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Abstract 13 

Background: Coronavirus disease 2019 (COVID-19) is a global pandemic caused by the severe acute 14 

respiratory syndrome coronavirus 2 (SARS-Cov-2). It has been found that coronary artery disease 15 

(CAD) is a comorbid condition for COVID-19. As the risk factors of CAD, whether blood lipids levels 16 

are causally related to increasing susceptibility and severity of COVID-19 is still unknown. 17 

Design: We performed two-sample Mendelian Randomization (MR) analyses to explore whether 18 

dyslipidemia, low density lipoprotein cholesterol (LDL-c), high density lipoprotein cholesterol (HDL-19 

c), triglyceride (TG) and total cholesterol (TC) were causally related to COVID-19 risk and severity. 20 

The GWAS summary data of blood lipids involving in 188,578 individuals and dyslipidemia in a total 21 

of 53,991 individuals were used as exposures, respectively. Two COVID-19 GWASs including 1,221 22 

infected patients and 1,610 severe patients defined as respiratory failure were employed as outcomes. 23 

Based on the MR estimates, we further carried out gene-based and gene-set analysis to explain the 24 

potential mechanism for causal effect. 25 

Results: The MR results showed that dyslipidemia was casually associated with the susceptibility of 26 

COVID-19 and induced 27% higher odds for COVID-19 infection (MR-IVW OR = 1.27, 95% CI: 1.08 27 

to 1.49, p-value = 3.18 × 10-3). Moreover, the increasing level of blood TC will raise 14 % higher odds 28 

for the susceptibility of COVID-19 (MR-IVW OR = 1.14, 95% CI: 1.04 to 1.25, p-value = 5.07 × 10-3). 29 

Gene-based analysis identified that ABO gene was associated with TC and the gene-set analysis found 30 

that immune processes were involved in the risk effect of TC. 31 

Conclusions: We obtained three conclusions: 1) Dyslipidemia is casually associated with the 32 

susceptibility of COVID-19; 2) TC is a risk factor for the susceptibility of COVID-19; 3) The different 33 

susceptibility of COVID-19 in specific blood group may be partly explained by the TC concentration 34 
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in diverse ABO blood groups.  35 

 36 
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Introduction 38 

Coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome, coronavirus 39 

2 (SARS-Cov-2) is a global pandemic 1, 2. This disease progresses from asymptomatic to acute 40 

respiratory distress syndrome and multiple organ dysfunction, and has become a major threat to public 41 

health in more than 160 countries 1, 2. As of June 26, 2020, there were more than 9.69 million confirmed 42 

cases, with total deaths increasing to 487,997 worldwide. Considering the severity of COVID-19, it is 43 

urgent to explore the susceptibility factors of COVID-19, which is helpful to develop effective policies 44 

and personalized treatments to control the spread of the disease to susceptible groups. 45 

 46 

Recent studies 1, 2 have found that more than 20% of the confirmed cases had a history of coronary 47 

artery disease (CAD). Blood lipids, including low density lipoprotein cholesterol (LDL-c), high density 48 

lipoprotein cholesterol (HDL-c), triglyceride (TG) and total cholesterol (TC) are heritable and 49 

modifiable risk factors for CAD 3, 4. However, whether blood lipids levels are causally related to 50 

increasing susceptibility and severity for COVID-19 is still unknown. 51 

 52 

Mendelian randomization (MR) is an epidemiological method in which environmental exposure-related 53 

genetic variations are used as instrumental variables (IVs) to evaluate the association between exposures 54 

and outcomes 5, 6. It can avoid the issues of confusion and has been demonstrated as an effective strategy 55 

to identify causal effect 5-10. In this study, we conducted a two-sample Mendelian randomization study 56 

to explore the possible causal associations between blood lipids and COVID-19 susceptibility and 57 

severity, and investigate the potential mechanisms underlying the causal effect.  58 

 59 
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Methods 60 

A step-by-step workflow in this study is presented in Figure 1. 61 

 62 

Datasets used in this study 63 

Blood lipids 64 

We collected data for HDL-c, LDL-c, TG and TC from a published genome-wide association study 65 

(GWAS) 3 (http://csg.sph.umich.edu//abecasis/public/lipids2013/) involving in a total of 188,578 66 

European-ancestry individuals. GWAS summary data of dyslipidemia was obtained from the Genetic 67 

Epidemiology Research on Adult Health and Aging (GERA) (https://cnsgenomics.com/content/data) 68 

with 53,991 individuals 10.  69 

COVID-19 70 

For assessment of associations with COVID-19 risk, we used the latest COVID-19 GWAS results from 71 

GRASP database (https://grasp.nhlbi.nih.gov/Covid19GWASResults.aspx). The phenotype used in this 72 

GWAS was case/control for COVID-19 infection containing 1,221 positive COVID-19 tests and 4,117 73 

negative tests from UK Biobank individuals (released on June 5, 2020). To explore the causal effect of 74 

blood lipids on severity of COVID-19, we also accessed GWAS of severe COVID-19 defined as 75 

respiratory failure 11 (http://www.c19-genetics.eu/). This GWAS included 1,610 severe COVID-19 76 

patients and 2,205 control participants from Italy and Spain. These two GWASs were all conducted with 77 

the correction of age, sex and top 10 principal components. 78 

 79 

Data Harmonization Process 80 

For each exposure GWAS, we performed harmonization process using the following criteria:  81 
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1) Remove the SNPs located in major histocompatibility complex (MHC) region. 82 

2) Select the SNPs with a common frequency of the effect allele (EAF) (> 0.01 and < 0.99). 83 

3) Standardize the effect size (β) and standard error (se) for each GWAS data with the function of minor 84 

allele frequency and sample size using the following formula 12: 85 

β  =  
z

√  2p(1-p)(n +z2 )
 , se =  

1

√  2p(1-p)(n +z2 )
 86 

where z = β/se from the original summary data, p is the minor allele frequency, and n is the total sample 87 

size. 88 

 89 

Instrumental variables (IVs) selection 90 

We selected independent and genome-wide significant GWAS SNPs of HDL-c, LDL-c, TG, TC and 91 

dyslipidemia by use of the clumping algorithm in PLINK (http://pngu.mgh.harvard.edu/purcell/plink/) 92 

13 at a suggestive threshold (r2 threshold = 0.001, window size = 1 Mb, p-value = 5 × 10-8). The 1000 93 

Genomes Project (http://www.internationalgenome.org/) data were used as the reference for linkage 94 

disequilibrium (LD) estimation. For each outcome, we then removed outlier pleiotropic SNPs using 95 

RadialMR 14 with the p-value threshold of 0.05. RadialMR 14 identified outlying genetic instruments 96 

via heterogeneity test (modified Q-statistics). After the removal of pleiotropy, the remaining exposure 97 

related SNPs for each outcome as instrumental variables (IVs) were utilized to perform MR analyses.  98 

 99 

MR analyses and pleiotropy assessment 100 

We conducted four complementary two-sample MR methods, including Inverse-Variance Weighted 101 

(IVW) method, weighted median method, weighted mode method and MR-Egger method, which make 102 

different assumptions about horizontal pleiotropy. 103 
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 104 

The IVW method assumes balanced pleiotropy 15. The pleiotropy is assessed via Cochran’s Q statistic 105 

and presented as excessive heterogeneity which will inflate the estimate of MR analysis 16. The MR-106 

Egger method is based on the assumption which indicate instrument strength independent of the direct 107 

effects 15. MR-Egger estimates can be also evaluated by the regression dilution I2
 (GX) 17 according to the 108 

assumption that no measurement error in the SNP exposure effects. If I2
 (GX) 17 was sufficiently low (I2

 109 

(GX) < 0.9), the correction analysis was conducted to assess the causal effect by SIMEX. The intercept 110 

term of MR-Egger method can used for evaluating the directional pleiotropic effect 18. When the 111 

intercept is zero or its p-value was not significant (p-value > 0.05) were considered as non-pleiotropy. 112 

Moreover, we also used the Rucker’s Qʹ statistic 19 to measure the heterogeneity for MR-Egger method. 113 

If the difference Q − Qʹ is sufficiently extreme with respect to a χ2 distribution with the 1 degree of 114 

freedom, we indicated that directional pleiotropy is an important factor and MR-Egger model provides 115 

a better fit than the IVW method 20. All methods of two-sample MR analyses were measured by 116 

TwoSampleMR package in R. For various estimates for different measures, we select the main MR 117 

method as following rules: 118 

1) If no directional pleiotropy in MR estimates (Q statistic: p-value > 0.05, MR-Egger intercept: 119 

intercept = 0 or p-value > 0.05, Q – Q’: p-value > 0.05), IVW method was used. 120 

2) If directional pleiotropy was detected (MR-Egger intercept: intercept ≠ 0 and p-value < 0.05, Q – Q’: 121 

p-value < 0.05) and p-value > 0.05 for the test of Q’, MR-Egger method was used. 122 

3) If directional pleiotropy was detected (MR-Egger intercept: intercept ≠ 0 and p-value < 0.05, Q – Q’: 123 

p-value < 0.05) and p-value < 0.05 for the test of Q’, weighted median method was used. 124 

 125 
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Sensitivity analysis 126 

Leave-one-out sensitivity analysis was implemented to assess whether any significant results were 127 

generated by a specific SNP in IVW models. 128 

 129 

Gene-based and gene-set analysis 130 

MAGMA (https://ctg.cncr.nl/software/magma) 21 is commonly used for gene and gene-set analyses 131 

based on GWAS and genotype data. In order to explore the association of TC and COVID-19, we 132 

implemented MAGMA to identify genes and gene sets in which multiple SNPs show moderate 133 

association to TC without reaching the stringent genome-wide significance level. 134 

Genome-wide gene-based association study 135 

The genome-wide gene-based association study (GWGAS) is based on the model of multiple linear 136 

principal components regression and calculated the gene p-value using F-test 22. All 19,427 protein-137 

coding genes from the NCBI 37.3 gene definitions were employed for SNPs annotation. We mapped 138 

SNPs to genes by a defined window around each gene of 2kb away from the transcription start site (TSS) 139 

upstream and 1kb away from the transcription stop site downstream based on human reference assembly 140 

(GRCh37 or hg19) 23. The GWGAS analysis was performed to quantify the degree of association for 141 

each gene to TC and to compute the correlations between genes are estimated according to LD statistics. 142 

The LD reference was also from Phase 3 of 1,000 Genomes. 143 

Gene-set analysis 144 

The gene-set analysis is built as an independent layer around the gene analysis, while it also on the 145 

strength of the gene p-value and gene correlation matrix from the previous step in order to compensate 146 

for the dependencies between genes 22. A total of 7,521 gene sets were derived from Gene Ontology 147 
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(GO) biological processes and the 186 pathways from Kyoto Encyclopedia of Genes and Genomes 148 

(KEGG) as auxiliary files for gene-set analysis, which obtained from the Molecular Signatures Database 149 

(MSigDB) version 6.0 (https://www.gsea-msigdb.org/gsea/downloads.jsp). 150 

 151 

Multiple testing correction 152 

We employed false discovery rate (FDR) to address multiple comparisons issue and the adjusted p-153 

value < 0.05 was used for judging significance. For MR estimates, we adopted an FDR control 154 

procedure for the susceptibility and severity of COVID-19 separately. 155 

 156 

Results 157 

IVs selection 158 

After data harmonization and clumping, we identified 20 SNPs, 101 SNPs, 79 SNPs, 59 SNPs and 98 159 

SNPs for dyslipidemia, HDL-c, LDL-c, TG and TC, respectively. For each outcome, the final IVs are 160 

shown in Table S1. 161 

 162 

Causal effect of dyslipidemia on COVID-19 163 

We evaluated whether dyslipidemia is causally related to COVID-19 firstly. The assessment of 164 

pleiotropy is shown in Table S1. Since there was no significant evidence of pleiotropy (all p value > 165 

0.05, Table S1), we chose IVW as the main MR method. We found that dyslipidemia was causally 166 

associated with the susceptibility of COVID-19 after FDR correction (MR-IVW p-value = 3.18 × 10-3, 167 

FDR = 1.30 × 10-2) (Table 1). The estimate of IVW showed that dyslipidemia could raise 27% odds for 168 

the infection risk of COVID-19 (MR-IVW OR = 1.27, 95% CI: 1.08 to 1.49) (Figure 2). Besides the 169 
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IVW method, the weighted median and MR-Egger tests also showed consistent causal associations 170 

(MR-Weighted median OR = 1.26, 95% CI: 1.01 to 1.56, p-value = 4.00 × 10-2; MR-Egger OR = 1.53, 171 

95% CI: 1.12 to 2.10, p-value = 2.00 × 10-2) (Table 1). However, dyslipidemia had no causally relevance 172 

to severe COVID-19 (Table 1 and Figure 2). In sensitivity analyses, the results of leave-one-out 173 

permutation didn’t find individual influential SNPs in IVW models (p-value < 0.05) (Figure S1). 174 

 175 

Causal effect of blood lipids on COVID-19 176 

We further assessed the causal effects of blood lipids levels, including HDL-c, LDL-c, TC and TG on 177 

COVID-19 to identify the specific risk lipid. We didn’t detect any evidence of pleiotropy as well (all p 178 

value > 0.05, Table S1), thus we still chose IVW as the main MR method. We identified TC was a risk 179 

factor for the susceptibility of COVID-19 (MR-IVW p-value = 5.07 × 10-3, FDR = 1.30 × 10-2) (Table 1). 180 

As shown in Figure 2, the increasing concentration of TC in blood could induce 14 % higher odds of 181 

COVID-19 infection risk (MR-IVW OR = 1.14, 95% CI: 1.04 to 1.25). Besides, the weighted median 182 

test also showed a causal association (MR-Weighted median OR = 1.23, 95% CI: 1.06 to 1.43, p-value 183 

= 5.00× 10-3) (Table 1). Leave-one-out analysis indicated that no single SNP was driving the causal 184 

estimates (Figure S1). We also measured the relationship between four blood lipids and severe COVID-185 

19. Consistent with dyslipidemia, there was no causal effects for blood lipids-COVID-19 severity pairs. 186 

 187 

Gene-based and gene-set analyses for TC 188 

In our above results, we have discovered the risk effect of TC to the susceptibility of COVID-19. We 189 

wonder explain the internal linkage between TC and COVID-19 preliminarily, thus we investigated the 190 

potential mechanism of TC by gene-based and gene-set analysis.  191 
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Gene-based analysis for TC 192 

For gene-based analysis, a total of 17,699 genes which were represented by at least one SNP were 193 

identified. After correction for multiple testing, we identified 668 genes linked to TC (Figure 3A and 194 

Table S2). It should be noticed that ABO was identified to be associated with TC significantly (p-value 195 

= 6.80 × 10−11, FDR = 1.43 × 10−8). Some observational studies have found that the level of blood lipids 196 

was related to ABO blood group and Table 2 lists the detailed information about these observational 197 

studies 24-29. All of these studies provide a conclusion that TC is higher in A or non-O blood group, but 198 

lower in O blood group. On the other side, GWAS on severe COVID-19 has revealed the relationship 199 

between ABO blood group locus and COVID-19 11. It has been found a higher risk in blood group A 200 

than in other blood group and a protective effect in blood group O, which was coincident with the results 201 

of observational investigations based on phenotype 30-32. In general, we inferred that the different 202 

susceptibility of COVID-19 in specific blood group may be partly explained by the TC levels in diverse 203 

ABO blood group (Figure 3B). 204 

Gene-set analysis for TC 205 

For the GO biological processes, we identified 89 processes significantly associated with TC (FDR < 206 

0.05), which are mostly involved in lipid metabolism (Table S3). For the KEGG pathways, we just 207 

identified 2 pathways (Carbohydrate metabolism and Glycan biosynthesis and metabolism) 208 

significantly associated with TC after FDR corrections. Besides, we also found 20 KEGG pathways 209 

with nominally significant associations with TC (p-value < 0.05) (Table S4). In all related 210 

processes/pathways, six of them are related to immune response and may participate in the infection 211 

and progression of COVID-19, including negative regulation of lymphocyte mediated immunity, 212 

interleukin-10 biosynthetic process, interferon-β (INF-β) biosynthetic process, Fc gamma R-mediated 213 
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phagocytosis, antigen processing and presentation and primary immunodeficiency. The dysfunction of 214 

immunity would induce poor immune response for SARS-CoV-2 infection, which cause lung and 215 

systemic pathology 33, 34. 216 

 217 

Discussion 218 

In this study, we implemented two-sample MR analyses to explore the possible causal associations 219 

between blood lipids and COVID-19. We have found potential causal effects of dyslipidemia and blood 220 

TC on the infected risk of COVID-19. 221 

 222 

To explain the potential influence of TC on COVID-19, we explored the TC-related genes and gene sets. 223 

It is notable that ABO gene performs quite strong relevance to TC, which was also reported by previous 224 

GWAS of TC 3. Besides, some observational studies have found that the blood lipids level was related 225 

to ABO blood group. The higher level of TC was found in non-O blood group and was significantly 226 

associated with an increased prevalence of CVD 24-29. In addition, The GWAS of severe COVID-19 has 227 

identified the association signal at ABO blood group locus 11. Based on the blood-group-specific 228 

analysis, they observed a higher risk of COVID-19 in blood group A than in other blood group and a 229 

protective effect in blood group O, which was coincident with the results of observational investigations 230 

based on phenotype 30-32. In summary of these results, we inferred that the different susceptibility of 231 

COVID-19 in specific blood group may be partly explained by the TC concentration in diverse ABO 232 

blood groups. 233 

 234 

The result of gene-set analysis identified a total of 89 biological processes and 20 pathways associated 235 
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with TC. Besides the processes/pathways related to lipid metabolism, six processes/pathways belonged 236 

to immune system were shown moderate associations with TC, including three pathways related to 237 

immunity and immunodeficiency (negative regulation of lymphocyte mediated immunity, antigen 238 

processing and presentation, primary immunodeficiency) and other three processes involved in immune 239 

cytokines and phagocytosis (interleukin-10 biosynthetic process, interferon-β biosynthetic process, Fc 240 

gamma R-mediated phagocytosis). The biosynthetic process of interleukin-10 (IL-10) and interferon-β 241 

(INF-β) can produce the cytokines with pleiotropic effects in immunoregulation and inflammation, 242 

which will destroy host immune response if the biosynthesis is broken. The phagocytosis is an essential 243 

role in host-defense mechanisms and Fc gamma receptors can recognize foreign extracellular materials 244 

and initiate a variety of signals to start immune process. As a disease caused by the SARS-Cov-2, 245 

COVID-19 is in close and direct touch with immunity 33. Therefore, we raise a hypothesis that the risk 246 

effect of TC on COVID-19 may be mediated by the dysfunction of immune system. 247 

 248 

This is the first study to characterize the potential causality of blood lipids for the susceptibility and 249 

severity of COVID-19 using two-sample MR design rather than observational and perspective studies 250 

based on conventional association analysis. The limitations of the current study should be addressed. 251 

Due to the limitation of data resource, our findings are based on European cohort which cannot represent 252 

the universal conclusions for other ethnic groups. In addition, the potential mechanism of the risk effect 253 

for TC was discussed superficially, which needed to carry out further investigation to get more data 254 

support and further experimental verification.  255 

 256 

In summary, we carried out a two-sample MR design for blood lipids and COVID-19, and obtained 257 
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following conclusions: 1) Dyslipidemia is causally associated with the susceptibility of COVID-19; 2) 258 

The higher total cholesterol level will increase the susceptibility of COVID-19; 3) The different 259 

susceptibility of COVID-19 in specific blood group may be partly explained by the TC concentration 260 

in diverse ABO blood groups; 4) The risk effect of total cholesterol on COVID-19 may be mediated by 261 

the dysfunction of immunity.  262 
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Figure Legends 

Figure 1. The MR analysis pipeline of the current study. 

 

Figure 2. Causal effects of dyslipidemia and TC on COVID-19. Summary of the Mendelian 

randomization (MR) estimates derived from the main inverse-variance weighted, MR-Egger, weighted 

median and weighted mode-based methods for dyslipidemia and TC to the susceptibility of COVID-19 

(COVID-19). 

 

Figure 3. The relationships among the TC level, the susceptibility of COVID-19 and the different 

ABO blood group. A. Results of gene-based analysis. The dots above the red line represents the genes 

significantly associated (FDR < 0.05) with TC. The red dot indicates ABO gene. B. Schematic diagram 

displays the relationships among the level of TC, the risk of COVID-19 infection and different ABO 

blood group. Black lines represent the associations identified in previous studies and red line means the 

causal effect identified in our study.  
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Table 1 Summary of the MR estimates for dyslipidemia, TC, TG, LDL-c and HDL-c to the susceptibility and severity of COVID-191 

Lipid 
IVW method Weighted median method 

Weighted mode-based 

method 
MR-Egger method 

FDR 

OR (95%CI) p OR (95%CI) p OR (95%CI) p OR (95%CI) p 

COVID-19 
        

 

Dyslipidemia 1.27(1.08, 1.49) 0.003 1.26 (1.01, 1.56) 0.040 1.22(0.93, 1.61) 0.170 1.53(1.12, 2.10) 0.020 0.013 

Total Cholesterol 1.14 (1.04, 1.25) 0.005 1.23 (1.06, 1.43) 0.005 1.14 (0.99, 1.32) 0.070 1.15 (0.10, 1.33) 0.061 0.013 

Triglycerides 1.18 (0.98, 1.25) 0.102 1.08 (0.90, 1.31) 0.392 1.15 (0.94, 1.41) 0.179 1.15 (0.94, 1.40) 0.170 0.128 

LDL Cholesterol 1.09 (1.00, 1.18) 0.051 1.06 (0.94, 1.20) 0.358 1.06 (0.95, 1.17) 0.300 1.02 (0.91, 1.15) 0.697 0.085 

HDL Cholesterol 1.03 (0.92, 1.15) 0.646 1.09 (0.91, 1.29) 0.359 1.19 (0.98, 1.44) 0.091 1.21 (0.99, 1.49) 0.073 0.646 

Severe COVID-19 
        

 

Dyslipidemia 0.83(0.67, 1.02) 0.071 0.81(0.62, 1.07) 0.139 0.83(0.60, 1.14) 0.267 0.69(0.44, 1.06) 0.112 0.132 

Total Cholesterol 0.95 (0.85, 1.06) 0.366 0.98 (0.81, 1.19) 0.857 1.02 (0.84, 1.24) 0.856 1.00 (0.84, 1.20) 0.993 0.366 

Triglycerides 1.13 (0.99, 1.30) 0.079 1.10 (0.91, 1.33) 0.344 1.07 (0.91, 1.27) 0.420 0.99 (0.80, 1.24) 0.956 0.132 

LDL Cholesterol 0.90 (0.81, 1.00) 0.049 0.95 (0.81, 1.12) 0.551 0.94 (0.81, 1.09) 0.408 0.92 (0.80, 1.07) 0.269 0.132 

HDL Cholesterol 0.92 (0.81, 1.04) 0.185 0.88 (0.72, 1.08) 0.211 0.90 (0.72, 1.13) 0.361 0.89 (0.71, 1.12) 0.334 0.231 

1 Results described MR estimates derived from the main inverse-variance weighted, MR-Egger, weighted median and weighted mode-based methods for 

dyslipidemia, HDL-c, LDL-c, TC and TG to the susceptibility of COVID-19 (COVID-19) and the severity of COVID-19 (Severe COVID-19). FDR refers to 

the p-value from IVW method. Values of FDR < 0.05 are marked in italic bold. p, p-value; CI, confidence interval.  
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Table 2 Summary of the observational studies for TC level in different ABO blood group1 

Subjects Cohort 
Sample 

size 

ABO blood 

groups 

Mean level of total 

cholesterol 
p-value Description 

Healthy blood 

donors 

Italian 7,723 A vs. O 183.95 ± 0.65 vs.  

181.31 ± 0.64 (mg/dL) 

1.00 × 10-3 The values of TC and LDL-C are significantly higher 

in subjects with blood group A compared with those 

with O blood type 24. 

CAD patients Chinese 6,476 Non-O vs. O 4.93 ± 0.02 vs.  

4.78 ± 0.03 (mmol/L) 

3.80 × 10-7 Subjects of non-O type had higher levels of TC, LDL-

C, and NHDL-c 25. 

Adolescents White 4,460 A1 vs. O Males: 174.20 ± 0.90 vs. 

170.70 ± 0.80 (mg/dL)     

Females: 181.00 ± 1.00 vs. 

176.10 ± 0.90 (mg/dL) 

Male:  

5.00 × 10-3     

Female:  

3.00 × 10-4 

Blood group A with higher serum TC levels in white 

adolescents 26. 

Acute STEMI 

patients 

European 1,835 Non-O vs. O A:180.40 ± 34.50, B:182.10 

± 35.10, AB:180.50 ± 

33.80 vs. O:175.30 ± 33.20 

(mg/dL)  

2.30 × 10-2 The prevalence of hyperlipidemia, TC, LDL, peak 

CKMB and no-reflow as well as hospitalization 

duration were higher in patients with non-O blood 

groups 27. 

FH patients White 668 Non-O vs. O 9.48 ± 1.69 vs.  

9.14 ± 1.73 (mmol/L) 

2.00 × 10-2 Total cholesterol was significantly higher in non-O 

subjects compared to carriers of the O group 28. 

Coronary 

atherosclerosis 

patients 

Chinese 371 Non-O vs. O 5.05 ± 0.07 vs.  

4.80 ± 0.10 (mmol/L) 

4.10 × 10-2 Subjects of non-O type had higher levels of TC, LDL-

C and NHDL-C compared with that of O type 29. 

1 Table lists the published studies which demonstrate the TC level is different in diverse ABO blood group. STEMI, ST-elevation myocardial infarction; CAD, 

coronary artery disease; FH, familial hypercholesterolemia.  
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Table 1 The MR analysis pipeline of the current study. 
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Figure 2. Causal effects of dyslipidemia and TC on COVID-19.  
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Figure 3. The relationships among the TC level, the susceptibility of COVID-19 and the different ABO 

blood group. 

 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 7, 2020. ; https://doi.org/10.1101/2020.07.07.20147926doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.07.20147926
http://creativecommons.org/licenses/by-nc-nd/4.0/


25 

 

Supporting information 

Figure S1. Scatter plot and leave-one-out analysis plot for dyslipidemia and total cholesterol (COVID-

19). 

Table S1. Assessment of pleiotropy for dyslipidemia and blood lipids to COVID-19 and severe COVID-

19. 

Table S2. Summary of 243 genes significantly associated (FDR < 0.05) with total cholesterol. 

Table S3. Summary of 89 biological processes significantly associated (FDR < 0.05) with total 

cholesterol. 

Table S4. Summary of 20 pathways associated (p-value < 0.05) with total cholesterol. 
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