Title

Digitized smart surveillance in malaria elimination programme in Mangaluru city, Karnataka, India — a detailed account of operationalization in post-digitization years

Authors

B. Shantharam Baliga¹, Shrikala Baliga^{1,2}, Animesh Jain^{1,2}, Naveen Kulal³, Manu Kumar⁴, Naren Koduvattat⁵, B. G. Prakash Kumar⁶, Arun Kumar⁷, Susanta K. Ghosh^{8,9*}

Authors' Affiliations

¹ Kasturba Medical College Mangalore,, Manipal Academy of Higher Education, Manipal, Karnataka, 575003, India.

² Manipal McGill Centre for Infectious Diseases, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

³ Department of Public Health, Dakshina Kannada District, Mangalore, Karnataka 575001, India.

⁴ Officer on Special Duty, Chief Minister's Secretariat, Bangalore, Karnataka 560001, India.

⁵ I-Point Consulting, Punja Arcade, Lalbagh, Mangalore, Karnataka 575003, India.

⁶ Directorate of Health and Family Welfare Services, Government of Karnataka, Bangalore, Karnataka 560009, India.

⁷General Hospital, Shikaripura, Karnataka 577427, India.

⁸ ICMR-National Institute of Malaria Research (Field Unit), Nirmal Bhawan–ICMR Campus, Poojanahalli, Kannamangla Post, Devanahalli Taluk, Bangalore, Karnataka 562110, India.

⁹ Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.

*Correspondence:

Susanta K. Ghosh (email - ghoshnimr@gmail.com)

Email addresses of all authors

- 1. B. Shantharam Baliga: drbsbaliga@gmail.com
- 2. Shrikala Baliga: shrikala.baliga@manipal.edu
- 3. Animesh Jain: animesh_j@yahoo.com
- 4. Naveen Kulal: naveenchandra49@gmail.com
- 5. Manu Kumar: manukumar1983@yahoo.com
- 6. Naren Koduvattat: naren.koduvattat@gmail.com
- 7. B.G. Prakash Kumar: prakashkumarbg60@gmail.com
- 8. Arun Kumar: auaav4@gmail.com
- 9. Susanta K. Ghosh: ghoshnimr@gmail.com

Abstract

Background

An indigenously developed digital handheld Android-based geographical information system (GIS)tagged tablets (TABs) device has been deployed in Mangaluru city, Karnataka, India for smart surveillance in malaria elimination programme from October 2014. Here a detailed account is enumerated in the post-digitization years. The study was aimed to assess the effectiveness of the digitized surveillance system under the ongoing health system in Mangaluru city.

Methods

A software developed for digitization of malaria surveillance was continued in the post-digitization years (PDY). The same digitization year (DY) protocol was followed in the post-digitization periods also. Secondary data from the malaria control software, total nunber of cases, active surveillance, malaria indices, and feedback from stakeholders were looked at and analyzed.

Results

Digital surveillance was sustained and the performance improved in the 5th year with participation of all stakeholders. Malaria indices significantly reduced to about 65% in the digitization years compared with digitization year (p<0.001). Slide positivity rate (SPR) decreased from 10.36 (DY) to 4.3 (PDY4). Annual parasite incidence (API) decreased from 16.17 (DY) to 5.4 (PDY4). There was a tempo-spatial correlation between closure of cases on 14th day and incidence of malaria. There was a negative correlation between contact smears and incidence of malaria (r = -0.907). Good impact was recorded in the premonsoon months (~85%) and low impact in July and August months (~40%).

Conclusion

Software helped to improve incidence-centric active surveillance, complete treatment with documentation of elimination of parasite, targeted vector control measures. The learnings and analytical output from the data helped to modify strategies for local control of both disease and the vector.

Keywords: Malaria, Digitization, GIS, TAB, Smart surveillance, Malaria elimination, Software, Information technology, Mangaluru

Background

Mangaluru is a coastal city in Karnataka of southwestern India. The city is also notoriously known for being endemic for malaria for three decades [1-3]. Smart surveillance of malaria cases was introduced as programme management tool in this city in 2015. In a previous report, a detailed information was described on the design and implementation of this digitization protocol and presented initial secondary data analyzes to determine the impacts in the 2nd years post-digitization [4]. Subsequent to digitization of entire malaria control programme in the territory of the city corporation, there has been a reduction in the incidence of malaria.

The current operational functionalities were assessed in the post-digitization periods, and attempted to know whether any kind of fatigues or changes in priorities had crept in the surveillance system; or any further improvements are needed to make the device more user-friendly. All malariometric indices and interventions on vector management parameters were recorded and analyzed. Routine monitoring and strict vigils were put in place on the ongoing newly introduced surveillance system using geographical information system (GIS)-tagged tablets (TABs). This paper presents the latest data, and discuss how the surveillance continued using impact data after 4-year post-digitization. It also ascertained the lessons learnt, possible analyses, hypotheses, and explanations regarding the utility of the software for surveillance, and the experiences during implementation process.

Methods

Digitization of surveillance was initiated from October 2014 to September 2015 considering digitization year (DY) [4]. Similarly, from October 2015 to September 2016 was post-digitization year 1 (PDY 1); from October 2016 to September 2017 post-digitization year 2 (PDY 2); from October 2016 to September 2018 post-digitization year 3 (PDY 3) and from October 2018 to September 2019 post-digitization year 4 (PDY 4). Hence, malaria control software is being used for the 5th consecutive year and cases are reported by all the health care providers and stakeholders. Field activities for control and closure of cases/source elimination of mosquito breeding sites were carried out based on the inputs into the software. This data available on the system was translated into excel sheet and the data was analyzed for taking appropriate decisions and amendments in action plan.

Mangaluru city has administrative units designated as wards, and 60 such wards constitute city limits [5,6]. Malaria indices were analyzed in each month in all these wards covering the entire city limits. Based on the data, high risk areas were identified periodically to carry out necessary anti-malarial activities.

Malaria cases reported in the city were also analyzed based on the type of health facilities from where patients sought health care services. These health care facilities were categorized as private health facilities, and public health facilities. Private health facilities included all the hospitals, nursing homes

and diagnostic laboratories. Public health facilities included surveillance team of district vector borne disease control office (DVBDCO), government-run hospitals, urban health centres, and malaria clinics.

Each incidence was analyzed based on reporting time, closure of the cases, closure within 14 days after complete treatment and follow-up smear examination for persistence of parasites. Closure time is considered as 14 days to complete primaquine therapy for *Plasmodium vivax* cases to prevent relapse as per the recommendation of National Vector Borne Disease Control Programme (NVBDCP) [7].

Factual reporting with regards to administrative decisions, hurdles in the implementation of antimalarial activities, and how these problems were addressed and their effects on the malaria control and the malaria indices were analyzed.

Statistical analysis

Closing of each positive case and also vector interventions were analyzsed following the scattered plot method. Community visits, contact smears during active surveillance around reported case (ASARC), vector control activities were analyzed along with malaria indices such as Annual Blood Examination Rate (ABER), Slide Positivity Rate (SPR), Slide Falciparum Rate (SFR) and Annual Parasite Incidence (API). Mothly malaria trends at each level were also plotted in relation to closure of cases. Impact on these parameters were also analysed using Chi-square tests and Pearson's correlation coefficient formula were applied wherever appropriate using IBM SPSS Statistics 25. Significance values p<0.001 was considered significant.

Results

Monthly malria incidence for the past 6 years and the cumulative reduction in incidence in the urban limits of Mangalore is depicted in Table 1. The gradual reduction of overall incidence of malaria continued in the 4th year post-digitization (PDY4) with an overall cumulative reduction by 65% as compared to the digitization year (DY).

Month	2013- 14	2014-15 DY	2015-16 PDY1 #	2016-17 PDY2	2017-18 PDY3	2018-19 PDY4	Cumulative reduction	2019-20 PDY5
							(%) (PDY4)	
October	479	1064	929	717	776	398	62.5	357
Novembe							64.1	190
r	465	1278	1116	631	750	458		
Decembe							62.6	209
r	454	1103	1348	468	728	412		
January	532	1101	1068	403	438	342	68.9	145
February	471	554	662	305	281	182	67.1	87
March	477	521	400	305	329	180	65.4	54
April	617	528	475	405	294	117	77.8	79

Table 1: Monthly incidence of malaria*

May	1004	715	449	374	384	106	85	64
June	1159	1065	1142	656	741	166	84	-
July	1526	971	2084	1174	1003	581	40	-
August	1062	848	1952	1325	837	514	41	-
Septemb							75	-
er	1421	1224	989	874	549	294		
Total	9667	10972	12641	7637	7110	3750	65	-

*malaria incidence decreased to double digit in the 5th year; the data is current as on date of submission of manuscript.

some diagnostic centres reported cases directly to malria control cell

The cumulative reduction in the incidence was also calculated (Table 2). The maximum reduction of 84 to 85% was noted for the months of May and June and least 40 to 41% in the months of July and August. Overall reduction in incidence was remarkable at 65%. The trend has continued and malaria cases decreased to double digits consistently for 4 months in the 5th year of smart surveillance.

In June 2018, malaria elimination teams were formed to visit reported cases of malaria and carry out sanitization of the area subsequent to administrative decision to utilize services of multipurpose workers (MPWs) for non-malarial work. The resultant figures for incidence in PDY 2018-19 show that there were marked reductions in malaria cases.

Ward-level malaria incidence was also recored in each 60 ward shown in Table 2. The ward-level cumulative reduction in incidence of malaria from the PDY1 to PDY4 was significant (p<0.001). However, two wards (Kadri South and Cantonment) showed increase in incidence, with one of the wards showing 17% increase in the cases compared to the baseline value of PDY1.

Ward	PDY1	PDY2	PDY3	PDY4	Cumulative reduction (%)
1-Surathkal - West	105	89	18	26	-75
2-Surathkal - East	55	40	13	22	-60
3-Katipalla- East	36	13	11	5	-86
4-Katipalla-K'pura	17	16	13	11	-35
5-Katipalla - North	22	10	14	10	-55
6-Idya – East	49	126	68	26	-47
7-ldya – West	25	15	17	7	-72
8-Hosabettu	18	23	17	12	-33
9-Kulai	0	20	32	8	-60
10-Baikampady	77	44	40	22	-71
11-Panambur	101	69	50	55	-46
12-Panjimogaru	91	51	53	33	-64
13-Kunjathbail -North	77	33	51	24	-69
14-Marakada	56	17	54	28	-50

Table 2: Ward-level malaria cases in Mangalore post-digitization and cumulative reduction.

15-Kunjathbail- south	60	37	61	20	-67
16-Bangrakulur	74	73	88	52	-30
17-Derebail - North	459	128	207	61	-87
18-Kavoor	397	105	115	72	-82
19-Pachanady	101	41	18	20	-80
20-Thiruvail	31	14	0	8	-74
21-Padavu - West	66	32	82	28	-58
22-Kadri Padavu	291	209	135	82	-71
23-Derebail - East	432	224	105	120	-72
24-Derebail - South	109	254	277	51	-53
25-Derebail - West	246	157	293	166	-33
26-Derebail - N-East	212	123	201	159	-25
27-Boloor	176	39	45	26	-85
28-Mannagudda	346	110	170	31	-91
29-Kambla	85	90	46	14	-84
30-Kodialbail	186	134	140	65	-65
31-Bejai	162	157	236	132	-19
32-Kadri – North	131	75	55	107	-18
33-Kadri – South	181	159	341	211	+17
34-Shivabagh	113	74	93	47	-58
35-Padavu - Central	120	124	124	56	-53
36-Padavu – East	121	107	118	94	-22
37-Maroli	107	65	58	15	-86
38-Bendoor	205	113	74	29	-86
39-Falnir	240	92	55	21	-91
40-Court	293	322	438	180	-39
41-Central Market	710	644	404	191	-73
42-Dongarkeri	104	66	40	39	-63
43-Kudroli	218	58	65	31	-86
44-Bunder	799	496	400	248	-69
45-Port	753	554	451	222	-71
46-Cantonment	147	227	292	156	+ 6
47-Milagrese	507	233	163	69	-86
48-Kankanady					-94
Valencia	370	133	95	22	
49-Kankanady	255	72	70	29	-89
50-Alape – South	108	50	37	21	-81
51-Alape – North	109	84	32	10	-91
52-Kannur	43	29	36	18	-58
53-Bajal	118	48	30	8	-93
54-Jeppinamogaru	62	41	27	12	-81
55-Attavara	307	181	101	54	-82

56-Mangaladevi	418	174	181	64	-85
57-Hoige Bazaar	278	412	205	112	-60
58-Bolar	197	109	78	49	-75
59-Jeppu	132	79	59	24	-82
60-Bengre	446	323	294	193	-55

It was noted that surveillance continued to improve with malaria cases being reported from all the hospitals and diagnostic centres of private as well as public health system. Before digitization, private healthcare facilities contributed to nearly two thirds (68%) of the total cases being reported while the public health system contributed to nearly one third (which included 18.6% by community public hospitals and 4.3% by malaria clinics). In the post-digitization phase the contribution from private hospitals to total number of cases kept steadily declining and reduced to 57% in the 4th year. At the same time, the public health system, i.e., public hospitals, urban health centres as well as DVBDCO started contributing larger proportion of total number of cases. ASARC contributed to over 1% of malaria incidence emphasizing the role played by it (Table 3).

Table 3: Type of health facility and malarial case reports

	PDY1*	PDY2	PDY3	PDY4
Total cases	11757	7637	7110	3750
District Vector borne Disease Control	571 (4.9%)	648 (8.5%)	593 (8.3%)	381 (10.2%)
Office (DVBDCO)				
Public Hospitals	2184 (18.6)	1157 (15.1%)	1406 (19.8%)	778 (20.7%)
Urban health centres	329 (2.8%)	601 (7.9%)	811 (11.4%)	322 (8.9%)
Active surveillance	123 (1.1%)	32 (0.4%)	55 (0.8%)	44 (1.2%)
Malaria clinics	501 (4.3%)	327 (4.3%)	255 (3.58%)	89 (2.4%)
Private Health facilities	8049 (68%)	4872(63%)	4245(56%)	2136 (57%)

*cases directly reported to malaria control cell are not included

Table 4: Reporting pattern, case management, smear collection source management
and malarial indices before and after malaria control software introduction

	Pre- digitizati on	Digitizati on year (DY)	PDY1*	PDY2	PDY3	PDY4
Total reported cases analyzed	None	none	11757	7637	7110	3750
No.reported within 2 days (%)	NA	NA	9291 (78%)	5511 (72%)	5575 (78%)	2980 (79.5%)
Cases closed after action	NA	NA	11598 (98%)	7514 (98.3%)	6185 (87%)	3469 (93%)
No.of cases closed in 14 days (14 days treatment of <i>P. vivax</i> cases)			466 (4%)	2310 (30%)	1657 (23%)	677 (19%)
						1683 (49%)

No. of cases closed			1088 (9%)	3544 (45%)		
between 15 and 30 days					3136	
					(43%)	
Contact smears	NA	NA	21203	36211	20839	13185
No. of positive cases			(123)	(32)	(55)	(44)
detected						
Corrrelation between the rat	io of contac	ct smears to	total no. of c	ases and no. c	of positive cas	ses detected by
		conta	ct smears			
		r = -0.907, r	p = 4, p = 0.09	3		r
Community visits	NA	NA	205723	180036	553315#	381155
Mosquito breeding sources						
reported	NA	NA	5545	5861	4664	4862
Residentia	al NA	NA	4393	4112	2287	2343
Constructio	n NA	NA	135	192	295	33
Public place	es NA	NA	432	119	47	23
Apartment	ts NA	NA	178	112	52	58
Commercia	al NA	NA	10683	10396	7345	7319
Total Sources reported	NA	NA	10197	9872	4981	4712
Sources closed after action						

*cases directly reported to malaria control cell are not included # Includes visits with purpose other than for malaria control

Table 4 depicts the number of cases for the last 4 years wherein visits were made, contact smears taken, source documented, and closure of each case was carried out. Timely field activity for vector control, complete treatment, smear to ensure parasite clearance after treatment followed by closure of cases at the earliest improved post digitization. The early reporting of cases as well as closure of cases within 14 days increased steadily. There was a negative corrrelation between the ratio of contact smears to total no. of cases and no. of positive cases detected by contact smears though it was not statistically significant.

Figure 1: Percentage of closure rate <14 days vs incidence rate - trends for 4 years - administrative block (ward)-level analysis

Yearly reduction (%) of malaria cases in each ward. r = -0.18

Malaria incidence and its impact on the incidence of malaria was analyzed using Pearson's correlation coefficient formula. The ward-level closure of cases was plotted against incidence of malaria cases and correlation equation was generated as depicted in Fig. 1. The scatter plot depicts clustering of cases. It is observed that as the percentage of closure increases, the reduction in incidence is higher. The percentage of closure rate <14 days after treatment and the incidence rate of Malaria in Mangalore is depicted in Fig. 2. Each Dot represents percentage of cases treated, investigated completely and closed within stipulated period of 14 days (r = 0.359). As seen, the cumulative reduction of malarial cases at the end of 4 years after introduction of digitization using malaria control software (MCS) stood at 65% as compared to pre-digitization year (2014-15). The API, SPR, and SFR showed statistically significant change (p<0.001). The ward-level depiction based on API is shown in Fig 3. It can be noted that the wards with API in the red zone (API > 10) have reduced and the ones with green (API ≤ 2) as well as yellow (API > 2.1 to 5) have increased.

Figure 2: Percentage of closure rate <14 days after treatment *vs* incidence rate (quarterly) of malaria in Mangalore

Percentage of cases closed within day 14 (quarterly)

10

	Pre-	Digitization	1 st yr Post	2 nd yr Post	3 rd yr Post	4 th year Post
	algitization	year	digitization	digitization	digitization*	algitization
Total malarial cases (no)	8867	10962	12614	7637	7110	3750
Number of smears/	9.48	9.75	12.24	26.68	18.37	23.18
incidence						
Vivax malaria (% of total)	8092 (91)	10196(93)	11277 (89)	6245 (82)	5633(79)	3099 (82)
Falciparum malaria (% of	775 (9)	766(7)	1337 (11)	1395 (18)	1494 (21)	651 (18)
total)						
Chi-s	quare for trei	nd $\chi^2 = 164.5$	<i>p</i> value <	0.001		
ABER	13.48	17.13	24.75	32.68	20.9	17.75
SPR	11.15	10.36	8.17	3.74	5.4	4.3
SFR	0.92	0.73	0.86	0.68	1.1	0.7
API	15.51	16.17	18.42	12.24	11.4	5.4

Table 5. Malaria indices of Mangalore pre-digitization, digitization and post digitization year.

*MPW's were given additional work other than malaria surveillance

The malarial indices were calculated for the pre-digitization year, digitization year and each of the four years post digitization (Table 5). The slide positivity rate was seen steadily decreasing and the average annual parasite incidence (API) reduced and came down to 5.4 in the 4th year post digitization.

Inputs from stakeholders was taken regarding the challenges faced by them and how MCS was helpful in overcoming those challenges. Table 6 summarizes the challenges, gapsand functionality of the software as described by the administrator of malaria control programme in the civic body.

Table 6. Feedback from stakeholders regarding various issues in malaria control prior to introduction of malaria control software (MCS) and description of how the software helped administrators based on inputs from stakeholders.

PARAMETER	ΑCTIVITY	GAP/DIFICULTIES FACED/CHALLENGES	HOW MCS HELPED
	Malaria case reporting	 Manual reporting system Unfocused effort by concerned Labs reporting malaria incidents were less 	 MCS brought in simple & user friendly reporting System Early reporting More efficient data collection on malaria cases
Data	Manual method adopted Documentation recording "Malaria Con Process"		Cloud based data management with both online & offline documentation. Documentation is done each stage of malaria control programme.
	Geo-spatial data	Non availability of geo-spatial data on malaria spared area.	Geo-spatial data helped the Nodal Officer & City Administration to change the work style from conventional to focused area based work

	Data quality	Un-reliable data	Quality statistical data collection & analysis for effective preventive measures.
	Data analysis	Missing	MCS has helped to get large quantum of segregated data, which has helped to do analysis & initiate action based on outcomes.
	Response time	No specific record before the MCS	Response time has come down drastically
Treatment	Work culture	Area based approach	Incident centric approach
	Evidence	No evidence of water source, breeding & destruction evidences available	MCS helps to create record of water Source & Breading places. Helps to penalize the defenders.
Vector	Data on no. of wells	Only approximation no. of well data was available	MCS has helped to map all wells in city with Geo-Tagging
Control Vectors Constru sites	Vectors in Construction sites	No proof of record & documentation on violation of mosquito control at construction site	MCS helped to create proof of record for each Const. site for repetitive failure to prevent Mosquito breeding.
	Means of communication	Manual Method & Mouth to Mouth Communication	All incident report were communicated using MCS, which is instantaneous with more clarity & detailed on each patient.
Programme Management	Staff accountability	Number of house visit were considered	Improvement in Field workers efficiency due to accountability fixed to each ones role & responsibility
	Dignity	Field staff were unprivileged	Instilling dignity of labour by equipping them with the right tool.
	Behavioral Change among Public	Non-cooperation by common public	Brought behavioural changes in public towards malaria control actions implementation
Construction sites	Accountability	Missing	Builder is held responsible with proof of record on breeding captures through MCS. Mengaluru City Corporation (MCC) has started laving penalties to builders who fail to prevent vector breading.

Discussion

While the preliminary results were encouraging [4], it was very important to assess the impact of interventions in order to determine its future course and also to look for additional measures to strengthen the ongoing malaria control operations. The purpose of improving the reporting time and providing the TABs to MPWs was to improve surveillance and make it "smart." Smart surveillance reduces the time delay between diagnosis and registration of a new incidence for necessary action in the field to break the chain of transmission.

There was a marked reduction in malaria incidence in Mangaluru over 4 years, and also in 2020 (up to May). It is encouraging to note that the data records show cumulative reduction by 65% and continues to decline (Table 1). For the first time in the past two decades malaria incidence reduced to double digits in the 5th year as a consequence of improved surveillance and effective field work. The lower reduction in the months of July and August could be attributed to the monsoon rains and excessice mosquito breeding resulting in spread of malaria. After the introduction of malaria elimination team in June 2018, it was noted that the malaria incidence reduced even further from a peak of 1003 in July 2018 to just 294 at the end of PDY 4. The monthly closure *vs* incidence shows that with higher closure of cases, the incidence of malaria decreased. This indicates that smart surveillance does have an important role to play in breaking the chain of transmission.

Subsequent to smart surveillance, an important behavioral change took place among the diagnosticians at the point of diagnosis and it continued throught PDY4 wherin details of 80% of newly diagnosed cases were uploaded into the system within 48 hrs. These case records were available to field workers for sanitization and active surveillance in and around reported case (Table 3). Emphasis was laid on this process during implementation from the first year of programme and subsequently malaria elimination team was formed for rapid response. After effective implementation of control programme aided by software for 18 months, an administrative decision was taken to utilize services of MPWs for nonmalarial (civic body's) work resulting in reduced efficiency in the field. Although the community visits increased by manifold during PDY3, it was not translated to effective vector control measures and collection of smears by active surveillance reduced from 4.61 per case (PDY2) to 2.8 per case (PDY3). This resulted in slump in the work and lesser reduction of malarial incidences during PDY3. A surge in the number of cases was observed in April – May 2017 which led to increase in malarial indices. To counter this inefficiency, Complete Malaria Elimination Teams (CMETs) were formed at district malaria unit in June 2018. These teams visited each malaria case as soon as the case details were uploaded and conducted ASARC along with anti-vector activities in the locality. First visit and collection of smears from contacts and fever cases in the residences around reported case did help in breaking transmission as observed by the negative correlation between contact smear and to incidences of malaria over 4 years.

Even ward-level analysis demonstrated that the incidence in almost all the wards was reducing progressively with a good cumulative reduction in incidence(Table 2). However, it can be noted that the effect of the entire programme, its implementation and effects on malaria control was not uniform in all administrative units (wards). Most wards showed reduction ranging between 23% to 94%. The maximum reduction was noted in Kankanady-Valencia ward which had a reduction of 94% in PDY4, followed by Bajal which had a reduction of 93%. Although certain wards had low incidence, there was an increase in cases in 2 wards namely Kadri South and Cantonment. Kadri South ward showed a

cumulative increase of 17% while Cantonment ward showed an increase of 7%. This is attributed to an increase in the number of cases in both these wards in PDY3 due to the repurposing of the MPWs for non-malaria work. Kadri south ward had recorded 341 cases in PDY3 compared to 159 in PDY 2 (114% increase) and Cantonment had an increasefrom 227 in PDY 2 to 292 cases in PDY 3 (29% increase). However, even these two wards do show a progressive reduction by PDY3 when the malaria elimination teams were deployed. These wards, where there was an increase in cases or very minimal reduction in cases (less than 20% in 4 years) against the expected trend as seen in other wards may probably be indicative of problematic areas. High risk categorization is based on API and such wards recorded reduction of incidence by 80% and above. Several wards converted from a high API red zone to a lesser API green or yellow zones (Fig. 3). This assumes greater significance in the light of a recent report about the asymptomatic malaria carriers in hotspots of malaria at Mangalore which indicates that these may seed transmission to the surrounding population in receptive areas [8]. There may be a role to understand geographic trends for planning the strategies at micro level and further research and review of these is warranted. Further, it may be worthwhile to look at the sociodemographic cahracteristics of people in these areas as well as the activities like construction and migration or travel [9].

Private sector contribution was higher than the public health system. According to WHO, reported cases of malaria are only from public health care facilities^{10,11} and hence, large number is unreported. However, even where reporting rates in the public health sector are close to a 100%, in some countries, more than 50% of malaria patients seek care in the private sector [12]. With digitization both public and private health care providers reported the malarial cases (Table 3). Private sector contribution was higher than the public health system. According to WHO reported cases of malaria are only from public health care facilities [10,11] and a large number is unreported. However, even where reporting rates in the public health sector are close to a 100%, in some countries, more than 50% of malaria patients seek care in the public health sector are close to a 100%, in some countries, more than 50% of malaria patients seek care in the public health sector are close to a 100%, in some countries, more than 50% of malaria patients seek care in the private sector [12]. Thus the software helped to connect people at point of diagnosis from both private and public health systems with field workers instantaneously for sanitization exercise, investigating contacts for malarial parasites and ensuring complete elimination of parasite from malarial patient. This was the biggest advantage of smart surveillance which is the essence of this software.

The action of closing the caseon day 14, which reflects accountability of field force steadily increased and it did contribute to reduction of malaria cases. The proportion of closure of cases between 15 - 30day was also steadily maintained. There was both temporal and spatial relation to this action of field force (Figs 1 and 2). Greater the monthly closure of cases the higher was the decrease in incidence of malaria in a geographical area (Fig. 1). Hence, it ensures completion of treatment and ASARC establishes that breaking the chain of transmission and measures to reduce breeding and spread are important public health measures in control of malaria [4]. The software helped in this activity and also aided in monitoring the activities of MPWs and closure of cases with documentation.

Data from software was analyzed for changing the approach to field activities for malaria control. As described earlier, surveillance was carried out as soon as new malarial case was reported – ASARC. During analysis of new cases, clusters of new cases within a short period of one week, within a defined geographical area were identified and strategically separate programmes were carried out. One such endeavour was targeted for labourers/ daily wage earners. Generally, malaria clinics are open from 9

AM and to 5 PM which were underutilized as it was not convenient for the manual labourers/daily wage earners and low socioeconomic class, as they were engaged in their vocation and income generation activities during that time. Hence, a mobile 24x7 clinic using a van and health care workers was introduced so that it could visit various places and could also be sent to the site if there was a phone call made to the central malaria helpline number. This helped in not only enhancing the diagnosis but also treatment and prompt reporting of malaria cases.

Table 7. Summary of	f strategies ad	opted based	l on analysi	s of data obta	ained from softwa	are and
addressing the issue	:S.					

Problem	Action
Reported incidence	Timely treatment and follow up, Contact smears, information education and
	communication (IEC) in the surrounding along with vector control measures,
	follow up as required for compliance
Identified hotspots	Mass survey, indoor residual spray (IRS), long lasting insecticidal nets (LLINs)
	distribution, and vector control measures,
Identified high risk	Fortnightly mass survey for fever cases, vector identification and remedial
wards	measures along with IEC. Anti-larval activities - temephos weekly;
	pyriproxyfen fortnightly & lambda cyhalothrin in select areas with IRS
Delay in diagnosis	Mobile malaria clinic 24x7 to reduce delay
Construction sites with	Separate teams to visit and sanitize the construction sites. Field activities by
focal breeding sites as	domestic and construction team of DVBDCO to reduce the container index
well as potential	(CI) and house index (HI) simultaneously to reduce dengue transmission.
residential areas	
Additional work	Complete Malaria Elimination Teams was initiated, which was dedicated for
responsibility to MPWs	malaria control only.

Smart surveillance did empower the stake hoders. Table 7 summarises perception of stakeholders and how the software was utilized and how it brought about positive change in them.

Fig. 4 describes how the information technology (IT) software functions to improve control activity. All the actions regarding treatment and vector control can be measured including the time frames for each activity. Transmission cycle is effectively broken if interventions are carried out in the first 10 days of diagnosis in addition to early diagnosis. Transmission occurs locally around a reported case and it is logical to implement effective vector control and measure that activity. Smart surveillance was able to measure many control measures which helped to change the strategies in the field.

Figure 4: Information technology (IT) logics

In the 5th year post-digitization, incidence of malaria is further reduced as compared to corresponding period of previous year. Hence, with continued MCS use, other administrative measures and action taken to address issues based on data received via MCS and feedback from stakeholders, the reduction in incidence of malaria was sustained.

Conclusion

The digital surveillance system coupled with field action and creation of big data has been effective tool to improve systems. Software helped to improve incidence-centric active surveillance, complete treatment with documentation of elimination of parasite, targeted vector control measures. The learnings and analytical output from the data helped to modify strategies for local control of both disease and the vector.

Availability of data and material

The data used in this study are archived with Dr BS Baliga and available from them upon reasonable request.

Abbreviations

TABs	Tablets
GIS	Geographic Information System
NVBDCP	National Vector Borne Disease Control Programme
MPWs	Multi Purpose Workers
MCS	Malaria Control Software
DY	Digitization year
ASARC	Active Surveillance Around Reported Case
ABER	Annual Blood Examination Rate
ΑΡΙ	Annual Parasite Incidence
SPR	Slide Positivity Rate
SFR	Slide Falciparum Rate
IEC	Information Education and Communication
IT	Information Technology
MCC	Mengaluru City corporation

References

- Dayanand KK, Punnath K, Chandrashekar V, Achur RN, Kakkilaya SB, Ghosh SK, Kumari S, Gowda DC. Malaria prevalence in Mangaluru city area in the southwestern coastal region of India. Mal J. 2017 Dec 19;16(1):492. doi: 10.1186/s12936-017-2141-0.
- Shivakumar Rajesh B, Kumar A, Achari M, Deepa S, Vyas N. Malarial trend in Dakshina Kannada, Karnataka: an epidemiological assessment from 2004 to 2013. Indian J Health Sci Biomed Res (KLEU). 2004;2015(8):91–94
- 3. Kakkilaya BS. Malaria in Mangaluru. Malaria site. <u>http://www.malariasite.com/malaria-mangaluru/</u>
- Baliga BS, Jain A, Koduvattat N, Kumar BGP, Kumar M, Kumar A, Ghosh SK. Indigenously developed digital handheld Android-based Geographic Information System (GIS)-tagged tablets (TABs) in malaria elimination programme in Mangaluru city, Karnataka, India. Malar J. 2019; 18:444. doi: 10.1186/s12936-019-3080-8.
- 5. Dakshina Kannada district administration. Available from URL (cited 26 June 2020) <u>https://dk.nic.in/en/municipal-administration/</u>
- 6. Mangalore city Corporation. Available from URL (cited 26 May 2020): <u>https://en.wikipedia.org/wiki/Mangalore_City_Corporation</u>

- 7. Directorate of National Vector Borne Disease Control Programme, Ministry of Health and Family Welfare, Government of India. Operational manual for Malaria elimination in India 2016.
- 8. Ramaswamy A, Mahabala C, Basavaiah SH, Jain A, Chouhan RR. Asymptomatic malaria carriers and their characterization in hotpops of malaria at Mangalore. Trop Parasitol 2020;10:24-8.
- 9. Chuquiyauri R, Paredes M, Peñataro P, Torres S, Marin S, Tenorio A et al. Socio-demographics and the development of malaria elimination strategies in the low transmission setting. Acta Trop 2012;121:292-302.
- 10. World Health Organization. World Malaria Report 2018. Geneva: World Health Organization; 2018.
- 11. World Health Organization. World Malaria Report 2019. Geneva: World Health Organization; 2019.
- 12. World Health Organization. Analysis and use of health facility data Guidance for malaria programme managers. Geneva, World Health Organization; 2018. <u>https://www.who.int/publications/m/item/analysis-and-use-of-health-facility-data-guidance-for-malaria-programme-managers</u>

Acknowledgements:

Administration of Mangaluru City Corporation and District Health Officials, Dakshina Kannada for accepting and utilizing the software. Assistance from Health workers from the City Corporation and District Malaria Office is acknowledged. Akansha Baliga for assistance in analysis of data, and Dr Chaitali Ghosh for copy editing of the manuscript.

Funding: No external funding received.

Authors' contributions: BSB, NKo and SB conceived the study. BSB and NKo developed the software. AJ, MK and NKo performed all programme implementation. SKG and BGPK for additional technical support. BSB, AJ,SB, and SKG drafted the manuscript. BSB, AJ, NKU and SKG for statistical analysis. All authors read, reviewed and approved the final manuscript

Ethics declarations

Ethical approval: Institutional Ethics Committee, Kasturba Medical College, Mangaluru, India gave opinion as `not required'.

Consent for publication: Not applicable

Competing interests: The authors declare that they have no competing interests.