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1 Abstract

The SARS-CoV-2 epidemic in France has had a large death toll. It has not affected
all regions similarly, since the death rate can vary several folds between regions where
the epidemic has remained at a low level and regions where it got an early burst. The
epidemic has been slowed down by a lockdown that lasted for almost eight weeks, and
individuals can now move between metropolitan French regions without restriction. In
this report we investigate the effect on the epidemic of summer holidays, during which
millions of individuals will move between French regions. Additionally, we evaluate the
effect of strong or weak seasonality and of several values for the reproduction number on
the epidemic, in particular on the timing, the height and the spread of a second wave.
To do so, we extend a SEIR model to simulate the effect of summer migrations between
regions on the number and distribution of new infections. We find that the model
predicts little effect of summer migrations on the epidemic, because the number of
migrating infectious individuals are low as a consequence of the lockdown. However, all
the reproduction numbers above 1.0 and the seasonality parameters we tried result in a
second epidemic wave, with a peak date that can vary between October 2020 and April
2021. If the sanitary measures currently in place manage to keep the reproduction
number below 1.0, the second wave will be avoided. If they keep the reproduction
number at a low value, for instance at 1.1 as in one of our simulations, the second wave
is flattened and could be similar to the first wave.

2 Introduction

On June 29 2020, the World Health Organization documented that more than 10 million
cases of infection by SARS-Cov-2 had been reported (World Health Organization, 2020).
In continental France, the epidemic seemed to be contained after a series of measures,
including a drastic lockdown from March 17 to May 11. During the lockdown, one
required a self-authorisation to leave home. The lockdown has successfully slowed
down the spread of the epidemic, reducing the reproduction number Rt from around
3 to less than 1 (Salje et al. , 2020; Sofonea et al. , 2020; Duchemin et al. , 2020).
The lockdown was then lifted progressively. On May 11, workers were allowed to go
back to work, and schoolchildren to go back to school, with new sanitary measures
enforced in shops, at work and in schools. Individuals were not allowed to change
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region or to move more than 100km away from their home. On June 22, all children were
expected to attend school, and some of the sanitary measures were no longer enforced.
In particular, restrictions on travel within continental France were lifted. As of June
25, the epidemic in continental France is considered under control by Santé Publique
France (SPF), the governmental agency in charge of monitoring the epidemic (Santé
Publique France, 2020). SPF estimates there are 35 new cases per day per 1 000 000
inhabitants. However, the epidemic has not had the same impact on all regions, and as
a result the epidemic still does not have the same intensity in all regions. This can be
seen in the predicted proportion of infectious individuals per region on July 1st 2020
(Fig. 1). These predictions are based on a Bayesian model that uses the number of
SARS-CoV-2 related deaths through time to monitor the epidemic (Duchemin et al. ,
2020). This model was found to have good accuracy and agreed with other models of
the epidemic in France.

Figure 1: Initial proportion of infectious individuals as of July 1 2020 according to
Duchemin et al.’s Bayesian model. One unit µ corresponds to one infectious individual
per 1 000 000.

SPF also estimates a reproductive number at 0.92 (95% confidence interval: 0.89-
0.96) for continental France for the week preceding June 25. Such a low R0 is due to
sanitary measures that are still in place, such as the prohibition of large gatherings or
advice on hand washing and mask wearing in shops and at work. But it may also be due
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to SARS-CoV-2 susceptibility to weather conditions (Neher et al. , 2020; Kissler et al. ,
2020), i.e. its seasonality. Other coronaviruses are known to be seasonal, with a higher
reproduction number in winter than in summer, but it is still unknown how seasonal
SARS-CoV-2 may be. In particular, in their investigations of SARS-CoV-2 seasonality,
(Neher et al. , 2020) used a seasonality value of 0.5 for Northern temperate countries,
while (Kissler et al. , 2020) used a seasonality value of 0.13. Thus it is important to
assess how these different estimates affect future trajectories for the epidemic in France.

Between 2014 and 2016, on average 119 million people moved between regions during
holidays (Direction Générale des Entreprises, 2018) (Fig. 2). Most of these migrations
happen during summer, and could help spread the virus between regions, including
moving the virus into regions that comparatively had so far been spared by it.

Figure 2: Migration balance during the summer holidays in continental France. The
balance between outgoing and incoming migrants is color-coded between blue for regions
with negative balance, and red for regions with positive balance.

In this manuscript, we studied the effect summer holiday migrations between regions
may have on the spread of the SARS-CoV-2 epidemic in France. We implemented a
compartmental Susceptible-Exposed-Infectious-Recovered/Removed (SEIR) model to
simulate the infectious process, and complemented it with migrations between regions
as gathered from (Direction Générale des Entreprises, 2018). We initialized the number
of individuals in each compartment based on simulations from (Duchemin et al. , 2020)’s
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model. We first investigated how seasonality and reproduction numbers interact to
determine the size and the timing of a second wave of infections in France. To this
end, we examined two seasonality values and three reproductive number values for the
summer. We finally investigated how migrations affected the number of infections in
each region.

3 Material and methods

3.1 Models

3.1.1 SEIR model

We use a Susceptible-Exposed-Infectious-Recovered/Removed (SEIR) model to simu-
late the SARS-Cov-2 epidemic in France. Such models are used widely to simulate
epidemics, and a formal presentation can be found in (Hethcote, 2000) or (Neher et al.
, 2020). A brief intuitive presentation follows. ”Susceptible” individuals may become
infected because they coexist with infectious individuals; upon infection, an individual
becomes ”Exposed”. Exposed individuals then become ”Infectious” after an incuba-
tion period. Infectious individuals contribute to the spread of the epidemic, and become
”Recovered” or ”Removed” after an infectious period. Individuals in the R category
cannot move to another category.

The starting code base was taken from (Neher et al. , 2020), who used their SEIR
model to investigate the influence of migrations and seasonality on viral spread world-
wide. In their model, seasonality and migration parameters were drawn from prior
distributions, and other parameters were fixed to values drawn from the literature.
They used this model to examine possible trajectories that the worldwide epidemic
could take over the next months and years. We built upon this model to investigate the
influence of seasonality and summer holiday migrations on the epidemic in France. In
particular, we used empirical data to inform the pattern of migrations between French
regions in the mainland, and we take into account migrations in both directions: to the
holiday region and back. We also used estimated reproduction numbers and combined
them with a model of seasonality.

3.1.2 Simulating holiday migrations in the SEIR model

The SEIR model is based on differential equations that describe how individuals move
between the S, E, I, R categories in a small amount of time dt. Each region has its own
set of population size and starting numbers of individuals in the S, E, I, R categories.
Other parameters such as the reproduction number or the infectious period are shared
between regions. Contrary to agent-based models, each individual in the simulation is
not considered separately from other individuals: instead, only the numbers of indi-
viduals in each compartment are considered. Simulation is performed by dividing the
year in n intervals of time dt and running the differential equations repeatedly over
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each interval. Migrations between regions happen every week during the summer hol-
idays. A number of emigrant individuals are sent to destination regions and removed
from their origin region; during the move, they keep their S, E, I, R category. These
immigrants are added to the numbers of S, E, I, R individuals in the destination re-
gion and removed from the numbers of S, E, I, R individuals in the origin region for
a week. Then, during a week, these immigrants can change category according to the
process happening in the destination region. At the end of the week, the immigrants
are brought back to their origin region. The total number of individuals coming back
equals the number of individuals that have gone on holidays, but the proportions of
S, E, I, R individuals among them can differ from the starting number. With such a
process, individuals coming from regions with low infection rates can become infected
if they move to regions with high infection rates, and infectious individuals migrating
to another region may infect individuals in the destination region.

3.1.3 Joint simulation of seasonality and interventions

To simulate jointly non-pharmaceutical interventions and seasonality, we used estimates
of Rt from Duchemin et al.’s Bayesian model and modelled seasonality deterministi-
cally. Duchemin et al.’s Bayesian model uses the number of deaths in 13 regions in
metropolitan France to estimate an R0 value before the lockdown, and a set of other
parameters that act as modifiers of the initial R0 to provide estimates of daily Rt during
the lockdown, and after the lockdown. These Rt values account for three elements: the
effect of seasonality, the effect of other factors, notably non-pharmaceutical interven-
tions, and the decline in the number of susceptible individuals. Taking the average of
the Rt values over a time period (i.e. before, during, or after the lockdown) provides
an estimate that we will refer to as Raverage here and that factors out the effect of
the decline in the number of susceptible individuals. But such an Raverage value still
combines the effect of seasonality and the effect of non-pharmacetical interventions.
The following explains how we disentangle these two factors. We modelled seasonality
deterministically as in (Neher et al. , 2020) as follows:

β(t) = β0 × (1 + ε cos(2π(t− θ))) (1)

Here β(t) is the transmissibility at day t, i.e. the rate at which an infected individual
infects another individual, ε is the strength of seasonal forcing, and θ is the date of peak
transmissibility. We used the parameter β0, which was defined as the yearly average
transmissibility in (Neher et al. , 2020) to separate the effects of seasonality and of other
factors. To this end, we estimate one βaverage value per period, where each βaverage value
corresponds to an Raverage value as follows:

Raverage = rec× βaverage (2)

Where rec is the recovery rate, i.e. the inverse of the time for an infected individual
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to recover. Therefore, to estimate βaverage values, we use:

βaverage =
rec×Raverage∫ ti+1

ti
(1 + ε cos(2π(t− θ)))dt

(3)

Where ti and ti+1 are the boundary dates for period i. The resulting daily Rt values
are shown Fig. 3 for the period between July 1st 2020 and June 1st 2021. These were
used as input for the SEIR model, which then handles the decline in the number of
susceptible individuals on its own.

Figure 3: Rt values combining seasonality and different values of R0. These different
trajectories were used as input to the SEIR model.

3.2 Data

3.2.1 Parameters

Since (Neher et al. , 2020)’s work, some parameters of the Covid19 disease have been
determined more precisely, but others are still uncertain. In the case of reproduction
numbers and seasonality, we compared several values to account for this uncertainty.
We acknowledge a certain amount of arbitrariness in selecting the other parameter
values but observed little sensitivity of the results when we introduced small variations.

We set the reproduction numbers by combining model-based estimates and season-
ality estimates. We use the model-based estimates to provide average reproduction
numbers Raverage over time-periods, and use seasonality estimates to allow variation
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around these average values. We explored 3 different Raverage values for the period ex-
tending from July 1st 2020 to the end of the simulation, June 1st 2021: 1.1, 1.5 and 2.0.
We did not explore values below 1.0 as they would be certain to lead to an extinction
of the epidemic.

We considered two values for the seasonality of SARS-CoV-2. First we used a
value of 0.5, in agreement with (Neher et al. , 2020)’s analyses of the seasonality of
other coronaviruses in Northern temperate countries. Second we used a lower value of
0.13, in agreement with (Kissler et al. , 2020). In both cases, we considered that the
maximum infectivity of the virus was on January 1st.

We set the infectious time, the time it takes between infection and becoming infec-
tious, to 3 days, assuming it takes ≈ 5 days from infection to symptom onset (Lauer
et al. , 2020), and infectiousness starts ≈ 2 days before symptom onset (He et al. ,
2020). This is the time an individual remains in the E compartment.

We set the recovery time, the time it takes between symptom onset and the end of
infectiousness, to be 6 days, based on the inferred infection profile in (He et al. , 2020).
This is the time an individual remains in the I compartment.

3.2.2 Initialization

Region wise proportions of S, E, I, R individuals on July 1 2020 were simulated using
a Bayesian model of the French epidemic (Duchemin et al. , 2020). We chose to use
the model without mixture between regions as it provided predictions that were very
similar to the mixture model and was easier to fit and simulate. This model was fitted
with data up to June 29. The parameter values of each sample of the MCMC chain
were used to simulate the epidemic spread up to July 1st 2020. Median values were
extracted to initialize the SEIR model in each region. Exposed individuals were defined
as individuals that had been infected less than 3 days ago. Infectious individuals were
defined as individuals that had been infected less than 9 days ago but more than 3
days ago. Recovered/Removed individuals were defined as individuals that had been
infected more than 9 days ago. All the other individuals were assigned to the Susceptible
category. This assignment of individuals to categories is consistent with the SEIR
parameters introduced above. The proportions of infectious individuals on July 1 2020
estimated by the model range between 3.1 × 10−8 for Corsica and 6.9 × 10−5 for Île
de France, with a mean at 1.9 × 10−05. These numbers are in the same range as the
number of new cases per day estimated by SPF in the week preceding June 25, which
was 3.5 × 10−5.

3.3 Validation

To validate our implementation of the SEIR model, we ran it between March 1 2020
and June 1 2021 and compared the number of infectious individuals through time to
the numbers obtained by running (Duchemin et al. , 2020)’s Bayesian model over the
same time interval. The SEIR model was initialized with the parameter values that the

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 23, 2020. ; https://doi.org/10.1101/2020.07.06.20147660doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.06.20147660
http://creativecommons.org/licenses/by-nc-nd/4.0/


Bayesian model has inferred for March 1 2020.

3.4 Implementation and availability

The simulation is implemented in Python and is available at https://gitlab.
in2p3.fr/boussau/futurecorona

4 Results

4.1 Differences between simulated numbers of infectious in-
dividuals using the SEIR model and estimates from a
Bayesian model

Fig. 4 shows that the SEIR model, when initialized with values drawn from (Duchemin
et al. , 2020)’s model on March 1 2020, qualitatively captures the differences between
regions that the Bayesian model infers. However, it dampens the variations that the
Bayesian model infers: maxima are not as high in the SEIR model as in the Bayesian
model, and minima not as low. These differences between the two approaches are
significant and show that the SEIR model lacks in realism. In particular, it would seem
adventurous to try and use it to obtain quantitative predictions about the future of the
epidemic in France. However, we expect that despite these shortcomings, we can still
use the SEIR model to obtain a qualitative picture of what the future of the epidemic
may look like.
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Figure 4: Number of infectious individuals through time according to our SEIR model
and according to a Bayesian model. Region-wise estimates from the Bayesian model
are represented with a solid line on top of a shaded ribbon, and estimates from the
SEIR model are represented with solid lines of matching colors.

4.2 Migrations have a minor effect on the number of infections

In the following we examine the total number of infected individuals as of September
1 2020, just after the summer holidays, and at the end of the simulation, June 1 2021.
Tables 1 and 2 show that summer migrations have a very limited impact on the total
number of infections. This limited impact at the national level is also observed at the
regional level (data not shown). The impact seems slightly more important for low
seasonality initially 1, but then this effect disappears at the end of the simulation 2.
We also observed that migrations contribute to making the wave start slightly earlier
(data not shown).
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seasonality Raverage Without migration With migrations Difference
0.13 1.1 14 851 14 853 2
0.13 1.5 54 917 54 954 37
0.13 2.0 335 447 336 656 1 209
0.5 1.1 5 099 5 099 0
0.5 1.5 8 519 8 519 0
0.5 2.0 20 588 20 594 6

Table 1: Total numbers of infections as of September 1 2020 for varying seasonality and
Raverage values.

seasonality Raverage Without migration With migrations Difference
0.13 1.1 994 670 995 048 378
0.13 1.5 42 854 732 43 010 354 155 622
0.13 2.0 53 648 401 53 936 387 287 986
0.5 1.1 1 338 694 1 338 879 185
0.5 1.5 51 795 178 51 839 875 44 697
0.5 2.0 59 889 135 60 208 067 318 931

Table 2: Total numbers of infections as of June 1 2021 for varying seasonality and
Raverage values.

4.3 A second wave is observed in all parameter settings

The possibility of a second wave of infections depends on the strength of seasonality for
SARS-Cov-2, and on its reproduction number R0. Fig. 5 shows the number of infectious
individuals through time according to 2 different values for seasonality (low: 0.13, high:
0.5), and 3 different values for Raverage (1.1, 1.5, 2.0). Higher Raverage values result in
earlier and steeper waves, because the epidemic spreads fast. When Raverage = 1.1, the
wave is limited, peaking at 229 000 infectious individuals for low seasonality. Such a
wave would be comparable to the first wave, which peaked at 307 000 individuals on
March 29 according to (Duchemin et al. , 2020)’s model fitted on data up to June 29.
Higher seasonality results in later and steeper waves. This is because, in our simulation,
for a given Raverage, R0 values of high seasonality scenarios are inferior to the R0 values
of low seasonality scenarios (Fig; 3). At the earliest, for low seasonality and high
Raverage, the second wave peaks in October 2020; at the latest, for high seasonality and
medium Raverage, the second wave peaks in January 2021 or even April 2021 for low
Raverage.
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Figure 5: Number of infectious individuals through time. Scenarios with and without
migration provide indistinguishable curves. 3 top lines: weak seasonality, R0 at 1.1,
1.5, 2.0 from the top to the bottom. 3 bottom lines: strong seasonality, R0 at 1.1, 1.5,
2.0 from the top to the bottom.

5 Discussion

In this report we investigated the effect of several parameters on a model of the SARS-
CoV-2 epidemic in France. We varied the value of the reproduction number, the value of
the seasonality, and took into account summer holiday migrations in a SEIR model. Our
choices of 1.1, 1.5, 2.0 for the future reproduction number of SARS-CoV-2 correspond
to three hypotheses. In all cases, they assume that the sanitary measures currently in
place, which include mandatory mask wearing in public transportation and at work, and
the prohibition of large gatherings, are not sufficient to keep the reproduction number
below 1.0, which means that the epidemic can spread. All choices are lower than the
estimated value of the Raverage before the lockdown was enforced, which is around 3.0
(Duchemin et al. , 2020; Salje et al. , 2020; Sofonea et al. , 2020), which conveys the idea
that the sanitary measures do reduce the Raverage. The other parameters of the model
were either obtained from estimates by (Duchemin et al. , 2020)’s Bayesian model, or
drawn from the literature. Variations in these parameters can affect the timing and the
scale of the second epidemic wave (not shown), but unless extreme values are used, do
not make it disappear.

We chose to use a deterministic SEIR model to quickly explore a range of scenarios.
We do not attempt to take into account the uncertainty in most parameters, and do not
attempt to model the inherent stochasticity of the epidemic process. The SEIR model
assumes that all individuals behave the same way and have the same characteristics.
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In particular, it assumes that all individuals in a given compartment and region have
the same probability to be infected or to infect another individual. Models that allow
heterogeneity between individuals have been proposed and can alter the predicted dy-
namics of the epidemic (Gomes et al. , 2020). It is possible that such models may fit the
dynamic of the epidemic better than our model, whose shortcomings are apparent Fig.
4. Future work may address the effect of migrations with such models. In the mean
time we expect that our SEIR model can capture important aspects of the epidemic.
The predictions of our model may provide insight into possible central trajectories of
the epidemic, but cannot be used to infer e.g. a detailed timing of the progress of the
epidemic.

Although the different French regions had different proportions of infectious individ-
uals on July 1 2020 (Fig. 1), and the numbers of migrating individuals were large, we
observed that holiday migrations have little effect on the epidemic (Tables 2, 1). Our
results are conservative, because we used an overestimate of the number of migrants
during the summer holidays, which corresponds to the average number of migrants per
year over 2014-2016, and not just during summer holidays. During migrations, at most
29 783 infectious individuals changed region on a given week (for Raverage = 2.0 and
low seasonality). Compared to the 64 million individuals in France, these inputs were
not sizeable enough to alter the dynamic of the epidemic in a meaningful way. This
reasoning also explains why low seasonality results in a slightly larger impact of holiday
migrations: in this condition higher summer R0 values allow the epidemic to start an
epidemic wave, meaning that the number of infectious migrants become less and less
insignificant as time goes by. This shows that it is important that the number of infec-
tious migrants remains low for migrations to have a limited impact on total numbers of
deaths. However, small numbers of infectious migrants could still contribute to creating
local clusters of infections. Investigating the likelihood of such clusters would require
using an agent-based model with a realistic and detailed map of where individuals spend
their holidays.

In a recent manuscript, (Britton & Ball, 2020) investigated the effect of summer
migrations from a densely populated metropolitan area, Stockholm, to a popular sum-
mer vacation destination, the island of Gotland. They used a SIR model in which they
introduced two types of visitors, long term visitors and short term visitors, assuming
short term visitors have more contacts with the locals. They investigated a range of
parameter values and found that migrations can increase the number of infections on
the island. However, they also found that this increase depends upon the number of
infectious migrants. Their results support our conclusion that low numbers of infectious
migrants are key for migrations to have a limited impact on total numbers of deaths.

The reproduction number and the seasonality parameter have a large effect on the
epidemic, and control the size, the spread and the date of a second wave. Even if
the reproduction number is low at 1.1, a second wave is obtained. If the reproduction
number is larger, the second wave happens earlier and is steeper and larger. This second
wave is unsurprising given the low proportion of immunized individuals after the first
wave, and given the historical precedent of the 1918 Influenza (Taubenberger & Morens,
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2006).

6 Conclusion

We investigated the influence of summer holiday migrations and of various parametriza-
tions for the seasonality and the reproduction number on the epidemic of SARS-CoV-2
in France. To this end, we modified a SEIR model to allow for migrations between
regions during the summer holidays. We found that migrations of French individuals
during summer holidays have almost no impact on the epidemic. This is a consequence
of the lockdown which has been successful in decreasing the number of infectious mi-
grants. Different seasonality and reproduction numbers above 1.0 all result in a second
wave, whose peak date can vary between October 2020 and April 2021. Such a second
wave would be avoided if the sanitary measures currently in place in France are suf-
ficient to keep the reproduction number below 1.0. If the sanitary measures manage
to keep the reproduction number low, for instance at 1.1 as in one of our simulations,
the second wave is flattened and could be similar to the first wave. Such a flatter wave
would be much more manageable for the French health system, hence it important to
keep the reproduction number low.
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