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Abstract 

Objectives: To identify the diagnostic accuracy of common imaging modalities, chest 

X-ray (CXR) and computed tomography (CT) for diagnosis of COVID-19 in the general 

emergency population in the UK and to find the association between imaging features 

and outcomes in these patients. 

Design: Retrospective analysis of electronic patient records  

Setting: Tertiary academic health science centre and designated centre for high 

consequence infectious diseases in London, UK. 

Participants: 1,198 patients who attended the emergency department with paired RT-

PCR swabs for SARS-CoV 2 and CXR between 16th March and 16th April 2020 

Main outcome measures: Sensitivity and specificity of CXR and CT for diagnosis of 

COVID-19 using the British Society of Thoracic Imaging reporting templates. Reference 

standard was any reverse transcriptase polymerase chain reaction (RT-PCR) positive 

naso-oropharyngeal swab within 30 days of attendance. Odds ratios of CXR in 

association with vital signs, laboratory values and 30-day outcomes were calculated. 

Results: Sensitivity and specificity of CXR for COVID-19 diagnosis were 0.56 (95% CI 

0.51-0.60) and 0.60 (95% CI 0.54-0.65), respectively. For CT scans these were 0.85 

(95% CI 0.79-0.90) and 0.50 (95% CI 0.41-0.60), respectively. This gave a statistically 

significant mean increase in sensitivity with CT compared with CXR, of 29% (95% CI 

19%-38%, p<0.0001). Specificity was not significantly different between the two 

modalities. 

Chest X-ray findings were not statistically significantly or clinical meaningfully 

associated with vital signs, laboratory parameters or 30-day outcomes. 

Conclusions: Computed tomography has substantially improved diagnostic 

performance over CXR in COVID-19. CT should be strongly considered in the initial 

assessment for suspected COVID-19. This gives potential for increased sensitivity and 

considerably faster turnaround time, where capacity allows and balanced against 

excess radiation exposure risk. 

Key words: X-Rays, Computed Tomography, COVID-19, severe acute respiratory 

syndrome coronavirus 2, Emergency Medicine, Diagnostic Imaging 

Statistical review: The statistical methods in this manuscript and associated code have 

been reviewed by Dr Federico Ricciardi of the Department of Statistical Science at 

University College London and confirmed as robust and accurate. 

Ethical approval: This study was registered with the local institutional review board as 

a service evaluation using anonymised data only. No formal ethics committee review 

was required. 
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Introduction 

SARS-CoV 2 and its resulting disease, COVID-19, have propagated exponentially 

worldwide, with over 10 million cases in 188 countries at the time of writing [1,2]. 

The gold standard for diagnosis of the virus is the detection of viral RNA through 

reverse transcriptase polymerase chain reaction (RT-PCR) of respiratory tract samples. 

However, this method has several limitations including: (1) low sensitivity at 59-71% 

[3,4], (2) relatively slow turnaround times ranging from a few hours to several days [5], 

(3) high expense and (4) limited capacity for testing in many countries. 

Computed tomography (CT) has been shown to be more sensitive than RT-PCR for 

diagnosis of COVID-19 [3,4], while being significantly faster and cheaper. This comes 

with a large radiation dose and capacity is still lacking in many countries. 

Plain film chest X-ray (CXR) is ubiquitous worldwide, with a 30-70x lower dose of 

radiation[6] and is commonly performed as an initial investigation in COVID-19.  

Studies have so far only evaluated imaging in those with confirmed infection, it is 

therefore, not possible to calculate the specificity of these modalities. In the context of 

the global pandemic, infection may be widespread in the community, often with 

subclinical infection [7,8]. A reliable and rapid method to detect infection in the general 

population, who may present to medical personnel with other complaints, is needed. 

Despite its extensive use, the specificity and sensitivity of CXR in the general 

emergency population for diagnosis of COVID-19 is unknown, nor how imaging features 

correlate with severity.  

This study evaluated the performance of CXR in diagnosing COVID-19 in the 

emergency department (ED) of a tertiary care hospital. 
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Methods 

This study was conducted at the Royal Free Hospital, London, UK, an academic health science 

centre and nationally designated centre for High Consequence Infectious Diseases [9]. 

All individuals attending the emergency department who had paired plain film chest radiographs 

and RT-PCR nasopharyngeal swabs for COVID-19 at initial attendance between 16th March 

2020 and 16th April 2020 were included. 

All chest radiographs were reported by a Consultant Radiologist and rated on an ordinal scale 

for probability of COVID-19: Alternative pathology identified, not COVID-19; Clear chest, unlikely 

COVID; Indeterminate findings for COVID-19; Classical findings of COVID-19, based on the 

British Society of Thoracic Imaging’s (BSTI) reporting templates (table 1) [10]. 

RT-PCR of swabs were performed in laboratories either at our centre or at a public health 

laboratory (PHE Collindale, UK), according to published national standard operating procedures 

[11]. Subsequent RT-PCR swabs taken within 30 days of initial ED attendance were also 

included. 

CT scans performed within 30 days of attendance were retrieved. These were also reported 

according to the BSTI template. CT pulmonary angiogram was performed in the ED if the D-

dimer was >5000 to exclude pulmonary emboli as per the locally agreed protocol. Subsequent 

CT chest imaging (whether pulmonary angiogram, contrast or non-contrast) was performed on 

the basis of clinical suspicion. 

Prospectively recorded data was extracted from the Cerner Millennium electronic patient record 

system (Cerner Corp., Kansas City, MO). 

Primary Outcome 

The primary outcome is sensitivity and specificity of initial CXR, where it is reported as having 

classic COVID-19 features in the ED. This is compared with RT-PCR swab as the reference 

standard for diagnosis of COVID-19. 

In the event of multiple RT-PCR swabs during one attendance, a single positive swab was taken 

as an overall positive test during one admission. 

Secondary Outcomes 

In those patients who also had CT scans of the thorax, the diagnostic accuracy was compared 

with CXR, with RT-PCR again as the reference standard. Sensitivity and specificity of CXR 

when X-rays reported as indeterminate or atypical for COVID-19 were classed as positive was 

also calculated. 

Chest x-ray findings were correlated with vital signs at attendance and blood results, including: 

neutrophil counts, D-dimer and C-reactive protein, which have been associated with poor 

prognosis in COVID-19 [12]. Hazard ratios for clinical outcomes including direct admission to 

the intensive treatment unit (ITU) from ED and 30-day mortality rates were also calculated for 

CXR reporting categories. 
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Statistical Analysis 

In the event of missing data, multiple imputation was conducted using a Predictive Mean 

Matching algorithm, via the MICE R package, as described previously [13]. Briefly, this uses a 

linear regression model (or logistic regression model for categoric data), to find a random value 

based on already observed data, to replace missing fields [14]. Variables without missing data 

fields were not modified. The number of imputed datasets was similar in number to the 

percentage of missing data as suggested by White and colleagues [15]. Balance diagnostics 

with density plots are available in supplementary file 1, adequate balance was assessed via 

visual inspection of imputed distributions with respect to the original dataset. 

The propensity for a CXR being reported as positive or negative for COVID-19 was calculated 

for several plausible covariates that may influence image characteristics such as Age, Gender, 

Ethnicity, pre-existing morbidities and the respiratory rate of the patient using a generalised 

linear model [16]. X-ray positive and negative groups were then matched in each imputed 

dataset using the nearest neighbour algorithm, with a calliper of 0.2 of the propensity score 

standard deviation, without replacement and in random sequential order to obtain a 1:1 match 

as described elsewhere [17]. 

The balance of the match data was assessed quantitatively with mean differences of covariates 

in each of the X-ray groups pre- and post-matching, with a difference of less than 0.1% 

considered a good match (supplementary figure 2). Visual inspection of matches was also 

conducted to ensure balance (supplementary figures 2, 3 and 4). 

After matching, outcome data were adjusted for covariates including age, gender, ethnicity and 

presence of co-morbidities as well as C-reactive protein, D-dimer, troponin and vital signs. This 

was achieved by generalised linear regression for continuous outcome data, binomial logistic 

regression for binary categoric outcomes, or ordinal logistic regression in the case of CXR 

where it is the outcome variable. 

These regression models were run on each imputed dataset and outcomes were pooled 

together across each imputed data set according to Rubin’s rules [18] to give an overall 

estimate. 

Diagnostic Accuracy Statistics 

Chest X-rays reported as classical for COVID-19 as per the BSTI guidelines were considered a 

positive test in the primary analysis. In a secondary analysis X-rays reported as ‘Indeterminate’ 

or ‘Atypical’ for COVID-19 were also considered positive. All other reports were classified as a 

negative test. These were compared to nasopharyngeal aspirate RT-PCR results, which were 

taken as the gold standard for diagnosis of COVID-19. Where more than one swab was taken 

during the study period (up to 30 days after initial attendance), a single positive result was taken 

as a positive result for calculation of diagnostic accuracy statistics. 

Sensitivity, specificity, predictive values and diagnostic accuracy were calculated using the 

propensity matched data after imputation and pooled across imputed datasets with 95% 

confidence intervals. Apparent and true prevalence based on this dataset are also given for 

interpretation of the predictive values. 

Chest CTs were also reported according to the BSTI guidelines as with X-ray. Diagnostic 

statistics were calculated on raw, unmatched and non-imputed data (due to a low volume of 
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data for imputation and matching) in the same manner as X-ray. Mean differences and 95% 

confidence intervals between CT and X-ray for each of the diagnostic statistics are given, with a 

p-value calculated from the confidence intervals. 

Agreement between the modalities was assessed on the unmatched dataset, in the sample 

where CT, CXR and RT-PCR were all available using Cohen’s (for two group agreement) and 

Fleiss’ Kappa (when all 3 are compared).  

Data Presentation 

Descriptive statistics are given as means and standard deviations for normally distributed data 

and as medians and interquartile ranges for non-normally distributed data, before and after 

matching and multiple imputation (for the latter these statistics are pooled across imputations). 

Association of explanatory variables with SARS-CoV 2 and Chest X-ray findings are given as 

odds ratios in uni- and multi-variate configurations. 

Data was considered statistically significant if p < 0.05. Given the large number of analyses in 

this paper, data is separately highlighted if p<0.001 as a secondary threshold to address the 

potential for false positives with multiple testing. 

Analyses were conducted using R 4.0.0 (R Foundation for Statistical Computing, Vienna, 

Austria) and code for the analyses is given in supplementary file 2. 

Sample size calculation 

In this study, the lower confidence interval for sensitivity of CXR as reported by Wong et al.[19] 

(56%) was used as an estimate of likely sensitivity for COVID-19 . A power of 80% at an alpha 

of 0.05 was used to calculate the sample size for sensitivities and specificities of 56%. This 

gave an estimated sample size of 165 in each of the COVID-19 negative and positive groups by 

RT-PCR (total 330). 

Ethical approval 

This study was registered with the local institutional review board as a service evaluation using 

anonymised data only. No formal ethics committee review was required. 

Reporting Guidelines 

This study is reported according to the STARD guidelines [20] for diagnostic accuracy studies. 
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Results 

1,198 eligible patients were identified in the study period. Their characteristics, stratified by 

positivity for SARS-CoV 2 infection by RT-PCR is summarized in table 2. This showed that 

those with confirmed SARS-CoV 2 infection were more likely to be male, older (mean 66.2 vs 

62.7), have lower saturations, higher respiratory rates, whilst being more likely to be admitted 

and die within 30 days. There was a signification association with X-ray images and SARS-CoV 

2 at baseline, with 59.6% having classic imaging features of COVID-19 in those with positive 

swabs versus 39.1% in those with negative swabs. There was 8.6% missing data overall in the 

dataset when variables with >50% missing data were removed and 15 imputations were 

performed on these remaining variables only. 

After multiple imputation for missing data and pooled propensity score matching for plausible 

covariates that may affect CXR reporting, there were 430 patients in each of the X-ray positive 

and X-ray negative groups, for a total of 860 patients. Adequate balance was achieved for 

relevant covariates with a mean difference of <0.1 between groups (supplementary table 2).  

Computed tomography (CT) was performed in 302 patients with paired RT-PCR during the 

same time period, with a median serial interval of 4.5 days (inter quartile range 0-17) after the 

initial attendance in ED and of these 30.1% were within one day of attendance. 

Diagnostic Accuracy 

The pooled sensitivity and specificity of CXR was 0.56 (95% CI 0.51-0.60) and 0.60 (95% CI 

0.54-0.65), respectively (table 4). This gave an overall diagnostic accuracy of 0.57 (95% CI 

0.54-0.61) for CXR.  

In comparison, sensitivity and specificity for CT was 0.85 (95% CI 0.79-0.90) and 0.50 (95% CI 

0.41-0.60), respectively. This gave a statistically significant mean increase in sensitivity with CT 

compared with CXR by 29% (95% CI 19%-38%, p<0.0001). Specificity was not significantly 

different between the two modalities. Diagnostic accuracy and negative predictive values were 

also significantly increased with CT at 0.15 and 0.22, respectively, while the negative likelihood 

ratio was significantly decreased at -0.44. This shows that the post-test odds of being negative 

for SARS-CoV 2 by RT-PCR with a negative CT is significantly lower. 

Taking X-rays reported as indeterminate as positive increased the sensitivity of CXR to 0.80 

(95% CI 0.77-0.84), however reduced specificity to 0.40 (95% CI 0.35-0.46). When CT scans 

reported as indeterminate are also considered positive the sensitivity of CT increased to 0.93 

(95% CI 0.89-0.96), whilst mean specificity reduced to 0.37 (95% CI 0.28-0.47), although this 

was not statistically different from when indeterminate CTs are considered negative. Sensitivity 

of CT remained significantly higher than CXR (when indeterminates are considered positive for 

both) by 0.13 (95% CI 0.05-0.19, p<0.001), specificity was not significantly different between the 

two. 

When comparing only the unimputed, unmatched subset of data where CT, RT-PCR and CXR 

were all performed (n=287), the agreement between CT and CXR was poor (Cohen’s kappa 

0.406, p<0.0001). Agreement between all three was also poor (Fleiss’ kappa 0.361, p=0). 
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Association of CXR with Markers of Severity and Outcomes 

Association of covariates with RT-PCR results is shown in table 4 and figure 1. Those who 

tested positive for SARS-CoV 2 by RT-PCR were significantly more likely to have a classical X-

ray (OR 1.79 95% CI 1.25-2.56, p<0.002) as would be expected by the diagnostic accuracy 

statistics (table 4). When the CXR report is considered as an ordered scale, worsening grades 

of report were associated more strongly with RT-PCR positivity, with a 1.94 x increase in odds 

for each grade. 

Positive chest X-rays for COVID-19 were significantly associated with lower oxygen saturations 

(OR 0.94 95% CI 0.92-0.97, p<0.001) and temperatures (2.30 95% CI 1.46-3.63, p<0.001) in 

the ED following propensity score matching and multivariate regression (table 5 and figure 2).  

They also had higher rates of admission to a general ward from the ED (OR 2.30 95% CI 1.46-

3.63, p<0.001) but no significant association with 30 day outcomes. There was a statistically 

significant increase in C-reactive protein with a positive X-ray, however, this is unlikely to be 

clinically meaningful due to the minimal association (OR 1.00 95% CI 1.00-1.01). 
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Discussion 

This study is the first to report the diagnostic accuracy of CXR and CT in the general emergency 

population during the COVID-19 pandemic. 

We show that CXR has poor sensitivity and specificity for diagnosis of COVID-19, whilst CT has 

29% higher sensitivity. Many international radiological guidelines advise against CT scanning  

for the initial assessment of COVID-19 [21–23] or where there are equivocal CXRs, whilst in 

other countries CT scanning is performed as a routine first line investigation. Our results 

suggest that CT should be considered in the initial assessment of COVID-19 and that CXR 

findings poorly correlate with CT findings in this setting. We also show that indeterminate and 

non-classical features of COVID-19 significantly increase the sensitivity of these imaging 

modalities, without a significant decrease in specificity. Further, we demonstrate the limited 

prognostic value of CXR in COVID-19. 

These findings mirror what has previously been reported in the literature on individuals with 

confirmed COVID-19. Wong et al. [19] showed a sensitivity of 59% for initial X-ray in confirmed 

COVID-19 infection, similarly initial case series in China also reported a sensitivity of 59.1%[12].  

A recent in press article from Italy reported a much higher sensitivity of 89% for CXR in a 

smaller general emergency population (n=535) without confirmed COVID-19 at attendance [24]. 

However, this used telephone follow up for clinical symptoms of COVID-19 as a reference 

standard in individuals with an initial negative RT-PCR swab and appeared to classify any 

abnormal X-ray as positive, which may inflate this figure. When indeterminate CXRs are 

counted as positive in this study, the sensitivity would be in line with this Italian data. In the US, 

a study of patients attending an urgent care centre with confirmed COVID-19, showed a much 

lower sensitivity at 41.7% for CXR where any abnormality was found on the images [25]. In this 

study 97/636 reports were re-classified from ‘possible pneumonia’ to ‘normal’ on second reading 

from a radiologist, highlighting the importance of inter-rater agreement and possibly explaining 

this low estimate. 

Computed tomography has been reported in previous studies as being up to 98% sensitive for 

the diagnosis of COVID-19 in confirmed patients, when RT-PCR is used as the reference 

standard in confirmed patients [3,4]. These studies used any potential features of COVID-19 

(e.g. ground glass opacification, crazy paving) as a positive scan, regardless of spatial 

distribution or features more characteristic of alternate pathology, unlike the BSTI guidelines 

used in this study. When we classified indeterminate CTs as positive like these latter studies, 

our estimates match their sensitivity values.  

Consequently, a much lower specificity of 25% was found with initial RT-PCR in previous 

literature; however, it is reported that 10 out of 15 (67%) of these negatives subsequently tested 

positive. This would give an adjusted specificity of 75%, considering subsequent swabs as a 

reference standard, which combined with the wider CIs in these smaller studies, would bring 

estimates in line with the specificity in this paper. More recent meta-analyses have placed the 

pooled sensitivity of CT in populations with confirmed COVID-19 only, at 89.76% (95% CI 

84.42%-93.84%) [26], in line with the estimates identified here. 

There is limited coverage in the literature on association of X-ray findings with clinical and 

laboratory parameters and outcomes in the COVID-19 pandemic. This study demonstrates that 

classic appearances of COVID-19 were associated with initial lower saturations and lower 
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temperature. Volume opacification of the lung fields were not quantified as a surrogate of 

severity; however, the use of the BSTI grading templates does this somewhat. When the X-ray 

report is considered as a graded scale from low likelihood of COVID-19 and severity to high 

likelihood and severity of disease there was no significant difference in association with vital 

signs or laboratory parameters compared with when the X-ray report is merely considered as a 

binary positive and negative outcome for COVID-19.  

Borghesi and colleagues have devised a grading system for severity in patients with confirmed 

SARS-CoV 2 infection [27]. They further found a significant difference in the severity of CXR by 

this scoring system in those who were discharged versus those who died [28]. However, no 

numerical difference was given in their study, only that there was a significant difference, so it is 

not possible to quantify the strength or clinical significance of this association. 

Here, there were no relevant associations between CXR and laboratory values. This analysis 

also found no association with positive X-rays and 30 day outcomes after multivariate analyses, 

unlike Borghese et al. This is also in contrast to Guan et al. who found higher rates of ITU 

admission and death in those with positive imaging findings. However, these studies analysed 

only those with confirmed SARS-CoV 2 infection. The divergence observed in this study may be 

due to classifying those with ‘Alternate pathology/ Indeterminate’ or ‘CVXC3/ CVXC2’ as per the 

BSTI templates, negative for COVID-19 in these analyses. Other studies classified X-rays with 

any abnormality as a positive for COVID-19. These alternate distributions may still be reflective 

of underlying COVID-19 and we show significantly higher sensitivity for both CT and CXR when 

these are classed as positive. It may be that correlating indeterminate X-rays (in addition to 

classical images) with vitals, laboratory markers and 30 day outcomes would yield significant 

associations. However this may be unlikely, Xu and Zhang et al. found that those with classical 

bilateral and diffuse involvement in upper and lower lobes had more severe disease than those 

without [29,30].  

There were a total of 70 confirmed pulmonary emboli in our dataset out of 114 CT pulmonary 

angiograms (61.0%, 5.84% of all patients attending) performed in the emergency department. 

The incidence of venous thromboembolism is reported as ranging from 20-30% in admitted 

confirmed SARS-CoV 2 positive patients [31]. Although we have not focused on this cohort of 

patients in this paper for the sake of brevity and simplicity, this high incidence represents a 

further advantage for CT over CXR. 

CT, even with the absence of contrast has been shown to have strong accuracy in the diagnosis 

of pulmonary emboli and many imaging features correlate with the presence of pulmonary 

emboli. Sensitivities of non-contrast CT for diagnosis of PE have been reported at 96.9% and 

specificity at 71.9% [32,33].  

We therefore see the advantages of CT scanning in COVID-19 as threefold over other 

diagnostic techniques: 1) The rapid turnaround; 2) Increased sensitivity and 3) The possibility to 

identify pulmonary emboli in COVID-19, which are a significant burden in this group. 

This must be balanced against the excess radiation exposure with CT. Radiation from CT and 

its association with carcinogenesis is difficult to quantify and no definitive epidemiological 

studies have confirmed excess risk of cancer[34]. Modern CT scanners and software 

reconstruction techniques continue to minimise radiation exposure and  many ways of shielding 

parts of the body from radiation also exist. Nevertheless, the excess risk of lifetime cancer is 

estimated at 1 per 5,000 CT examinations[35]. 
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Strengths and Limitations 

This study is the largest conducted on imaging in the COVID-19 pandemic and one of the only 

studies conducted in the general population during the pandemic rather than only in confirmed 

patients. This enables greater applicability to the clinical setting where the diagnosis is 

uncertain, in addition to being able to calculate specificity, which is not possible in most studies. 

This study was planned to be powered to detect a sensitivity and specificity of 56% for CXR and 

greatly exceeded the sample size necessary for this. 

Comprehensive statistical analyses were conducted to account for confounders in both factors 

influencing reporting of CXR and in factors affecting outcomes. The data was collected from 

prospectively maintained electronic records; however, the retrieval took place retrospectively 

with its inherent disadvantages. We were not able to collect data on several relevant covariates 

such as specific comorbidities or markers of severity such as lymphocytes. Furthermore, there 

was a significant amount of missing data that required multiple imputation to replace, although 

the fit of this imputed data was good, actual, observed data would be ideal. 

Inter-rater reliability of imaging reports was not analysed in this paper and there was the 

potential for individual radiologists to have greater or lesser accuracy in the diagnosis of COVID-

19. The literature has so far suggested a strong degree of agreement between radiologists in 

reporting of COVID-19 images [28].  

The single centre nature of this study further limits generalisability and the potential for inter-

hospital disagreement in imaging, in addition to inter-rater disagreement. 

Finally, the median time for patients to receive a CT scan was 4.5 days following initial 

attendance to ED. Thus, the scans may not have been directly comparable to the initial CXR, 

both because of the progression of disease and because the SARS-CoV 2 status may have 

been confirmed at this point, biasing the reporting of these scans.  

Future Research 

Although this study used RT-PCR of nasopharyngeal swabs as a reference standard, newer 

methods exist for diagnosis of the disease. Serological assays for antibodies against SARS-

CoV 2 are increasingly available and may represent a better gold standard in diagnosis for 

future research [36]. RT-PCR is limited by swabbing technique for nasopharyngeal samples and 

the fact that the virus is more avid in the lower respiratory tract [37]. However, many patients 

may not seroconvert prior to death limiting this test to survivors only. 

Point of care lung ultrasound is a new technique for diagnosis of COVID-19 which may mitigate 

many of the issues noted with the modalities discussed so far. It has no radiation, is fast, cheap 

and may be able to detect lower respiratory tract disease unlike nasopharyngeal swab. 

However, there is limited evidence beyond small case series on its diagnostic accuracy [38–40]. 

Further, like other ultrasound techniques accuracy will likely be operator dependent [41] and 

experience will need to be built up for robust results in evaluating suspected COVID-19. 

Finally, much research has been conducted in the use of artificial intelligence techniques to 

correctly diagnose COVID-19 based on imaging [42–44]. These techniques would obviate 

capacity limitations in reporting imaging as well as eliminate inter-reporter variability. However, 

as with any supervised machine learning technique, large, generalisable datasets, with correctly 
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pre-classified positive and negative cases (which in turn will depend on a truly accurate 

reference standard) are needed [45].  
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Conclusion 

Chest X-ray has poor sensitivity and specificity in diagnosing COVID-19 in the general 

population during the pandemic. CT scanning has demonstrated excellent sensitivity and should 

strongly be considered during the pandemic in the initial assessment of COVID-19. This needs 

to be balanced against the risk of excess radiation with CT, where capacity allows. 

 

Summary box 

What is already known on this topic 

-Small observational studies, predominantly in China, have reported on imaging features in 

COVID-19 after a confirmed RT-PCR swab test 

-These studies have shown limited sensitivity for chest X-ray, but excellent sensitivity for CT 

scans, it is not possible to calculate the specificity of these modalities as they only included 

patients with confirmed COVID-19, therefore it is not possible to assess their utility in the 

general population who may or may not have COVID-19 

-Literature on this general population attending emergency departments and the accuracy of 

these imaging techniques is limited 

-International guidelines including from the British Society of Thoracic Imaging and American 

College of Radiology do not recommend the use of CT in initial evaluation of suspected COVID-

19, largely due to capacity concerns 

What this study adds 

-This study shows that Chest x-ray has poor sensitivity and specificity in patients with suspected 

COVID-19 attending the emergency department, whilst CT has excellent sensitivity and is 29% 

more sensitive than CXR in our study cohort; there was also poor agreement between CT and 

CXR findings in COVID-19 

-Patients with indeterminate imaging without classical distribution of COVID-19 should still be 

considered at high risk of having the disease 

-Our data suggest that CT should be employed more widely as an initial investigation, where 

capacity allows and balanced against the risk of excess radiation exposure  
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Tables 

Ordinal scale for study BSTI grade Features on X-ray 

0 CVCX3- Non-COVID-19  

Alternative pathology such as 

pneumothorax with no features of 

COVID-19 identified  

1 CVCX0- Normal No pathology seen 

2 
CVCX2- Indeterminate for COVD-

19 or atypical features 

Poor quality film or central/ basal 

consolidation 

3 
CVCX1- Classic findings of 

COVID-19 
Peripheral ground glass opacities 

Table 1- Ordinal scale used in this study based on the British Society of Thoracic Imaging (BSTI) 

Reporting Template [10]  
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 SARS-CoV 2 RT-PCR 
p-value Missing (%) 

 Negative Positive 

n (%) 435 (36.3) 763 (63.7)   
Number of Swabs (%) 810 (48.3) 868 (51.7)   

Age (mean (SD)) 62.74 (17.72) 66.18 (17.58) 0.001* 0 

Ethnicity   0.097 19 

Other- Asian (%) 29 (8.0) 72 (11.8)   
South- Asian (%) 27 (7.5) 38 ( 6.2)   
Black (%) 41 (11.4) 91 (14.9)   
Mixed (%) 6 (1.7) 6 (1.0)   
Other (%) 56 (15.5) 105 (17.2)   
White (%) 202 (56.0) 297 (48.8)   

Sex – Male (%) 233 (53.6) 480 (62.9) 0.002* 0 

Oxygen Saturation (median (IQR)) 95 (6) 93 (8) <0.001** 6.3 

Respiratory Rate (median (IQR)) 22 (8) 26 (12) <0.001** 6.3 

Glasgow Coma Scale (median (IQR)) 15 (0) 15 (0) 0.043* 6.6 

Systolic BP (median (IQR)) 134 (32) 130 (30) 0.009* 15.8 

Heart Rate (median (IQR)) 96 (27) 94 (27) 0.092 6.4 

Temperature (median (IQR)) 37.1 (1.4) 37.7 (1.4) <0.001** 6.7 

Chest X-ray report   <0.001** 0 

Alternative pathology (%) 4 (0.9) 3 (0.4)   
No abnormalities (%) 178 (40.9) 136 (17.8)   
Indeterminate (%) 83 (19.1) 169 (22.1)   
Classic COVID-19 (%) 170 (39.1) 455 (59.6)   

Presence of comorbidities (%) 297 (79.0) 482 (80.3) 0.669 18.5 

Dyspnoea (%) 274 (69.4) 497 (75.5) 0.034 12.1 

Neutrophils (median (IQR)) 6.42 (4.56) 5.25 (3.92) <0.001** 2.3 

D-Dimer (median (IQR)) 1250 (2440) 1105 (1803) 0.204 23.2 

Albumin (median (IQR)) 39 (7) 37 (6) <0.001** 10 

C-Reactive Protein (median (IQR)) 91.0 (115) 146.5 (264.8) <0.001** 3 

Creatine Kinase (median (IQR)) 51 (104) 145 (260) <0.001** 23.3 

Troponin (median (IQR)) 19 (46) 20 (44) 0.278 19.1 

Admitted (%) 331 (76.0) 635 (83.2) 0.003* 0.1 

Admitted to ITU (%) 5 (1.3) 32 (4.8) 0.005* 12.4 

Thirty Day Follow Up Status   <0.001** 24 

Discharged (%) 219 (78.2) 367 (58.3)   
On Ambulatory Follow Up (%) 14 (5.0) 49 (7.8)   
Admitted (%) 18 (6.4) 60 (9.5)   
Died (%) 29 (10.4) 154 (24.4)   

CT report   <0.001** 0 

No pathology identified (%) 23 (22.1) 6 (3.3)   
Classic COVID-19 findings (%) 52 (50.0) 157 (85.8)   
Indeterminate for COVID-19 (%) 14 (13.5) 14 (7.7)   
Alternative pathology identified (%) 15 (14.4) 6 (3.3)   

Day of Symptoms (mean (SD)) 9.84 (9.63) 8.56 (15.80) 0.368 69.2 

Table 2- Baseline characteristics of dataset stratified by overall SARS-CoV 2 RT-PCR status, including 

subsequent swabs during the study period- NB there were 480 additional swabs on 399 unique patients 

with a median of 2 and mean of 3.5 per patient; *significant at p< 0.05; **significant at p< 0.001  
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 Chest X-ray CT Chest Mean Difference p-value 

Total (n) 860 302   

True Positives (n) 305 162 - - 

False Positives (n) 125 55 - - 

True Negatives (n) 187 56 - - 

False Negatives (n) 243 29 - - 

Apparent prevalence 

(95% CI) 
0.50 (0.47-0.53) 0.72 (0.66-0.77) 0.22 (0.04-0.21) <0.0001** 

True prevalence 

(95% CI) 
0.64 (0.60-0.67) 0.63 (0.58-0.69) 

-0.00 (-0.09-0.03) 

 
0.111 

Sensitivity (95% CI) 0.56 (0.51-0.60) 0.85 (0.79-0.90) 0.29 (0.19-0.38) <0.0001** 

Specificity (95% CI) 0.60 (0.54-0.65) 0.50 (0.41-0.60) -0.10 (-0.25-0.04) 0.119 

Positive Predictive 

Value (95% CI) 
0.71 (0.66-0.75) 0.75 (0.68-0.80) 0.04 (-0.06-0.14) 0.492 

Negative Predictive 

Value (95% CI) 
0.43 (0.39-0.48) 0.66 (0.55-0.76) 

0.22 (0.06-0.37) 

 
0.005* 

Positive Likelihood 

Ratio (95% CI) 
1.39 (1.19-1.62) 1.71 (1.41- 2.08) 0.32 (-0.22-0.89) 0.258 

Negative Likelihood 

Ratio (95% CI) 
0.74 (0.64-0.84) 0.30 (0.21-0.44) -0.44 (-0.64 - -0.21) 0.022* 

Diagnostic Accuracy 

(95% CI) 
0.57 (0.54-0.61) 0.72 (0.66-0.77) 

0.15 (0.06-0.23) 

 
<0.0001** 

Table 3- Diagnostic Accuracy Metrics for CXR and CT Chest with RT-PCR for SARS-CoV 2, as the 

reference standard; *significant difference at the <0.05 level; **significant difference at the <0.0001 level 
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Table 4- Association of covariates with RT-PCR status for SARS-CoV 2, following propensity score 

matching and binomial logistic regression; SD- Standard deviation; IQR- Interquartile Range; *p<0.05; 

**p<0.001 

 

  SARS-CoV 2 RT-PCR 

OR (univariable) OR (multivariable)  
  Negative Positive 

n  312 548   

Chest X-ray report Alternative pathology 

(%) 

3 (0.8) 3 (0.5) - - 

 
No abnormalities (%) 123 (39.6) 104 (19.1) 0.76 (0.08-6.82, p=0.801) 0.48 (0.03-8.82, p=0.620) 

 
Indeterminate/ atypical 

findings (%) 

61 (19.5) 136 (4.8) 1.99 (0.22-17.81, p=0.535) 0.92 (0.05-16.88, p=0.952) 

 
Classic COVID (%) 125 (40.1) 305 (55.6) 2.17 (0.24-19.19, p=0.484) 1.14 (0.06-20.98, p=0.927) 

Age Mean (SD) 61.8 (17.9) 67.0 (17.7) 1.02 (1.01-1.02, p<0.001)** 1.02 (1.00-1.03, p=0.028)* 

Sex Female (%) 138 (44.3) 212 (38.7) - - 

 Male (%) 174 (55.7) 336 (61.3) 1.26 (0.93-1.70, p=0.137) 1.19 (0.83-1.71, p=0.340) 

Ethnicity Other Asian (%) 31 (9.9) 66 (12.0) - 
 

 White (%) 164 (52.7) 270 (49.2) 0.76 (0.44-1.31, p=0.326) 

 

0.73 (0.38-1.40, p=0.339) 

 
Black (%) 39  (12.4) 84 (15.3) 1.01 (0.52-1.98, p=0.974)  0.92 (0.43-1.97, p=0.827)  

 
Mixed (%) 6 (1.8) 4 (0.8) 0.36 (0.08-1.62, p=0.184)  0.74 (0.11-4.94, p=0.754) 

 
South Asian (%) 22 (7.0) 36 (6.6) 0.77 (0.34-1.76, p=0.531) 0.68 (0.28-1.65, p=0.390) 

 Other (%) 51 (16.2) 89 (16.2) 0.82 (0.43-1.55, p=0.535) 0.88 (0.45-1.74, p=0.716) 

Comorbidity No (%) 65 (20.8) 95  (17.4) - - 

 Yes (%) 247 (79.2) 453 (82.6) 1.25 (0.82-1.89, p=0.296) 1.00 (0.53-1.88, p=0.993) 

Dyspnoea on attendance No (%) 90 (28.8) 139 (25.4) - - 

 Yes (%) 222 (71.2) 409 (74.6) 1.19 (0.82-1.73, p=0.356) 0.84 (0.53-1.32, p=0.447) 

Oxygen Saturation Median (IQR) 96 (6) 93 (8) 0.94 (0.91-0.97, p<0.001** 0.97 (0.93-1.00, p=0.072) 

Respiratory rate Median (IQR) 23 (8) 25 (8) 1.04 (1.01-1.07, p=0.002)* 1.01 (0.98-1.05, p=0.462) 

Glasgow Coma Scale Median (IQR) 15 (0) 15 (0) 1.02 (0.89-1.17, p=0.819) 1.21 (0.98-1.48, p=0.073) 

Temperature Mean (SD) 37.2 (1.4) 37.7 (1.1) 1.48 (1.26-1.73, p<0.001)** 1.44 (1.20-1.74, 

p<0.001)** 

Heart Rate  Mean (SD) 96.7 (20.5) 94.9 (21.5) 1.00 (0.99-1.00, p=0.305)  1.00 (0.99-1.01, p=0.702) 

Systolic Blood Pressure Mean (SD) 136.2 (25.8) 132.6 (24.5) 0.99 (0.99-1.00, p=0.086)  0.99 (0.98-1.00, p=0.097) 

Neutrophils Median (IQR) 6.26 (4.52) 5.05 (3.93) 0.92 (0.89-0.96, p<0.001)** 0.87 (0.82-0.91, 

p<0.001)** 

D-Dimer Median (IQR) 1220 (2343) 1061 (1814) 1.00 (1.00-1.00, p=0.403) 1.00 (1.00-1.00, p=0.419) 

C-Reactive Protein Median (IQR) 45 (100) 77 (107) 1.00 (1.00-1.01, p<0.001)** 1.00 (1.00-1.01, p=0.021)* 

Troponin Median (IQR) 20 (55) 21 (46) 1.00 (1.00-1.00, p=0.890) 1.00 (1.00-1.00, p=0.667) 

Albumin Median (IQR) 39 (7) 37 (6) 0.97 (0.94-1.00, p=0.071) 1.02 (0.98-1.06, p=0.432) 

Creatine Kinase Median (IQR) 94 (131) 145 (263) 1.00 (1.00-1.00, p=0.119) 1.00 (1.00-1.00, p=0.152) 

Admitted from ED Admitted (%) 235 (75.2) 453 ( 82.7) - - 
 

Discharged (%) 77 (24.8) 95 (17.3) 1.56 (1.06 -2.33, p=0.022)** 1.35 (0.79-2.30, p=0.272) 

Admitted To ITU from ED No (%) 307 (98.5) 532 (97.1) - - 
 

Yes (%) 5 (1.5) 16 (2.9) 1.92 (0.60-6.18, p=0.274) 1.06 (0.25-4.40, p=0.940) 

Thirty Day Follow up Status Discharged (%) 259 (83.0) 368 (67.1) - - 
 

Admitted (%) 22 (6.9) 47 ( 8.5) 1.53 (0.82-2.87, p=0.181) 1.64 (0.77-3.51, p=0.198) 
 

Dead (%) 31 (10.1) 133 (24.4) 3.00 (1.86-4.84, p<0.001)** 2.81 (1.22-6.50, p=0.017)* 
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  X-ray report 

OR (univariable) 
OR with XR as binary 

outcome (multivariable) 

OR with XR as ordinal 

variable (multivariable) 

 
  Other X-ray 

Findings 

Classical 

COVID-19 

n  430 430    

RT-PCR for 

SARS-CoV 2 

Negative (%) 187 (43.4) 125 (29.1) - - - 

 
Positive (%) 243 (56.6) 305 (70.9) 1.85 (1.36-2.56, 

p<0.001)** 

1.79 (1.25-2.56, 

p<0.002)* 

1.94 (1.37-2.76, 

p<0.001)** 

Age Mean (SD) 65.0 (18.9) 65.3 (16.9) 1.00 (0.99-1.01, p=0.849) 0.99 (0.98-1.00, p=0.164) 1.00 (0.99-1.01, p=0.542) 

Sex Female (%) 176 (40.9) 175 (40.6) - -  

 Male (%) 254 (59.1) 255 (59.3) 1.01 (0.75-1.37, p=0.940) 0.87 (0.63-1.20, p=0.400) 1.02 (0.49-2.09, p=0.967) 

Ethnicity Other Asian (%) 49 (11.4) 48 (11.2) - -  
 

South Asian (%) 29 (6.7) 29 (6.7) 1.04 (0.52-2.04, p=0.912) 1.02 (0.47-2.17, p=0.965) 1.02 (0.49-2.09, p=0.967) 
 

Black (%) 61 (14.2) 61 (14.2) 1.02 (0.55-1.85, p=0.957) 0.88 (0.46-1.69, p=0.719) 0.92 (0.52-1.65, p=0.789) 
 

Mixed (%) 5 (1.2) 5 (1.2) 0.92 (0.21-4.00, p=0.911) 0.86 (0.18-4.17, p=0.853) 0.85 (0.17-4.30, p=0.838) 
 

Other  (%) 70 (16.3) 70 (16.3) 1.02 (0.58-1.79, p=0.943) 0.98 (0.52-1.82, p=0.942) 0.93 (0.53-1.64, p=0.810) 
 

White (%) 216 (50.2) 217 (50.5) 1.03 (0.63-1.67, p=0.913) 0.97 (0.57-1.67, p=0.926) 0.90 (0.55-1.47, p=0.666) 

Comorbidity No (%) 82 (19.1) 78 (18.1) - -  

 Yes (%) 348 (80.9) 352 (81.9) 0.95 (0.66-1.36, p=0.777) 0.93 (0.59-1.49, p=0.782) 0.88 (0.57-1.37, p=0.592) 

Dyspnoea No (%) 191 (29.3) 103 (24.0) - -  

 Yes (%) 304 (70.7) 327 (76.0) 1.31 (0.92-1.88, p=0.123) 1.20 (0.80-1.82, p=0.380) 1.22 (0.83-1.80, p=0.301) 

Oxygen 

Saturation 

Median (IQR) 95 (7) 93 (7) 0.94 (0.91-0.96, 

p<0.001)** 

0.94 (0.92-0.97, 

p<0.001)** 

0.94 (0.91-0.97, 

p<0.001)** 

Respiratory rate Median (IQR) 24 (10) 24 (10) 1.01 (0.99-1.02, p=0.570) 0.97 (0.94-1.00, p=0.063) 0.98 (0.96-1.01, p=0.157) 

Glasgow Coma 

Scale 

Median (IQR) 15 (0) 15 (0) 1.04 (0.92-1.19, p=0.524) 1.05 (0.90-1.23, p=0.503) 1.05 (0.92-1.21, p=0.464) 

Temperature Mean (SD) 37.6 (1.1) 37.5 (1.3) 0.93 (0.83-1.06, p=0.297) 0.79 (0.67-0.93, 

p=0.006)* 

0.85 (0.73-0.99, 

p=0.031)* 

Heart Rate Mean (SD) 95.7 (21.4) 95.5 (21.0) 1.00 (0.99-1.01, p=0.888) 1.00 (0.99-1.01, p=0.864) 1.00 (0.99-1.01, p=0.872) 

Systolic Blood 

Pressure 

Mean (SD) 133.8 (25.0) 134.0 (25.6) 1.00 (0.99-1.01, p=0.907) 1.00 (0.99-1.01, p=0.335) 1.00 (1.00-1.01, p=0.478) 

Neutrophils Median (IQR) 5.44 (4.54) 5.67 (4.03) 1.00 (0.97-1.04, p=0.892) 0.96 (0.92-1.01, p=0.143) 0.96 (0.92-1.01, p=0.115) 

D-Dimer Median (IQR) 1119 (2221) 1119 (1850) 1.00 (1.00-1.00, p=0.513) 1.00 (1.00-1.00, p=0.568) 1.00 (1.00-1.00, p=0.385) 

C-Reactive 

Protein 

Median (IQR) 46 (93) 88 (110) 1.00 (0.99-1.00, 

p<0.001)** 

1.00 (1.00-1.01, 

p<0.001)** 

1.00 (1.00-1.01, 

p<0.001)** 

Troponin Median (IQR) 23 (54) 20 (46) 1.00 (1.00-1.00, p=0.231) 1.00 (1.00-1.00, p=0.277) 1.00 (1.00-1.00, p=0.059) 

Albumin Median (IQR) 39 (7) 37 (6) 0.93 (0.90-0.96, 

p<0.001)** 

0.93 (0.90-0.97, 

p=0.001)* 

 

0.94 (0.91-0.97, 

p=0.001)* 

Creatine Kinase Median (IQR) 110 (183) 134 (239) 1.00 (1.00-1.00, p=0.535) 1.00 (1.00-1.00, p=0.242) 1.00 (1.00-1.00, p=0.186) 

Admitted from 

ED 

Admitted (%) 315 (73.3) 373  (86.7) 2.37 (1.63-3.46, 

p<0.001)** 

2.30 (1.46-3.63, 

p<0.001)** 

2.22 (1.47-3.33, 

p<0.001)**  
Discharged (%) 115 (26.7) 57 (13.3) - - - 

Admitted to ITU 

from ED 

No (%) 423 (98.4) 416 (96.7) - -  

 
Yes (%) 7 (1.6) 14  (3.3) 2.17 (0.69-6.67, p=0.181) 1.27 (0.32-5.00, p=0.732) 1.34 (0.36-5.00, p=0.653) 

30 Day Follow 

Up Status 

Discharged (%) 316 (73.5) 311 (72.3) - -  

 
Admitted (%) 34 (7.9) 34 (7.9) 1.31 (0.81-2.13, p=0.282) 1.32 (0.69-2.53, p=0.392) 1.43 (0.78-2.63, p=0.653) 

 
Dead (%) 80 (18.6) 85 (19.8) 1.03 (0.73-1.45, p=0.886) 1.38 (0.80-2.37, p=0.247) 1.41 (0.87-2.27, p=0.157) 

Table 5- Association of covariates with CXR report following propensity score matching and either 

binomial or ordinal logistic regression; SD- Standard deviation; IQR- Interquartile Range; *p<0.05; 

**p<0.001 
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Figures 

 

Figure 1- Forest plot of odds ratios of variables associated with RT-PCR 

positivity for SARS-CoV 2, following multiple imputation, propensity score 

matching and binomial logistic regression; *significant difference at the 

<0.05 level; **significant difference at the <0.001 level 
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Figure 2- Forest plot of odds ratios of variables associated with classical 

Chest X-ray features COVID-19 following propensity score matching and 

binomial logistic regression; *significant difference at the <0.05 level; 

**significant difference at the <0.001 level 
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Supplementary file 1 

 

Supplementary figure 1- Density plots of imputed datasets; Blue represents original dataset; other 

colours are individual imputed datasets (n=15) 
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Covariate: Means Treated Means Control Standard Deviation 

Control 

Mean Difference 

Overall Propensity Score 0.422997940 0.53935303 0.1449627 -0.1163550897 

Female 36.3782051 45.026178 0.4979547 -8.64797288 

Male 63.6217949 54.973822 0.4979547 8.64797288 

Age 63.796474359 66.19022688 18.5893357 -23.937525171 

Comorbidity- Yes 76.1217949 84.467714 0.3625287 -8.34591892 

Ethnicity- South Asian 6.5705128 6.631763 0.2490539 -0.06124983 

Ethnicity- Black 16.1858974 11.518325 0.3195219 4.66757283 

Ethnicity- Mixed 0.9615385 1.396161 0.1174340 -0.43462210 

Ethnicity- Other 18.9102564 13.263525 0.3394765 5.64673110 

Ethnicity- White 46.6346154 57.766143 0.4943635 -11.13152772 

Respiratory Rate 29.214743590 24.01745201 7.2639816 5.1972915828 

Supplementary table 1- Means of data before multiple imputation and propensity score matching 

 

 
Type Minimum 

Difference 
Adjusted 

Mean 
Difference 
Adjusted 

Maximum 
Difference 
Adjusted 

Distance Distance 0.016988 0.027107 0.040963 

Sex = Male Binary -0.03917 -0.0028 0.015982 

Age Contin. -0.04586 -0.01371 0.027589 

Comorbidity = Yes Binary -0.02331 -0.00778 0.004598 

Ethnicity = Other Asian Binary -0.01392 0.002362 0.016471 

Ethnicity = South Asian Binary -0.01399 -0.00136 0.011905 

Ethnicity = Black Binary -0.01852 0.000443 0.015982 

Ethnicity = Mixed Binary -0.00464 0.001403 0.007042 

Ethnicity = Other Binary -0.01152 4.30E-06 0.00939 

Ethnicity = White Binary -0.02353 -0.00285 0.018433 

Respiratory Rate Contin. -0.06157 -0.03478 -0.00442 

Supplementary table 2- Balance summary across imputations 

 

 XR- Negative XR- Positive Total 

All 573 625 1,198 
Matched 430 430 860 
Unmatched 143 195 338 
Discarded 0 0 0 

Supplementary table 3- Average Sample sizes pre- and post- matching across imputed data sets 
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Supplementary figure 2- Density plot of propensity scores pre- and post- matching in each imputed 

dataset; treatment units represent a positive X-ray for COVID-19, whereas a control unit represents a 

negative X-ray 
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Supplementary figure 3- Histogram of distributions for each matching covariate pre- and post- matching 

in each imputed dataset; treatment units represent a positive X-ray for COVID-19, whereas a control unit 

represents a negative X-ray 
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Supplementary figure 4- Love plot of pooled balances across imputed datasets in matching covariates 

after matching  
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Supplementary file 2- Software environment and packages 

R version 4.0.0 (2020-04-24) 

Platform: x86_64-w64-mingw32/x64 (64-bit) 

Running under: Windows 10 x64 (build 19041) 

Matrix products: default 

locale: 

LC_COLLATE=English_United Kingdom.1252  LC_CTYPE=English_United Kingdom.1252    

LC_MONETARY=English_United Kingdom.1252 LC_NUMERIC=C                            

LC_TIME=English_United Kingdom.1252     

attached base packages: 

stats     graphics  grDevices utils     datasets  methods   base      

other attached packages: 

corrplot 0.84  

  Taiyun Wei and Viliam Simko (2017). R package "corrplot": Visualization of 

  a Correlation Matrix (Version 0.84). Available from 

  https://github.com/taiyun/corrplot 

MKmisc 1.6 

Kohl M (2019). MKmisc: Miscellaneous functions from M. Kohl_. R package version 1.6, 

http://www.stamats.de 

epiR 1.0-14   

  Mark Stevenson with contributions from Telmo Nunes, Cord Heuer, Jonathon 

  Marshall, Javier Sanchez, Ron Thornton, Jeno Reiczigel, Jim Robison-Cox, 

  Paola Sebastiani, Peter Solymos, Kazuki Yoshida, Geoff Jones, Sarah 

  Pirikahu, Simon Firestone, Ryan Kyle, Johann Popp, Mathew Jay and Charles 

  Reynard. (2020). epiR: Tools for the Analysis of Epidemiological Data. R 

  package version 1.0-14. https://CRAN.R-project.org/package=epiR 

Matching 4.9-7   

  Jasjeet S. Sekhon (2011). Multivariate and Propensity Score Matching 

  Software with Automated Balance Optimization: The Matching Package for R. 

  Journal of Statistical Software, 42(7), 1-52. URL http://www.jstatsoft.org/v42/i07/. 

https://github.com/taiyun/corrplot
http://www.stamats.de/
https://cran.r-project.org/package=epiR
http://www.jstatsoft.org/v42/i07/
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MASS 7.3-51.5 

  Venables, W. N. & Ripley, B. D. (2002) Modern Applied Statistics with S. 

  Fourth Edition. Springer, New York. ISBN 0-387-95457-0 

Ordinal 2019.12-10 

Christensen, R. H. B. (2019). ordinal - Regression Models for Ordinal Data. R package version    

2019.12-10. https://CRAN.R-project.org/package=ordinal. 

Hmisc 4.4-0 

  Frank E Harrell Jr, with contributions from Charles Dupont and many 

  others. (2020). Hmisc: Harrell Miscellaneous. R package version 4.4-0. 

  https://CRAN.R-project.org/package=Hmisc 

Formula 1.2-3 

  Achim Zeileis, Yves Croissant (2010). Extended Model Formulas in R: 

  Multiple Parts and Multiple Responses. Journal of Statistical Software 

  34(1), 1-13. doi:10.18637/jss.v034.i01 

lattice 0.20-41 

  Sarkar, Deepayan (2008) Lattice: Multivariate Data Visualization with R. 

  Springer, New York. ISBN 978-0-387-75968-5 

mice 3.8.0 

  Stef van Buuren, Karin Groothuis-Oudshoorn (2011). mice: Multivariate 

  Imputation by Chained Equations in R. Journal of Statistical Software, 

  45(3), 1-67. URL https://www.jstatsoft.org/v45/i03/. 

readxl 1.3.1 

  Hadley Wickham and Jennifer Bryan (2019). readxl: Read Excel Files. R 

  package version 1.3.1. https://CRAN.R-project.org/package=readxl 

finalfit 1.0.1 

  Ewen Harrison, Tom Drake and Riinu Ots (2020). finalfit: Quickly Create 

  Elegant Regression Results Tables and Plots when Modelling. R package 

  version 1.0.1. https://CRAN.R-project.org/package=finalfit 

MatchIt 3.0.2 

  Daniel E. Ho, Kosuke Imai, Gary King, Elizabeth A. Stuart (2011). MatchIt: 

https://cran.r-project.org/package=ordinal
https://cran.r-project.org/package=Hmisc
https://www.jstatsoft.org/v45/i03/
https://cran.r-project.org/package=readxl
https://cran.r-project.org/package=finalfit
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  Nonparametric Preprocessing for Parametric Causal Inference. Journal of 

  Statistical Software, Vol. 42, No. 8, pp. 1-28. URL 

  http://www.jstatsoft.org/v42/i08/ 

tableone 0.11.1 

  Kazuki Yoshida (2020). tableone: Create 'Table 1' to Describe Baseline 

  Characteristics. R package version 0.11.1. 

  https://CRAN.R-project.org/package=tableone 

forcats 0.5.0 

  Hadley Wickham (2020). forcats: Tools for Working with Categorical 

  Variables (Factors). R package version 0.5.0. 

  https://CRAN.R-project.org/package=forcats 

stringr 1.4.0 

  Hadley Wickham (2019). stringr: Simple, Consistent Wrappers for Common 

  String Operations. R package version 1.4.0. 

  https://CRAN.R-project.org/package=stringr 

dplyr 0.8.5 

  Hadley Wickham, Romain François, Lionel Henry and Kirill Müller (2020). 

  dplyr: A Grammar of Data Manipulation. R package version 0.8.5. 

  https://CRAN.R-project.org/package=dplyr 

purrr 0.3.4 

  Lionel Henry and Hadley Wickham (2020). purrr: Functional Programming 

  Tools. R package version 0.3.4. https://CRAN.R-project.org/package=purrr 

readr 1.3.1      

  Hadley Wickham, Jim Hester and Romain Francois (2018). readr: Read 

  Rectangular Text Data. R package version 1.3.1. 

  https://CRAN.R-project.org/package=readr 

tidyr 1.0.2 

  Hadley Wickham and Lionel Henry (2020). tidyr: Tidy Messy Data. R package 

  version 1.0.2. https://CRAN.R-project.org/package=tidyr 

 

http://www.jstatsoft.org/v42/i08/
https://cran.r-project.org/package=tableone
https://cran.r-project.org/package=forcats
https://cran.r-project.org/package=stringr
https://cran.r-project.org/package=dplyr
https://cran.r-project.org/package=purrr
https://cran.r-project.org/package=readr
https://cran.r-project.org/package=tidyr
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tibble 3.0.0 

  Hadley Wickham and Lionel Henry (2020). tidyr: Tidy Messy Data. R package 

  version 1.0.2. https://CRAN.R-project.org/package=tidyr 

ggplot2 3.3.0 

  H. Wickham. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag 

  New York, 2016. 

tidyverse 1.3.0 

  Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source 

  Software, 4(43), 1686, https://doi.org/10.21105/joss.01686 

forestplot 1.9 

Max Gordon and Thomas Lumley (2019). forestplot: Advanced Forest Plot Using 'grid' 

Graphics. R package version 1.9.   https://CRAN.R-project.org/package=forestplot 

MatchThem 0.9.3 

  Farhad Pishgar and Noah Greifer (2020). MatchThem: Matching and Weighting Multiply 

Imputed Datasets. R package version 0.9.3. https://CRAN.R-project.org/package=MatchThem 

miceadds 3.9-14 

Robitzsch, A., & Grund, S. (2020). miceadds: Some Additional Multiple Imputation Functions, 

Especially for 'mice'. R package version 3.9-14. https://CRAN.R-

project.org/package=miceadds 

cobalt 4.2.2 

Noah Greifer (2020). cobalt: Covariate Balance Tables and Plots. R package version 4.2.2. 

https://CRAN.R-project.org/package=cobalt 
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