0) 
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Table C2 Distribution of the Blood Gas features reported as mean and interquartile 
ranges for COVID-19 cases and pre-pandemic controls 
Features COVID-19 Cohort Pre-Pandemic Controls 
BE Act (mM) 0.97 (-0.65 - 3.0) 0.66 (-0.8 - 2.5) 
BE Std (mM) 1.1 (-0.8 - 3.3) 1.03 (-0.8 - 3.2) 
BICARB (mM) 24.64 (23.2 - 26.3) 24.46 (23.2 - 26.0) 
Ca+ + (mM) 1.12 (1.08 - 1.16) 1.18 (1.14 - 1.22) 
Cl- (mM) 102.41 (99.0 - 106.0) 104.21 (102.0 - 107.0) 
Estimated Osmolality  281.08 (274.25 - 287.25) 283.72 (278.7 - 289.4) 
FCOHb (%) 0.87 (0.6 - 1.1) 1.32 (0.7 - 1.4) 
Glucose (mM) 8.11 (5.7 - 8.6) 7.15 (5.4 - 7.5) 
Hb (g/L) 136.4 (124.0 - 152.0) 134.62 (122.0 - 149.0) 
Hct 41.86 (38.0 - 46.5) 41.26 (37.5 - 45.7) 
K+ (mM) 3.95 (3.6 - 4.2) 4.06 (3.7 - 4.3) 
MetHb (%) 0.62 (0.4 - 0.8) 0.88 (0.6 - 1.1) 
Na+ (mM) 136.11 (133.0 - 140.0) 137.82 (136.0 - 141.0) 
O2 Sat (%) 60.18 (37.95 - 83.15) 63.25 (43.8 - 84.3) 
cLAC (mM) 1.8 (1.1 - 2.0) 1.65 (0.9 - 1.9) 
ctO2c 11.4 (7.1 - 15.3) 11.71 (7.9 - 15.5) 
p5Oc (kPa) 3.73 (3.5 - 3.95) 3.73 (3.5 - 3.93) 
pCO2 (kPa) 5.35 (4.59 - 5.97) 5.64 (4.95 - 6.25) 
pH 7.42 (7.38 - 7.46) 7.4 (7.37 - 7.43) 
pO2 (kPa) 5.25 (3.31 - 6.36) 6.13 (3.49 - 6.62) 

 
Table C3 Distribution of the Vital Sign features in terms of mean and interquartile 
ranges for positive and control cases 

Features COVID-19 Cohort Pre-Pandemic 
Controls 

Diastolic Blood Pressure (mmHg) 74.82 (65.0 - 84.0) 75.51 (66.0 - 84.0) 
Heart Rate (beats/min) 89.99 (75.0 - 102.0) 82.29 (69.0 - 93.0) 
Oxygen L/min delivered  2.59 (0.0 - 4.0) 0.27 (0.0 - 0.0) 
Oxygen Saturation (%) 95.32 (94.0 - 98.0) 97.1 (96.0 - 99.0) 
Respiratory Rate  22.03 (18.0 - 24.0) 17.57 (16.0 - 18.0) 
Systolic Blood Pressure (mmHg)  132.48 (115.0 - 147.0) 135.48 (119.0 - 149.0) 
Temperature (C) 37.09 (36.4 - 37.8) 36.5 (36.0 - 36.9) 
 
Missing Data 
Multiple imputation strategies, population mean, population median and age-based 
imputation, were used to impute missing data. The data was analysed by all three 
methods individually and the mean performance was reported. 
 
Normalisation 
Data normalisation was implemented to mitigate overfitting and to avoid the reliance 
of the model on measurement units.  Categorical data are handled by encoding as “1-
hot” variables. 
 
Methodology 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 8, 2020. ; https://doi.org/10.1101/2020.07.07.20148361doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.07.20148361
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

24 
 

Three machine learning techniques, logistic regression (LR), random forest (RF), and 
Gradient Boosting Tree (XGB), were considered and compared in terms of predictive 
performance.  LR is a linear model that optimises a set of weights for each feature to 
achieve the best classification performance on the training data. This model was built 
using the LIBLINEAR library. LR is easy to implement, efficient to train and provides 
probabilities as outcomes. However, LR has high bias and cannot solve non-linear 
problems due to its linear decision surface. RF is an averaging method that is based 
on building several independent classifiers. This model fits several decision tree (DT) 
classifiers on different subsets of the dataset and averages results to produce final 
predictions with improved performance. RF is based on training several independent 
trees that can be fit in parallel, and often reduces the variance, however, can be more 
computationally expensive. 100 estimators were considered for RF training. XGBoost 
is a generalisation of boosting to an arbitrary differentiable loss function. XGBoost is 
more robust to outliers and has high predictive power. Nonetheless, due to its 
sequential nature, it cannot be parallelised. DT was used as the base classifier and 
Binomial deviance and 100 estimators were considered for the training. 
 
Appendix B 
Univariate Chi Sqaured test 
Statistical tests such as chi Square can be used to select features that have a strong 
correlation with the outcome. The chi-squared (chi²) is a statistical test for non-
negative features. The importance based on chi² for three important blood test markers 
(based on our results and the literature) can be seen in Table C4. 
 
Feature Score 
EOSINOPHILS 47.61 
LYMPHOCYTE 31.56 
BASOPHILS  5.92 

 
Appendix C 
Detailed Results 
The full results for various feature sets are attached in the ‘Initial Experiments’, 
‘Emergency Department Model’ and ‘Admission Model’ directories. Patient data 
collected between 1st December 2017 and 19th April 2020 was separated in to training 
and test sets by 80%:20% split. The performances were reported in terms of accuracy, 
area under the roc curve (AUC), precision (or PPV), recall, specificity, F1-score, and 
NPV. The mean and standard deviation (SD) on the held-out test sets for various 
prevalences and thresholds (the threshold was set to have a fixed sensitivity on the 
train set, e.g., 80% and was used for the hold-out test set) were reported.  
Validation was performed using all patients presenting or admitted to OUH between 
20th April and 6th May 2020 (‘Validation' subfolder). Due to incomplete penetrance of 
testing for COVID-19 and the limited sensitivity of the RT-PCR swab test, there is 
uncertainty in the viral status of patients untested, or testing negative, in the 
prospective cohort. We therefore switched patients testing negative, or not tested, for 
COVID-19 in the test set with unseen, matched pre-pandemic controls (matched for 
age, gender and ethnicity) to ensure disease freedom (‘Adjusted Validation’ 
subfolder).   
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Furthermore, relative feature importances are reported for each experiment. The 
feature ranking is based on the importance of each feature in construction of the DTs 
within the model. 
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Table 1: Clinical parameters included in each feature set

Feature Sets

R
ou

tin
el

y 
co

lle
ct

ed
 o

n 
pr

es
en

ta
tio

n

Presentation Laboratory 
Bloods (PB)

Haemoglobin, Haematocrit, Mean Cell Vol., White 
Cells, Neutrophils, Lymphocytes, Monocytes, 
Eosinophils, Basophils, Platelets
Prothromb. Time, INR, APTT
Sodium, Potassium, Creatinine, Urea, eGFR, CRP, 
Albumin, Alk. Phosphatase, ALT, Bilirubin

Presentation Point of 
Care ‘Blood Gas’ (BG)

Base Excess Act,  Base Excess Std, Bicarb, 
Calcium ++, Cl-, Estimated Osmolality, FCOHb, 
Glucose, Hb, Hct, K+, MetHb, Na+, O2 Sat, cLAC, 
ctO2c, p5Oc, pCO2 POC, pH, pO2

Vital Signs (Obs) Diastolic Blood Pressure, Heart Rate, Oxygen 
Saturation, Respiratory Rate, Systolic Blood 
Pressure, Temperature, Oxygen Flow Rate

Pr
io

r H
ea

lth
 D

at
a

Change (“delta”) in 
Blood Tests from 
baseline (DB)

Delta Albumin, Delta Alk.Phosphatase, Delta ALT, 
Delta Basophils, Delta Bilirubin, Delta Creatinine, 
Delta Eosinophils, Delta Haematocrit, Delta 
Haemoglobin, Delta Lymphocytes, Delta Mean Cell 
Vol., Delta Monocytes, Delta Neutrophils, Delta 
Platelets, Delta Potassium, Delta Sodium, Delta 
Urea, Delta White Cells, Delta eGFR

Baseline Comorbidity 
Data

Charlson Comorbidity Index
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(a) Study Population (b) Prospective Validation Cohorts
Presenting to Hospital Admitted to Hospital Presenting to Hospital Admitted to Hospital

Cohort Pre-Pandemic COVID-19 Pre-Pandemic COVID-19
n Patients (n COVID-19 Positive) 114,957 (0) 437 (437) 71,927 (0) 383 (383) 3,326 (107) 1,715 (91)
Age, years 60 (38) 69 (26) 65 (33) 71 (26) 56 (37) 64 (34)
Fraction male, % 46.6 56.3 47.8 55.1 45.5 48.5
Prior EHR Encounter, % 74.1 84.0 74.2 86.4 80.3 79.7
Ethnicity, %
White British
Not stated
Any other White background
Pakistani
Any other Asian background
Indian or British Indian
White Irish
African
Any other Black background
Bangladeshi
Chinese
Any other ethnic group

76.0
11.8
5.0
1.3
0.9
0.8
0.7
0.6
0.3
0.2
0.2
2.0

65.4
17.4
3.7
1.1
2.5
1.1
0.7
3.0
0.9
0.7
0.2
3.2

78.5
11.0
4.0
1.1
0.8
0.7
0.7
0.6
0.3
0.2
0.2
1.8

68.4
16.2
3.4
1.0
1.8
0.8
0.8
2.9
0.5
0.8
0.3
3.2

66.3
19.5
6.5
1.2
1.4
0.9
0.7
0.6
0.5
0.3
0.4
1.6

68.2
20.5
4.7
1.0
1.2
0.8
0.8
0.8
0.3
0.3
0.3
1.3

Influenza Positive 484 0 466 0 0 0

Table 2: Population characteristics for (a) study cohorts and (b) the independent validation set. The 
results are presented as percentages for categorical data and as median and interquartile range for 
age.
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Table 3: AUROC (SD) achieved for each independent feature set using stratified 10-
fold cross validation during training.

Presentation 
Bloods (PB)

Blood Gas 
(BG)

Vital Signs 
(Obs)

Delta bloods 
(DB)

Logistic 
Regression 0.897 (0.003) 0.730 (0.001) 0.810 (0.003) 0.805 (0.008)

Random 
Forest 0.901 (0.004) 0.780 (0.000) 0.815 (0.005) 0.835 (0.006)

XG Boost 0.904 (0.000) 0.770 (0.000) 0.823 (0.005) 0.808 (0.050)
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Feature Sets Routinely Performed on Presentation Integrating Prior Health Data
Presentation 
Blood Tests (PB)

+
Blood Gas (BG)

+ 
Vital Signs (Obs)

+ 
Delta Bloods (DB)

+ 
CCI (CCI)

Logistic
Regression 0.897 (0.003) 0.898 (0.003) 0.919 (0.002) 0.920 (0.004) 0.920 (0.004)

Random
Forest 0.901 (0.004) 0.907 (0.003) 0.922 (0.002) 0.941 (0.004) 0.937 (0.002)

XG Boost 0.904 (0.000) 0.916 (0.003) 0.929 (0.003) 0.942 (0.002) 0.942 (0.002)

Table 4: AUROC (+/- SD) achieved with increasing feature sets using stratified 10-fold cross validation during 
training.
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(a) ED Model
Calibrated Threshold During Training

Te
st

 S
et

Achieved: Se 0.70 [Config 1] Se 0.80 [Config 2] Se 0.90
Sensitivity 0.697 (0.009) 0.774 (0.019) 0.847 (0.014)
Specificity 0.986 (0.005) 0.957 (0.009) 0.917 (0.018)
Precision (PPV) 0.979 (0.007) 0.944 (0.012) 0.905 (0.018)
NPV 0.777 (0.005) 0.820 (0.013) 0.866 (0.011)
AUC 0.939 (0.003) 0.939 (0.003) 0.939 (0.003)

(b) Admissions Model
Calibrated Threshold During Training

Te
st

 S
et

Achieved: Se 0.70 [Config 1] Se 0.80 [Config 2] Se 0.90
Sensitivity 0.663 (0.029) 0.774 (0.013) 0.854 (0.007)
Specificity 0.973 (0.000) 0.948 (0.005) 0.891 (0.009)
Precision (PPV) 0.950 (0.002) 0.922 (0.006) 0.861 (0.010)
NPV 0.785 (0.014) 0.841 (0.007) 0.886 (0.005)
AUC 0.940 (0.001) 0.940 (0.001) 0.940 (0.001)

Table 5: Assessment of performance (SD) of (a) our ED and (b) Admissions models, calibrated to 70, 
80 and 90% sensitivities during training, at identifying COVID-19 amongst patients presenting to or 
admitted hospital emergency departments in a held-out test set with 50% assumed prevalence.
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Feature Importances

Table 6: PPV and NPV of our 
(a) ED model and (b) 
Admissions model, calibrated 
during training to (Config. 1) 
70% and (Config. 2) 80% 
sensitivities, for identifying 
COVID-19 in test sets with a 
variety of prevalences. The 
10% and 20% scenarios (*) 
approximate the observed 
prevalence of COVID-19 in 
patients (a) presenting and (b) 
admitted to the study hospitals 
during the first week of April 
2020 (1st – 8th April 2020).

(A) ED Model Prevalence of COVID-19 in Test Set
1% 2% 5% 10%* 20% 25% 33% 50%

Config. 1
[Se 0.7]

PPV 0.203 0.383 0.613 0.763 0.834 0.902 0.888 0.979

NPV 0.996 0.990 0.985 0.953 0.932 0.871 0.886 0.778

Config. 2
[Se 0.8]

PPV 0.133 0.282 0.493 0.638 0.767 0.831 0.823 0.944

NPV 0.997 0.993 0.991 0.962 0.946 0.909 0.908 0.820

(b) Admissions Model Prevalence of COVID-19 in Test Set
1% 2% 5% 10% 20%* 25% 33% 50%

Config. 1
[Se 0.7]

PPV 0.175 0.304 0.513 0.595 0.830 0.859 0.876 0.950

NPV 0.996 0.992 0.982 0.969 0.926 0.905 0.881 0.785

Config. 2
[Se 0.8]

PPV 0.098 0.211 0.390 0.509 0.755 0.797 0.812 0.922

NPV 0.998 0.994 0.986 0.977 0.942 0.920 0.907 0.841
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Figure 2: Receiver Operating Characteristic Curves for (a) our ED and (b) Admissions models.

(a) ED Model (b) Admissions Model
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Figure 3: Relative feature importances within our (a) ED model and (b) Admissions models for 
identifying COVID-19 in patients presenting or admitted to hospital.
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