Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Predicting the second wave of COVID-19 in Washtenaw County, MI

View ORCID ProfileMarissa Renardy, Denise Kirschner
doi: https://doi.org/10.1101/2020.07.06.20147223
Marissa Renardy
University of Michigan Medical School
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marissa Renardy
  • For correspondence: renardy@umich.edu
Denise Kirschner
University of Michigan Medical School
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

The COVID-19 pandemic has highlighted the patchwork nature of disease epidemics, with infection spread dynamics varying wildly across countries and across states within the US. These heterogeneous patterns are also observed within individual states, with patches of concentrated outbreaks. Data is being generated daily at all of these spatial scales, and answers to questions regarded reopening strategies are desperately needed. Mathematical modeling is useful in exactly these cases, and using modeling at a county scale may be valuable to further predict disease dynamics for the purposes of public health interventions. To explore this issue, we study and predict the spread of COVID-19 in Washtenaw County, MI, the home to University of Michigan, Eastern Michigan University, and Google, as well as serving as a sister city to Detroit, MI where there has been a serious outbreak. Here, we apply a discrete and stochastic network-based modeling framework allowing us to track every individual in the county. In this framework, we construct contact networks based on synthetic population datasets specific for Washtenaw County that are derived from US Census datasets. We assign individuals to households, workplaces, schools, and group quarters (such as prisons). In addition, we assign casual contacts to each individual at random. Using this framework, we explicitly simulate Michigan-specific government-mandated workplace and school closures as well as social distancing measures. We also perform sensitivity analyses to identify key model parameters and mechanisms contributing to the observed disease burden in the three months following the first observed cases on COVID-19 in Michigan. We then consider several scenarios for relaxing restrictions and reopening workplaces to predict what actions would be most prudent. In particular, we consider the effects of 1) different timings for reopening, and 2) different levels of workplace vs. casual contact re-engagement. Through simulations and sensitivity analyses, we explore mechanisms driving magnitude and timing of a second wave of infections upon re-opening. This model can be adapted to other US counties using synthetic population databases and data specific to those regions.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

This research was supported by NIH grants R01AI123093 and U01 HL131072 awarded to DEK. The 2010 U.S. Synthetic Population database was created by RTI International, which is funded 395 by the National Institutes of General Medical Sciences (NIGMS).

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Not applicable

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

None

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted July 07, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Predicting the second wave of COVID-19 in Washtenaw County, MI
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Predicting the second wave of COVID-19 in Washtenaw County, MI
Marissa Renardy, Denise Kirschner
medRxiv 2020.07.06.20147223; doi: https://doi.org/10.1101/2020.07.06.20147223
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Predicting the second wave of COVID-19 in Washtenaw County, MI
Marissa Renardy, Denise Kirschner
medRxiv 2020.07.06.20147223; doi: https://doi.org/10.1101/2020.07.06.20147223

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Epidemiology
Subject Areas
All Articles
  • Addiction Medicine (230)
  • Allergy and Immunology (507)
  • Anesthesia (111)
  • Cardiovascular Medicine (1256)
  • Dentistry and Oral Medicine (207)
  • Dermatology (148)
  • Emergency Medicine (283)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (537)
  • Epidemiology (10047)
  • Forensic Medicine (5)
  • Gastroenterology (500)
  • Genetic and Genomic Medicine (2481)
  • Geriatric Medicine (239)
  • Health Economics (482)
  • Health Informatics (1652)
  • Health Policy (756)
  • Health Systems and Quality Improvement (638)
  • Hematology (250)
  • HIV/AIDS (536)
  • Infectious Diseases (except HIV/AIDS) (11888)
  • Intensive Care and Critical Care Medicine (626)
  • Medical Education (255)
  • Medical Ethics (75)
  • Nephrology (269)
  • Neurology (2301)
  • Nursing (140)
  • Nutrition (354)
  • Obstetrics and Gynecology (458)
  • Occupational and Environmental Health (537)
  • Oncology (1257)
  • Ophthalmology (377)
  • Orthopedics (134)
  • Otolaryngology (226)
  • Pain Medicine (158)
  • Palliative Medicine (50)
  • Pathology (326)
  • Pediatrics (737)
  • Pharmacology and Therapeutics (315)
  • Primary Care Research (282)
  • Psychiatry and Clinical Psychology (2294)
  • Public and Global Health (4850)
  • Radiology and Imaging (846)
  • Rehabilitation Medicine and Physical Therapy (493)
  • Respiratory Medicine (654)
  • Rheumatology (288)
  • Sexual and Reproductive Health (241)
  • Sports Medicine (228)
  • Surgery (271)
  • Toxicology (44)
  • Transplantation (130)
  • Urology (100)