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Abstract

It has long been known that pooling samples may be used to minimize the total

number of tests required in order to identify each infected individual in a popula-

tion. Pooling is most advantageous in populations with low infection probability, but

is expected to remain better than non-pooled testing in populations with an infection

probability up to 30%. Additional testing efficiency may be realized by performing

a second round of pooled testing, thus reducing the average number of tests required

to uniquely identify each infected individual in a population with 1% infection from

20 to 14 out of 100, and from 6 to 4 when the infection probability is 0.1%. These

best case predictions, obtained assuming perfect test accuracy and specificity, provide

a quantitative measure of the optimal pool size and expected testing efficiency gains in

populations with infection probabilities ranging from 0.1% to 30%, and are supported

by recent COVID-19 empirical detection sensitivity and optimized pool size studies.

Although large pools are most advantageous for testing populations with very low

infection probabilities, they are predicted to become highly non-optimal with increas-

ing infection probability, while pool sizes smaller than 10 remain near-optimal over a

broader range of infection probabilities.

Introduction

The advantages of pooled testing in applications ranging from disease screening to manufac-

turing quality assurance have long been appreciated.1 Efficiently and practically containing

viral outbreaks requires minimizing the total number of tests needed in order to uniquely

identify every positive individual. This may be achieved using pooled testing, given a prior

estimate of the probability of infection as well as the availability of a sufficiently sensitive

diagnostic test with an acceptably low false-negative detection probability. When applicable,

pooled testing a population consisting of a large number N of individuals can be achieved

with significantly fewer than N tests, by initially screening pools containing a mixture of n
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samples, followed by further testing of only the positive pools. The optimal pool size n is

expected to increase with decreasing infection probability p, and is no longer expected to be

advantageous when p>0.3 (30%). The present predictions are obtained assuming that there

is no correlation between the infections within a pool and that all pools have approximately

the same infection probability. Additionally, the predictions are obtained assuming perfect

test accuracy and specificity, and thus represent a best case scenario. However, the predic-

tions are in reasonable agreement with available COVID-19 pooled testing results,2,3 as well

as recent single round pooled testing simulations that include the effects of imperfect test

sensitivity.4 Thus, the present results are expected to accurately approximate the testing

efficiency gains obtainable using actual COVID-19 tests performed using either one or two

rounds of pooling, as well as to aid in the selection of a fixed pool size that remains near

optimal over the range of infection probabilities in a given population.

The optimal value of n, as well as the expected number of infections per pool, may be

determined using the binomial distribution,5 whose optimal n predictions are equivalent to

those first obtained by Dorfman.1 Here these results are extended to include predictions of

the range of infection percentages over which a give fixed pool size remains nearly optimal,

as well as the expected number of infected individuals per pool as a function of p. Moreover,

the significant additional efficiency that may be obtainable from a second round of pooling is

determined. These predictions imply that optimal pooling may be used in populations with

a very low infection probability of 0.1%, using an optimal pool size of 32. The practicality of

using pools this large has recently been demonstrated by Prof. Idan Yelin and co-workers at

Technion and Rambam Health Care Campus in Haifa, Israel, who showed that a standard

RT-qPCR test for COVID-19 may be used to detect a single positive individual in pools as

large as 32, with an estimated false negative rate of 10%.2 However, it is also important to

note that large pool testing is only predicted to be beneficial for populations with a very low

and narrow range of infection percentages, and becomes highly non-optimal for populations

with infection percentages exceeding 1%.
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The practical relevance of the present results is further supported by the recent finding

of Dr. Manoj Jain of the Baptist Memorial Hospital and Methodist Hospitals in Memphis,

using COVID-19, who found that hundreds of test samples obtained from firefighters, police

officers and city workers could be most efficiently tested using a pool size of 7,3 which

is consistent with the present predictions pertaining to an infection percentage of 2.4%. In

practice, these predictions may be used by initially employing a pool size obtained by roughly

estimating the expected infection probability in the population of interest, and subsequently

adjusting the pool size to better match the actual infection probability. These predictions

are expected to be most useful in facilitating large scale screening and continuous testing of

populations with low infection probabilities for early detection of COVID-19 outbreaks, to

enhance both public safety and economic productivity.

Results

The binomial distribution yields the following expression for the probability that there will

be k infected individuals in a pool of sized n, drawn from a population with an infection

probability of p.5

P (k) =
n!pk(1 − p)n−k

k!(n− k)!
(1)

When k = 0 this reduces to the following expression for the fraction of pools that are

expected to contain no infected individuals, in keeping with Dorfman’s original predictions.1

P (0) = (1 − p)n (2)

This yields the following expression for the total number of tests Ntests required in order to

exhaustively test a population of size N , with an infection probability of p, using a pool size

of n.

Ntests =
N

n
+ N [1 − (1 − p)n] (3)
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Thus, the average percentage of tests that must be performed in order to identify every

infected individual in a population of size N is T% = 100 × (Ntests/N). In other words,

T% represents the average number of tests required to identify each infected individual in a

population of size 100, or equivalently T%×1,000 is the number of tests required to do so in

a population of 100,000.

T% = 100

[
1 +

1

n
− (1 − p)n

]
(4)

The optimal value of n is that which minimizes T%, and thus may be obtained by finding the

roots of the following expression for the partial derivative of T% with respect to n, pertaining

to a given value of p.

− 1

100

(
∂T%

∂n

)
p

=
1

n2
+ (1 − p)n ln(1 − p) = 0 (5)

The above expression may be solved numerically using Newton’s method. Alternatively, the

optimal pool size may also be obtained iteratively, using an initial guess for the pool size n0,

inserted into the right-hand-side of the following expression, to obtain a better estimate of

n (where the “Round” operation rounds the result to the nearest positive integer).

n ≈ Round

{[
ln

(
1

1 − p

)
(1 − p)n0

]−1/2
}

(6)

If n0 is not very similar to n, then one may set n0 = n and repeat the process to obtain a

better estimate of n. This iterative procedure typically converges within a few cycles (whose

convergence can be most accurately quantified by removing the Round operation from the

right-hand-side of Eq. 6). The resulting optimal values of n are given in the 3rd column

in Table 1, whose first two columns represent the average infection probability p and the

corresponding infection percentage 100p in the population of interest. The 4th column in

Table 1 contains the resulting T% predictions, obtained when using a single round of pooled

testing. Note that these values correspond to averages over large populations. For example,
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for a population with an infection probability of p = 0.001 (0.1%), the optimal pool size is

32 and the vast majority of such pools will contain no infected individuals. More specifically,

any such pool of size 32 is predicted to have no infections 97% of the time, and the remaining

3% of the pools of size 32 are predicted to contain only one infected individual.

Figure 1 contains more detailed predictions pertaining to the average number of infected

individuals in pools of optimal size, when the overall infection probability ranges from 1%

to 30%. Note that at (and below) an infection probability of 1%, essentially all of the

positive pools are predicted to contain only one infected individual. At higher infection

probabilities a non-negligible number of positive pools are predicted to contain more than

one infected individual, but nevertheless most positive pools are predicted to contain only

one infected individual. For example, even in a population with an infection probability of

30%, about 34% of the pools of size 3 are predicted to contain no infected individuals, while

45% contain one, and only 21% contain more than one infected individual. However, at this

high rate of infection there is no longer any significant advantage to pool testing, relative

to exhaustively testing every single individual, as indicated by the 4th column in Table 1,

which indicates that an average of 99 tests would have to be performed when optimally pool

testing a population of 100 individuals that has an infection percentage of 30%.

Figures 2 and 3 contain graphical predictions pertaining to tests performed using either

one or two rounds of optimal pooling, respectively. Figure 2 shows the resulting optimal first

round pool size n (a) and testing percentage T% (b) predictions. The insert panels in each

figure contain an expanded view of the predictions pertaining to populations with infection

percentages less than 1%, and the solid curves are optimal pooled testing predictions. The

optimal pool size values shown in Table 1 are obtained by rounding the graphical results

to the nearest positive integer. The dotted curves in Figure 2b show the testing efficiency

predictions obtained when using various fixed pool size estimates n0, indicating that near-

optimal pool sizes produce results that are essentially the same as those obtained using

an optimal pool size, as long as the actual infection percentage is not too far from its
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Table 1: Optimized Pool Testing Results

Infection Infection Pool Size Tests Needed Pool Size Tests Needed
probability (p) percent 1st round (n) 1 round (T%) 2nd round (n2) 2 rounds (T%)

0.001 0.1%̇ 32 6 8 4

0.002 0.2%̇ 23 9 7 6

0.003 0.3%̇ 19 11 7 7

0.004 0.4%̇ 16 12 6 8

0.005 0.5%̇ 15 14 6 9

0.006 0.6%̇ 13 15 6 11

0.007 0.7%̇ 12 16 5 12

0.008 0.8%̇ 12 18 5 12

0.009 0.9%̇ 11 19 5 13

0.01 1%̇ 11 20 5 14

0.02 2%̇ 8 27 4 20

0.03 3%̇ 6 33 4 26

0.04 4%̇ 6 38 4 30

0.05 5%̇ 5 43 4 35

0.06 6%̇ 5 47 3 38

0.07 7%̇ 4 50 3 43

0.08 8%̇ 4 53 3 45

0.09 9%̇ 4 56 3 48

0.1 10%̇ 4 59 3 51

0.15 15%̇ 3 72 3 66

0.2 20%̇ 3 82 3 77

0.25 25%̇ 3 91 3 88

0.3 30%̇ 3 99 3 99

estimated value. More specifically, these predictions indicate that pool sizes of 5, 6, and

7 are expected to produce nearly optimal testing efficiency in populations with average

infection percentages ranging from 2% to 12%, 1% to 8%, and 0.7% to 6%, respectively (as

determined by requiring that T% remain within 3% of its optimal value). Larger pool sizes

are predicted to remain near optimal over a narrower range of infection probabilities, and to

rapidly become significantly non-optimal with increasing infection probability, as exemplified

by the dotted curves in Figure 2b.

Figure 3, as well as the last two columns in Table 1, contain predictions obtained if two

rounds of optimal pooling are performed on the same population of test samples. Specifi-

cally, the 5th column in Table 1 indicates the optimal second round pool size and the last
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Figure 1: Predicted number of infected individuals in optimally sized pools obtained from populations with
average infection percentages ranging from 1% to 30%.
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Figure 2: Optimal pool size a and testing percentage b predictions obtained when applying a single round
of pooled testing. The dashed lines in b represent the testing percentages obtained using three different fixed
pool sizes.

column indicates the predicted average number of tests required to determine all the infected

individuals in a population of size 100 when using two rounds of optimal pooling. The second

round of optimal pooling is performed by limiting the second round tests to individuals in
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the positive first round pools, as further described below.
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Figure 3: Predicted optimal pool sizes a and testing percentages b obtained when applying two rounds of
pooled testing. The dotted and solid curves in b compare the predicted testing efficiencies obtainable using
one or two rounds of optimized pool testing, respectively.

The solid curves in Figure 3 are optimal second round pool testing predictions. Figure 3a

shows the predicted optimal pool size, n2, that should be used in order to efficiently re-test

all the samples from the positive first round pools. More specifically, the average infection

probability p2 in all the positive first round pools is higher than that in the original population

because all the non-infected individuals in the negative first round pools have been removed

from the population of second round test samples. Thus, the optimal second round pool

size n2 is obtained as follows, where T%(p, n) is the first round testing percentage (obtained

using Eq. 4) and n(p2) is the optimal pool size pertaining to an infection percentage of p2.

p2 =
100 p

T%(p, n)
(7)

n2 = n(p2) (8)

Thus, the following equation predicts the total number of tests required to identify every
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infected individual when using two rounds of pooling.

T%(2 round total) =
100

n
+ [1 − (1 − p)n]T%(p2, n2) (9)

Note that 100/n is the number of pools that were tested in the first round (expressed as a

percent of total number of tested individuals N), and 1 − (1 − p)n is the fraction of positive

first round pools, and thus [1 − (1 − p)n]T%(p2, n2) is the number of tests required to identify

all the positive individuals in those pools, where T%(p2, n2) is again obtained using Eq. 4.

The dotted and solid curves in Figure 3b, as well as the 4th and 6th columns in Table

1, compare the first and second round optimal testing percentage predictions. These results

indicate that there is a significant advantage to performing two rounds of pooled testing for

populations with infection probabilities less than 30%. For example, in a population with an

infection percentage of 1%, one round of pooling is predicted to require an average of 20 tests

per 100 individuals, while two rounds of pooling reduces that to 14 tests per 100 individuals.

The fractional gain in testing efficiency increases as the infection percentage decreases, and

decreases from 6 to 4 tests per 100 individuals in a population with an infection percentage of

0.1%. Again, note that these predictions represent the average number of tests required per

100 individuals, and the value of 4 arises because approximately 97% of the first round pools

of size 32 drawn from such a population are predicted to contain no infected individuals.

Summary and Discussion

Optimal pooled testing is expected to be useful in improving the efficiency of COVID-

19 diagnostics in populations with infection percentages below 30%, and becomes more

advantageous with decreasing infection probability, as long as the sensitivity of each test is

sufficient to detect one infected individual diluted in a pool of optimal size. In a populations

with an infection probability of 0.1% the predited optimal pool size is 32, which is consistent

with recently reported COVID-19 testing sensitivities achievable using a standard RT-qPCR
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test.2 At lower infection percentages, pool sizes of 32 may continue to be used, although

larger pool sizes would become optimal if the testing sensitivity were sufficiently high.2 It is

also important to note that such large pool sizes are only optimal for use in populations with

very low infection probabilities, and rapidly become non-optimal with increasing infection

probability. On the other hand, smaller pool sizes tend to remain nearly optimal over a

larger range of infection probabilities (as illustrated by the dotted curves in Figure 2b).

Optimal pooled testing is expected to be most advantageous when applied to asymp-

tomatic or randomly sampled individuals, as symptomatic individuals are likely to have an

infection probability near or exceeding 30%. Thus, pooled testing is expected to be most

useful for detection of outbreaks in a relatively stable population, so as to prevent a runaway

growth of viral infections. However, controlling such outbreaks requires not only optimal

pooled testing but also factors, including effective isolation and contact tracing.

Two rounds of pooled testing are expected to be most advantageous in continuous testing

of a population with a low infection percentage. For example, in a population of 100,000 with

an average infection probability of 0.1% it is predicted that every infected individual could

be identified by performing as few as 4,000 tests, or as few as 14,000 tests in a population

of the same size with an infection probability of 1%. This relatively low testing load should

make it practical to repeatedly test a population in order to identify early warnings of an

emerging outbreak. Although the present predictions were obtained assuming that tests are

perfectly accurate and specific, the results are also expected to be of relevance to more real-

istic situations as illustrated, for example, by the fact that a recent study determined that a

pool size of 7 was approximately optimal in testing a population of hundreds of volunteers

in Memphis, TN,3 which is consistent with the predicted optimal pool size for a population

with an infection percentage of 2.4%. The practical utility of the present results is further

supported by the prediction that the actual pool size need not be precisely optimal in order

to obtain near-optimal testing efficiency, particularly for infection probabilities that range

from 1-10%, which may be nearly optimally tested using pool sizes within the correspond-
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ing optimal pools size range of 4 to 11. Moreover, the accuracy of tests performed using

non-optimal pool sizes is expected to be limited primarily by the false negative detection

percentage pertaining the chosen pool size, thus favoring the use of smaller rather than larger

pools in situations where it is not practical to employ an optimal pool size.
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