Antibiotics resistance and mitigation strategies in healthcare settings: A scoping review

Okeah O.O., Morrison V. & Huws J.

Abstract

Background: According to the European Center for Disease Prevention and Control (ECDC), the EU records an estimated 3.2 million healthcare associated infections (HAIs) and an associated 37,000 deaths annually. A significant proportion of the HAIs burden is attributable to multi-drug resistant organisms (MDROs). Infectious diseases remain top on the list of the leading causes of death globally with MDROs playing a significant role. Key amongst these organisms is *Clostridium difficile* and *Klebsiella pneumoniae* which belong to the broader group of ESKAPE pathogens.

Aims: This review aimed at identifying literature on interventions targeting *Clostridium difficile* and *Klebsiella pneumoniae*, their key outcomes, and the extent to which behavioural theory has been applied in such interventions.

Methods: This scoping review was undertaken and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis Extension for Scoping Reviews (PRISMA-ScR) guidelines. The specific databases searched included MEDLINE, PubMed, Web of Science Core Collection, and CINAHL. The process for screening articles and data extraction was undertaken in duplicate by two reviewers. A narrative synthesis of the results is provided.

Results: The review included 34 studies (16 studies on *Clostridium difficile* and 18 articles focussed on *Klebsiella pneumoniae*). The specific antimicrobial stewardship interventions identified include Education, Surveillance and Screening, Consultations, Audits, Policies and Protocols, Environmental measures, Bundles of care, Isolation precautions, as well as Notifications and alerts systems (ESCAPE-BIN). The identified outcomes include antimicrobial use, resistance rates, risk reduction, adherence to contact precautions, hospital stay, and time savings. Only one study incorporated Kotter's stages of behaviour change and recorded the second largest (75%) sustained reduction in antimicrobials use whereas the remainder of the studies were devoid of behavioural approaches. The highest improvement (95%) in adherence isolation precautions was reported by an intervention involving the use of an IPC bundle and an environmental cleaning protocol.

Conclusion: This scoping review identified the available evidence on antimicrobial the mitigation strategies for *Clostridium difficile* and *Klebsiella pneumoniae* in healthcare settings as well as the key outcomes. There is need for further investigations on the feasibility of behaviour-based approaches in improving adherence of health workers to interventions targeting *Clostridium difficile* and *Klebsiella pneumoniae*.

Introduction

Over the past centuries, infectious diseases have claimed millions of lives presenting a real threat to human existence ¹. The discovery of antimicrobial agents during the 19th and 20th century reduced the morbidity and mortality associated with infections ², and observations of Alexander Fleming on the effect of *Penicillium* on bacteria cultures birthed the era of anti-infective agents ³. In 1947, Waksman, coined the term "antibiotic" in reference to a chemical agent capable of destroying or inhibiting the growth of microorganisms ⁴. Progressively over the subsequent decades, clinicians recognised and employed antibiotics as an effective strategy for treating and eradicating pathogenic microorganisms.

As the use of antibiotics gained popularity worldwide with noted successes including the treatment of gram positive cocci with penicillin ^{3,5}, a new threat namely antimicrobial resistance, emerged from the over-reliance on these life-saving therapeutic agents ⁶. More than 50% of antimicrobials' use is deemed as either inappropriate or unnecessary and within the last two decades alone, the use of antimicrobial agents has risen by 65% with available evidence confirming this as a key driver of antimicrobial resistance ⁷. Coupled with the rapid human to human transmission of pathogens ⁸, infectious microorganisms have continued to undergo adaptive evolution rendering a wide range of antimicrobial agents ineffective ^{9–11}. Consequently, infections such as tuberculosis have become even more potent as microorganisms continuously acquire resistance against previously effective antibiotics.

Today, infectious diseases remain top on the list of the leading causes of death globally based on recent statistics by the World Health Organization (WHO)¹². Even more worrying are the deaths attributable to multi-drug resistant microorganisms (MDROs) that have continued to increase over the past decade. A modelling analysis reported 33,000 deaths associated with resistant bacteria in Europe in 2015, representing a significant rise since 2007¹³. Healthcare settings appear to have a higher risk for the human to human transmission of

drug resistant pathogens. According to the European Center for Disease Prevention and Control (ECDC), the EU records an estimated 3.2 million healthcare associated infections (HAIs) and an associated 37,000 deaths annually ¹⁴. The burden of HAIs within the EU translates to an estimated 2.5 million DALYs, 16 million additional hospitalization days, and an annual economic burden of 7 billion euros ^{15,16}. A significant proportion of the HAIs burden is attributable to multi-drug resistant pathogens ¹⁷.

Some of the multi-drug resistant pathogens associated with HAIs include *Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp* acronymically referred to as ESKAPE pathogens ^{18–21}. In recent years, scientists have suggested the inclusion of *Clostridium (Clostridioides) difficile* also known as *C. diff* as a member of the ESKAPE pathogens and amending the acronym to **ESCAPE** pathogens ²². For purposes of this study, we focused our attention on the research undertaken on *Clostridium difficile* and *Klebsiella pneumoniae* in healthcare settings.

Clostridium difficile accounts for the largest proportion of hospital-acquired diarrhoea attributable to the overuse of broad spectrum antibiotics that alter the profile of intestinal flora and trigger *Clostridium difficile* infections (CDIs) ²³. An European based study reported a 55% resistance rate of *Clostridium difficile* in isolates ²³. There is a large body of evidence confirming the transmission of *C. diff* within hospital environments ^{24,25}, hence, the importance of proactive steps for mitigation.

On the other hand, a recent surveillance report on HAIs by the National Healthcare Safety Network reported a 9% prevalence of *Klebsiella pneumoniae* amongst hospitalized adult patients ¹⁷ in European populations. This is a marginal increase considering a prior survey in the same population that reported an 8% prevalence of *Klebsiella pneumoniae* between 2011 and 2014²⁶. A similar trend is evident in European paediatric intensive care units that recorded a 9% prevalence of *Klebsiella pneumoniae* between 2011 to 2014²⁷.

Surveillance and resistance patterns

Clostridium difficile

Various approaches are used in the surveillance of *Clostridium difficile* infections and resistance patterns. These methods include genomic analysis ^{28,29}, polymerase chain reaction (PCR) ribotyping ^{30–32}, as well as molecular characterization of isolates ^{33–36}. Based on PCR-ribotyping, the resistant strains of *Clostridium difficile* examined by previous studies are mainly associated with ribotypes 012, 017, 018, 027, 053. 078, 176, and 630 ^{37–43}.

Literature on the resistance patterns of *Clostridium difficile* reveals reduced susceptibility of the bacteria to fluoroquinolones ^{40,44}, Macrolide-Lincosamide-Streptogramin B (MSLB) antibiotics ³¹, erythromycin ⁴⁵, clindamycin ⁴⁶, moxifloxacin ⁴⁷, rifampicin ⁴⁸, rifamycin ⁴⁹, metronidazole ^{50,51}, cadazolid ⁵², linezolid ⁵³, imipenem ³⁸, vancomycin ⁵⁴, ⁵⁵, ⁵⁶, and fidaxomicin ⁵⁴. Studies have also shown that various factors contribute to *Clostridium difficile* resistance. These factors include wrong use of antibiotics ⁵⁷, intestinal microbiota ⁵⁸, overuse of antibiotics such as rifampicin in TB patients ⁴⁸, immunosuppression ^{59,60}, gut dysbiosis ⁶¹, and cancer treatment ⁶¹.

Klebsiella pneumoniae.

The risk factors for *Klebsiella pneumonia* resistance include hospitalization, recent antibiotics use, surgery, and renal failure ^{62,63} in adults whereas paediatric patients with a history of low birth weight, prolonged hospitalization, and prematurity are more susceptible to the resistant strains of *Klebsiella pneumoniae* ⁶⁴. The surveillance methods for *Klebsiella pneumoniae* include Whole Genome Sequencing (WGS), Metagenomic Sequencing ^{65–68}, isothermal DNA assays ⁶⁹, and pulsed field gel electrophoresis ⁷⁰.

There is demonstrable evidence of *Klebsiella pneumoniae* resistance against carbapenem, imipenem, meropenem, aminoglycosides, amoxicillin, amikacin, ampicillin/piperacillin, ciprofloxacin, levofloxacin, amoxicillin-clavulanic acid, trimethoprim-sulfamethoxazole, cefepime, colistin, nitrofurantoin, amikacin, aztreonam, ceftazidime, and tigecycline ^{71–80}.

Some of the resistant strains of *Klebsiella pneumoniae* include the clones ST11, ST29, ST101, ST258, which is also less susceptible to chlorhexidine cleaning, ST307, ST347, ST607-K25, ST661, ST1224, ST2558, ST3006^{66,81–86}. Whereas, the genes associated with resistance in *Klebsiella pneumoniae* species include *bla*_{IMP□4}, bla(OXA-48), OXA-33, TEM-1, and SHV-11, bla(KPC), bla(VIM), bla(NDM), wcaG, rmpA , intl1, blaCTX-M-15, qnrS1, qnrB1, aac(6')-Ib, aac(6')-Ib-cr, vagCD, *traT*, ccdAB, bla(CTX_M_1), bla(TEM), bia(OXA-1), *fyuA*, or *cnf*-1, and bla(SHV)^{73,81,95,87–94}.

Rationale

Antimicrobial resistance (AMR) represents a public health emergency of global magnitude with the resultant mortality rate projected at 10 million fatalities by 2050 ⁹⁶. The cost of treating resistant microorganisms has also significantly risen with evidence from the United States revealing a twofold increase between 2002 and 2015 ⁹⁷. According to the World Health Organization, antimicrobial resistance is a preventable consequence of antibiotics' misuse and overuse arising from a malfunctioned primary healthcare system ⁹⁸. The overuse of antibiotics is largely a prescription behaviour problem as healthcare professionals easily prescribe broad spectrum antibiotics without confirmatory laboratory tests causing the over flaring of *Clostridium difficile*. According to an England based study, the proportion of inappropriate antibiotics prescriptions in primary care trusts ranges between 8% and 23% ⁹⁹.

There is an urgent need to reduce the burden of AMR through multi-level approaches aimed at curbing transmission of multi-drug resistant organisms (MDROs), and optimizing the appropriate use of antibiotics. Although some efforts have been made to mitigate AMR ¹⁰⁰ including antimicrobial policies, the problem seems to persist given the high rates of inappropriate prescriptions ^{99,101}. Interventions for reducing transmission of MDROs have been encouraged and these are broadly categorized into horizontal measures and vertical measures ¹⁰². The horizontal measures include pathogen non-specific strategies such as hand hygiene and environmental cleaning employed in disrupting the transmission ¹⁰². The vertical measures are pathogen-specific and may include universal or targeted screening on admission for hospital care ¹⁰³. Additional strategies such as developing new antibiotics and exploring the possibility of effective vaccines could also potentially resolve the AMR issue ⁸. Considering the potential implications, curbing the human-to-human transmission of pathogens and optimizing the use of antimicrobials appear to be practicable in most healthcare settings.

By focussing on *Clostridium difficile* and *Klebsiella pneumoniae*, we explored the widely researched topic of AMR with specific focus on the effectiveness of interventions targeting the drug resistant pathogens. Our preliminary exploration of literature retrieved three scoping reviews on antimicrobial misuse and interventions to address AMR. These scoping reviews had quite specific foci/targets and none addressed either *Clostridium difficile* or *Klebsiella pneumoniae*. The first scoping review ¹⁰⁴ was limited to dentistry settings; the second ¹⁰⁵ examined literature on knowledge, attitudes, and practices amongst community pharmacists and the third focussed on supply related interventions for reducing prescription of antibiotics in low-to-middle-income countries ¹⁰⁰. To expand the breadth of these reviews, we therefore scoped recent evidence on interventions for reducing *Clostridium difficile* and *Klebsiella pneumoniae* transmissions within wide ranging healthcare settings. Notably, we

examined the volume of research on antimicrobial stewardship interventions aimed at optimizing antimicrobial agents against *Clostridium difficile* and *Klebsiella pneumoniae*.

Research objectives

This scoping review addresses the question "What is the breadth of the available literature on interventions for reducing *Clostridium difficile* and *Klebsiella pneumoniae* transmission in healthcare settings?" and has the following objectives:

- To identify existing literature on the interventions for reducing healthcare associated *C. difficile* and *Klebsiella pneumoniae* transmission.
- To describe the key outcomes for interventions targeting *Clostridium difficile* and *Klebsiella pneumoniae* in healthcare settings
- 3. To assess the extent to which behavioural theory has been applied in interventions targeting *Clostridium difficile* and *Klebsiella pneumoniae* in healthcare settings

Methods

Various methods exist for reviewing existing literature on research topics of interest namely systematic reviews, meta-analyses, and scoping reviews. Systematic reviews and meta-analyses are generally more applicable in contexts where the research question is narrow and focussed whereas scoping reviews are most preferable with broader research questions ¹⁰⁶ and where broadly mapping the literature for purposes of identifying main concepts, theoretical perspectives, available evidence, and gaps in literature is required ¹⁰⁷. Considering the broad nature of the present topic namely antimicrobial stewardship interventions in healthcare settings, the scoping review approach was justified.

Arksey and O'Malley proposed a five-stage framework for undertaking scoping reviews ¹⁰⁸. This staged approach is considered rigorous and enhances the transparency of the findings as sufficient detailing of the procedures employed at each stage allow for replication. The use

of explicit approaches improves the reliability of the study and highlights the robustness of the employed methods ¹⁰⁹. The stages for conducting a scoping review entail the identification of a research question, identifying applicable studies, selecting studies for review, data charting, and collation of results, summarising, and compilation of reports ¹⁰⁸.

Research protocol

Scoping review guidelines emphasize the importance of providing information regarding the protocol for purposes of improving transparency and minimising the risk for duplication ¹¹⁰. The protocol for this scoping review is available on Open Science Framework (OSF) registries via <u>https://osf.io/nk7wf</u>.

This scoping review was undertaken and reported in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-analysis Protocols (PRISMA-P) guidelines ¹¹⁰. This approach integrates the five-stages proposed by Arksey and O'Malley with regard to the conduct of scoping reviews ¹⁰⁸. Subsequently, members of the research team reviewed this protocol prior to its online registration.

Eligibility criteria

The review included peer-reviewed quantitative and/ experimental studies that either focus on reducing healthcare associated transmission of *C. diff* and *Klebsiella pneumoniae*, or on optimizing the use of antibiotics in relation to the aforementioned pathogens. Studies involving human participants published in English over the last ten years were included in this scoping review. Outbreak investigations that did not report any outcomes on the transmission of *C. diff* or *K. pneumoniae* as were studies that explored new diagnostic devices or therapeutic interventions with no outcomes on the hospital transmission of *C. diff* or *Klebsiella pneumoniae*. Table 1 below summarizes the eligibility criteria that was used to screen the retrieved articles.

Table 1: Eligibility criteria

	Proposed criteria	Refined criteria
Population/	Healthcare facilities	Healthcare facilities
Setting		
Intervention/	AMS interventions for <i>C</i> .	Optimizing use of antimicrobials or curbing
Exposure	diff or Klebsiella	transmission of C. diff and/ or Klebsiella
	pneumoniae	pneumoniae
Comparison	No intervention	No intervention
Outcome	Control of <i>C</i> . <i>diff</i> and/ or	Appropriate use of antimicrobials
	Klebsiella pneumoniae	Reduced risk/ transmission of C. diff and/ or
		Klebsiella pneumoniae
Study designs	All study designs	Observational studies, quasi-experimental
		studies, randomised controlled trials (RCTs)

Information sources

It is recommended that the search for existing literature should be undertaken comprehensively across various platforms in order to realise the purpose of a scoping review ^{108,110,111}. For purposes of this review, the search for literature spanned across electronic databases accessible through the Bangor University library search engine, bibliographies, key journals, and websites for relevant organisations.

The specific databases searched included MEDLINE via EBSCO*host*, PubMed Open Access via NCBI, Web of Science Core Collection, and CINAHL Plus via EBSCO*host*. The institutional databases explored for literature search included the World Health Organisation, the British Society for Antimicrobial Chemotherapy, as well as the National Institute for Health Research.

Literature search

The search for sources was undertaken with the assistance of the Bangor University librarian. Appendix 1 provides details of the search strategy applied across the databases.

Study selection

Two reviewers (BO and JH) independently applied the inclusion and exclusion criteria on the retrieved articles for inclusion in this review. Full articles for studies that provided a best fit to the central research question were retrieved and the reviewers read the full texts to determine their inclusion in the review. A mechanism for discussing disagreements with a third reviewer (VM) and consensus building was in place.

Data charting

The data extraction form should be as comprehensive as possible for the charting of relevant data from the identified evidence sources ^{108,111}. Existing guidelines also recommend detailing the process of developing, calibrating the charting form, the charting process, as well as the resolution of disagreements ¹¹⁰. It is also important to update the charting form iteratively with descriptions of any revisions for improved transparency.

The research team developed a form for abstracting data in order to capture all the relevant variables from the identified sources. The standardized form allowed for extraction of the main study characteristics as well as the specific metrics relevant to the central research question of this scoping review. The form was subjected to preliminary calibration to ensure its accuracy, consistency, and reliability.

The data items extracted from each study included the reference, the study type, the study objectives, population or setting, country, the intervention, intervention duration, healthcare workers involved, outcome measures or findings, and the conclusions of the study.

Results collation, summary, and report compilation

The guidelines for scoping reviews recommend that reviewers provide a comprehensive overview of the retrieved evidence 108 . This involves organising the evidence based on the identified themes and giving a narrative account as opposed to synthesising the results. Scoping reviews are useful in mapping relevant concepts that underpin a phenomenon of interest while aggregating the existing evidence on the topic 110,111 . The subsequent sections provide a narrative synthesis of the existing literature on AMS interventions for *C*. *diff* and *Klebsiella pneumoniae* as well as any apparent gaps in line with the central review question.

Results

Selection of sources of evidence

Figure 1: PRISMA flow diagram

The search for literature across the identified databases (MEDLINE, CINAHL, PubMed, and Web of Science) retrieved 808 records whereas an additional six titles were identified through bibliographic searches. Following de-duplication, 613 titles were screened where 493 records were considered no to meet the inclusion criteria. The abstracts of the remaining 120 records were further screened leading to the exclusion of 44 articles. Full text reading was done for 76 articles leading to the exclusion of 42 articles and inclusion of 34 articles.

Characteristics of selected studies

16 studies (see Table 2) focussed on *Clostridium difficile*^{112,113,122–127,114–121} and 18 studies (see Table 3) focussed on *Klebsiella pneumoniae*^{128,129,138–145,130–137}. The studies varied in their designs with majority being quasi-experiments (31 articles). The other study designs included cohort studies (2 articles) and a secondary analysis of a randomized controlled trial (1 article). 27 of the studies were undertaken prospectively whereas 7 studies followed a retrospective approach.

32.4% (11) of the studies were conducted in the United States of America ^{115,118,141,146,119–122,124,126,127,136} whereas two studies each are based in Canada ^{112,114} and Greece ^{135,137}. Four of the retrieved studies are from Italy ^{113,117,134,142} while Israel ^{125,130,133} and China ^{129,139,140} had three studies each. Lastly, the selected articles included one study each from Japan ¹²³, United Kingdom ¹¹⁶, South Africa, Denmark ¹³¹, Brazil ¹³², France ¹³⁸, South Korea ¹⁴³, Hungary ¹⁴⁴, and the Netherlands ¹⁴⁵.

Most of the studies (30 articles) were single site studies whereas four studies are multi-site experiments ^{112,119,121,127}. There were variations in the study populations with three studies on *Klebsiella pneumoniae* involving neonates in the neonatal intensive care unit ^{140,141,144} whereas 31 studies involved adult subjects admitted for care within the hospital

settings. All the studies on *Clostridium difficile* were based on adult populations probably due to the evidence supporting advanced age as a risk factor for CDIs while three interventions targeting *Klebsiella pneumonia* involved neonatal populations ^{140,141,144}.

Synthesis of results

Interventions

The interventions varied across the included studies and either targeted the use of antimicrobial agents or interrupting the transmission of *Clostridium difficile* and *Klebsiella pneumoniae* using additional IPC measures within the hospital environments. The duration of interventions varied across the studies from three weeks ¹⁴¹ up to six years ¹⁴³. The interventions involved various cadres of professionals namely infectious disease (ID) experts ^{113,114,124,125,139}, consultants ^{117,130,139,141,145}, nurses ^{113,125,140,141,144,145,127,128,130,133,134,137-139}, doctors ^{116,123-125,137}, physicians ^{112,113,138,139,141,143,145,115,117,118,122,124,127,128,133}, pharmacists ^{112,115-117,122,124-126}, epidemiologists ^{125,128,136,141}, laboratory personnel ¹³³, microbiologists ^{124,133,138,141}, and support staff (cleaners, caregivers, housekeepers, paramedics, porters, environmental officers) ^{125,127,130,134,141,144,145}. Additional cadres involved include managers ^{116,141}, infection control staff ^{118,123,127,128,130,133,134,140,141}, unspecified clinicians/ medical personnel ^{118,119,138,142-144,120,121,123,132,134-137}, quality improvement (QI) staff ¹²⁴, patients ¹³⁰, public health (PH) staff ¹³³, and patient visitors ¹⁴⁵. The bar graph below summarizes the proportions of studies that involved various health professionals.

Figure 2: Proportion of staff involvement across studies

Most of the interventions were multi-faceted involving the implementation of at least two strategies to achieve the intended outcomes as highlighted in Table 2. The strategies employed in interventions targeting *Clostridium difficile* included surveillance and/ or active screening ^{116,118,123}, alerts and notifications ^{118,123,126}, isolation precautions ^{118,123,125–127}, environmental disinfection ^{121,125,127}, audits and feedback ^{112,114,115,117,122–124}, antimicrobial policies and/ protocols ^{113,116,122,126}, care bundles ¹²⁷, staff education ^{113,114,116,122,125}, and specialised biocidal linen ^{119,120}. Table 2 below outlines the combination of these interventions across the identified studies.

								Refer	ences	6						
Interventions	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
Surveillance/ Screening					\checkmark		✓					✓				
Alerts and notifications							\checkmark					\checkmark			\checkmark	
Isolation precautions							~					✓		~	~	~
Environmental disinfection							1			✓				✓		✓
Audits and feedback			✓	✓		✓	1				✓	✓	✓			
Consultations		✓	✓													
Antimicrobial policies and/		\checkmark			\checkmark						✓				\checkmark	
protocols																
Care bundles																\checkmark
Staff education		\checkmark	\checkmark		\checkmark						✓			\checkmark		
Biocidal (Cu ₂ O) linen								✓	~							
Intervention duration (months)		18	18	12	16	18		8	27	27	16	12	13	24		22

Table	2:	Clostridium	difficile	interventions
-------	----	-------------	-----------	---------------

The commonest strategy targeting *Clostridium difficile* reported across seven studies involved the use of audits and feedback ^{112,114,115,117,122–124}. This entailed reviewing the

prescribed antibiotics by an antimicrobial pharmacist ^{112,114,115,117,122,124} or the infection control team ¹²³ and providing feedback to the prescriber for further action. In some instances, the audits were undertaken offsite using electronic records systems ^{114,115} and teleconferences. Audits were also combined with staff education sessions organised on identified gaps aimed at optimising the use of antimicrobials ^{114,122}. Some interventions combined the audits with restrictive antimicrobial policies and review of treatment protocols occasionally requiring approval prior to the use of a targeted antibiotic ¹²². Another intervention combined audits with screening patients and notifying physicians on detection of *C. difficile*, promptly isolating infected patients, and monitoring appropriate use of antibiotics with prompt feedback to the responsible doctors ¹²³.

Additional interventions with a component of staff education included bedside infectious diseases consultation ¹¹³, restrictive antimicrobial policies and protocols ^{113,116,125}, and contact precautions ¹²⁵. Bedside consultations involved a part-time infectious diseases expert reviewing patients on antibiotic treatment three times a week and discussing the same with attending physicians ¹¹³. This was coupled with revising antimicrobial treatment protocols and educating staff on reducing the inappropriate use of antimicrobials ¹¹³. The second intervention involved educating prescribers coupled with restriction and eventual abolishment of two broad-spectrum antibiotics namely ceftriaxone and ciprofloxacin from wards ¹¹⁶. Lastly, an intervention undertaken in a geriatric hospital involved educating all healthcare workers on isolation precautions and environmental disinfection as well as policies restricting the use of antibiotics ¹²⁵.

Isolation precautions were also incorporated in other interventions including a multisite collaborative intervention involving an infection prevention bundle to encourage adherence to contact precautions and an environmental cleaning protocol ¹²⁷. The isolation precautions included nursing patients in a single room, hand washing at recommended times,

and the use of appropriate personal protective equipment namely gloves, and disposable aprons. Environmental decontamination entailed the use of appropriate decontamination agents to clean the patient environment and reduce the presence of *Clostridium difficile*. A single centre study combined isolation precautions with a computer generated real time notification system for toxigenic *C. difficile* results and a treatment protocol using vancomycin only or vancomycin and metronidazole ¹²⁶. The final study on isolation precautions also incorporated an automated system that tracked *C. difficile* results and triggered alerts on the patient's electronic records as well as automatically ordering for the appropriate isolation precautions thus aiding the healthcare personnel's actions ¹¹⁸.

Three standalone interventions targeted modifying the hospital environment and reduce the bioavailability of *Clostridium difficile*^{119–121}. A multisite randomised controlled trial employed four disinfection strategies for environmental cleaning following the discharge of *C. difficile* and other MDROs patients ¹²¹. These strategies included standard disinfection with an ammonium solution or 10% hypochlorite (bleach), standard disinfection with ultraviolet (UV) light or bleach with UV light, bleach only, or UV light with bleach ¹²¹. Lastly, two quasi-experiments involved replacing hospital linen with coper oxide impregnated bedsheets, pillow cases, washcloths, and towels ^{119,120}. This is because of copper's biocidal activity on some drug resistant bacteria including *Clostridium difficile*.

Interventions targeting the containment or reduced transmission of *Klebsiella pneumoniae* included surveillance and/ or active screening ^{128,129,141,142,144,145,133–140}, alerts and notifications ^{128,130,131,133,135,136}, isolation precautions ^{128,130,141,142,144,133–140}, environmental decontamination ^{130,134,136,137,139–141}, antimicrobial audits and feedback ^{131,133,137,141}, specialist consultations ¹³⁴, antimicrobial policies and/ or protocols ^{128,131,132,144}, care bundles ¹³⁹, and staff and/ or patient education ^{130,131,137,141,142}.

		References																
Interventions	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145
Surveillance/ Screening	✓	✓				✓	✓	✓	✓	✓	✓	✓	✓	✓	✓		✓	✓
Alerts and notifications	\checkmark		✓	✓		~		~	✓									
Isolation precautions	~		✓			~	✓	~	✓	✓	✓	~	✓	✓	✓	✓	~	
Environmental			✓				✓		✓	✓		✓	✓	✓				
disinfection																		
Audits and feedback				\checkmark		✓				\checkmark				\checkmark		\checkmark		
Consultations							✓											
Antimicrobial policies	\checkmark			✓	✓												~	
and protocols																		
Care bundles												~						
Staff education and/			✓	✓						✓				✓		✓		
patient education																		
Intervention duration	36	14	48	36	24	14	2	36	6	17	4	24	8	<1	2	72	3	6
(months)																		

Table 3: Klebsiella pneumoniae interventions

The commonest strategy targeting *Klebsiella pneumoniae* appears to be surveillance or active screening and cultures to detect the presence of *K. pneumoniae*. One surveillance intervention involved the use of a flagging system for suspected patients at the emergency department, cohorting cases, sampling cultures from healthcare hands of personnel and the environment, and a policy restricting use of carbapenems ¹²⁸. Another multisite intervention combined routine screening of patients with mandatory isolation of confirmed cases including having dedicated staff looking after patients coupled with a requirement to notify all carbapenem resistant cases to public health authorities ¹³³. Similarly, a surveillance intervention in a 250-bed general hospital required adherence to isolation precautions and compulsory notification of public health authorities on identified cases ¹³⁵.

An outbreak containment intervention in an ICU setting employed active screening of patients, disinfection of the environment and respiratory equipment, and isolation precautions. One standalone intervention investigated the effectiveness of active screening of patients on the detection of *Klebsiella pneumoniae* in an ICU setting ¹²⁹ while another study tracked sporadic hospital outbreaks using whole genome sequencing ¹⁴⁵. An observational study relied on rectal swabs for the active surveillance of *Klebsiella pneumoniae* in a cancer

centre and a tertiary hospital ¹³⁶. Subsequently, the confirmed cases were promptly isolated requiring healthcare personnel's adherence to contact precautions and environmental cleaning protocols ¹³⁶. Other surveillance intervention similarly effected isolation precautions for confirmed cases ¹³⁸ combined with either environmental cleaning protocols, staff education, adherence audits, or a bathing protocol ^{137,138,140–142,144}. An intervention based in an Israeli medical centre rolled out isolation guidelines in combination with staff education, environmental cleaning protocols supported with a computerized system for flagging CRKP cases ¹³⁰. A multi-disciplinary intervention in a 510-bed Danish university hospital employed Kotter's eight stages of change by delivering staff training and use of notification systems to enhance isolation precautions, and appropriate use of antimicrobial agents ¹³¹. An antimicrobial stewardship intervention in a Brazilian tertiary care hospital examined the effectiveness of a restrictive antimicrobial policy on the use of carbapenems ¹³². Lastly, a south-Korean based study in a 900-bed tertiary university hospital examined the examined the effectiveness of enhanced contact isolation precautions on CRKP incidence. This was delivered through staff education, auditing prescriptions and discontinuing inappropriate antibiotics within 72 hours, and strict adherence to contact precautions including hand hygiene, single use gowns, and gloves.

Outcomes

The key outcome measures reported across the studies included consumption of targeted antimicrobials and/ or associated costs ^{112,113,132,114–117,122,123,128,131}, incidence of *Clostridium difficile* ^{112,113,123–125,127,114–117,119–122} or incidence and/ resistance rates of *Klebsiella pneumoniae* ^{128,129,144,130–134,137,139,143} as well as risk on other HCAIs ^{114,121,123,127,130,137,139}. Additional outcomes included containment of an outbreak of the targeted organisms ^{135,136,138,140–142,145}, adherence to isolation precautions ^{114,120,127,134–114,134}.

The use of antibiotics was measured in daily defined doses (DDD) per patient population before and after the intervention ^{112–114,116,117,122,123}. Occasionally, some interventions reported on the proportionate changes on the costs of antibiotics ^{114,117,124} as well as resistance rates. The risk measures for either *C. difficile* or *K. pneumoniae* as well as other HCAIs reported in number of cases per population before and after the intervention and converted to absolute risk (%). Another outcome measure reported by some studies was the proportionate reduction in treatment times, hours saved by healthcare workers per number of admissions, or proportionate reduction in the duration of hospital stay. Adherence to isolation precautions was measured based on the proportion of staff members that complied with hand hygiene guidelines, use of disposable aprons and gloves, and environmental cleaning. Lastly, mortality outcomes related to the number of deaths attributed to either *Clostridium difficile* or *Klebsiella pneumoniae*. The outcome measures for *Clostridium difficile* and *Klebsiella pneumoniae* interventions are summarised in Table 4 and Table 5 respectively.

Clostridium difficile

Antimicrobial use

Seven studies reported variations in the consumption of antimicrobial agents following the stewardship interventions ^{112,114,115,117,122–124}. The changes in antimicrobial use are reported in daily defined doses per 1000 patient days (DDD/1000PDs). Reduced use of antimicrobials ranged between 6.58 DDDs/1000 PDs and 310 DDDs/1000 PDs.

The largest absolute reduction in antimicrobial use of 310 DDs/1000PDs was reported from an intervention that involved audits and feedback systems ¹¹². However, this reduction was the least in proportionate terms (11%) compared to the largest proportional reduction in antimicrobials use of 79% after an intervention involving restrictive antimicrobial policies and staff education ¹¹⁶.

In terms of antimicrobial costs, the largest reduction in expenditure (54%) was reported from intervention involving half-hour monthly staff education sessions and audits of prescribed antibiotics using a structured electronic checklist ¹¹⁴. 679 patients from two internal medicine units in a tertiary care hospital were observed over an 18 months period ¹¹⁴. One study reported a 52% improvement in antimicrobial streamlining after undertaking weekly reviews of prescribed antibiotics combined with remote consultations with an infectious diseases pharmacist through teleconferencing ¹²⁴. The latter study was conducted in a 141-bed community hospital over 13 months ¹²⁴. None of the *C. difficile* targeting interventions reported on the resistance rates for specific antimicrobial agents following their implementation.

	References															
	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127
Key outcomes																
Antimicrobials use (DDD/1000PDs)	√310	↓200		46.58	↓124	↓141					√34	↓10.7				
Antimicrobials use (% reduction)	11	47	46		72.5-95	22					12	37				
Antibiotics cost (Ψ %)			↓54			↓24							√51			
Antimicrobials streamlining (%/week)													1 52			
Resistance rates																
CD risk/100,000 or/10000PDs (post-intervention)	\$	12		14	55	60			2.8	170	2.8	11	16	⇔		85
CD absolute risk (%)	\$	√67	√46	√83	√77	√31		√51	1 87	√5	√71	√36	√71	⇔		√37
Risk for HCAIs (AR)		↓25			17-25					÷		4				\downarrow
% reduction in time for start of treatment															64	
Time savings (hrs/1000 admissions)							√43									
Hospital stay																
Adherence to isolation precautions (%)									46							个95
Mortality		⇔														

Table 4: Summary of outcomes for Clostridium difficile interventions

DDD: Daily defined doses; PD: Patient days; CD: Clostridium difficile; HCAIs: Healthcare associated infections; AR: Absolute risk, \checkmark : Reduced \uparrow : Increases; \Leftrightarrow :

Remained the same; •: *Outbreak was contained.*

Risk for CDIs, other HCAIs, and associated mortality

Fourteen studies reported the impact of the interventions on the risk for CDIs or other healthcare associated infections ^{112,113,123–125,127,114–117,119–122}. The highest overall reduction of 83% in absolute risk for CDIs was reported from a 12-months audits and feedback intervention involving physicians and pharmacists and pharmacists in a 212-bed Massachusetts hospital ¹¹⁵. On the other hand, a 24-months multisite intervention amongst leukemia patients involving audits and feedbacks ¹¹² reported no impact on the risk of CDIs and associated mortality. Similarly, a second 24-months cross-sectional study involving geriatric patients from two Israeli hospitals that entailed staff education, environmental disinfection, and isolation precautions had no impact on CDIs ¹²⁵.

Regarding the effect of CDI interventions on other HCAIs, an antimicrobial stewardship intervention in a 150-bed spinal injury hospital involving bedside infectious diseases consultation, staff education, and antimicrobial policies reported a 25% absolute risk reduction for other HCAIs ¹¹³. This is also the only study that reported on CDI associated mortality whereby no differences were observed between the experimental and control groups ¹¹³. A multisite RCT investigating the effectiveness of four environmental disinfection strategies reported no effect on the risk of other HCAIs ¹²¹. A third study assessing the impact of intensified IPC precautions on MDROs implemented over twelve months in a 409-bed Japanese tertiary hospital simply indicated there was a reduction in the risk of other HCAIs ¹²³.

Two studies involving the use of biocidal linen impregnated with copper oxide reported contradictory findings which could be partly due to the differences in study settings. The first study involved six hospitals in both urban and rural settings with 1019 beds in total implemented over eight months (568,397 patient days) and reported a 51% reduction in the

risk for CDIs ¹¹⁹. The second study was undertaken in a single long-term care hospital over 27 months (29,342 patient days) reported an 87% increase in the risk of CDIs ¹²⁰. In the latter study, the researchers also acknowledged that study participants were never blinded possibly leading to the deterioration of contact precautions specifically hand hygiene that reduced by 6% ¹²⁰.

Adherence to isolation precautions

The highest improvement (95%) in adherence to isolation precautions was reported by a 22-months multisite (35 hospitals) intervention involving the use of an infection prevention bundle with isolation precautions and an environmental cleaning protocol ¹²⁷. On the other hand, an intervention involving the use of biocidal linen impregnated with copper oxide reported a 6% reduction in adherence to isolation precautions ¹²⁰ as previously discussed.

Time savings

Two studies reported outcomes related to time savings ^{118,126}. The first intervention involved treatment protocols for *C. difficile*, real-time computerized notifications of toxigenix *C. difficile results*, and isolation precautions. This was undertaken in a 433-bed adults medical center and recorded a 64% reduction in time prior to the initiation of appropriate antibiotics treatment ¹²⁶. The second study involving active surveillance, an alert system, and isolation precautions in a 410-bed hospital treating trauma, burns, and cancer patients reported a 43% reduction in care hours per 1000 admissions ¹¹⁸. There were no studies on *C. difficile* that assessed whether the interventions affected the length of hospital stay.

Klebsiella pneumoniae

Antimicrobials use

Three studies reported on antimicrobial use with regards to *Klebsiella pneumoniae* interventions ^{128,139,140}. One study involving a flagging system for confirmed cases, isolation precautions, and a carbapenems restriction policy in a 1000-bed tertiary university hospital simply indicated there was a reduction in the use of meropenem ¹²⁸. The second study employed Kotter's stages of change in a multi-disciplinary intervention involving staff education, notifications on prescription of restricted antibiotics and antimicrobial protocols in a 510-bed Danish hospital recorded a 75% reduction in the use of targeted antibiotics ¹³¹. The last study involving restrictive antimicrobial policies reported a 21% (12.9 DDDs/1000 PDs) reduction in the use of targeted antimicrobial agents ¹³². Four (22%) studies reported on the resistance rates for specific antibiotics associated with *K. pneumoniae resistance* either as a reduction ^{129,143} or no effect ^{132,136} on the resistance rates with no absolute figures on the same. No intervention was associated with a reciprocal increase in the antibiotics resistance rates of *Klebsiella pneumoniae*.

]	Refer	ences								
	128	129	130	131	132	133	134	135	136	137	138	139	140	141	142	143	144	145
Key outcomes																		
Antimicrobial use (DDD/1000PDs)	\checkmark				13													
Antimicrobials use (% reduction)				√75	↓21													
Antibiotics cost (Ψ %)																		
Antimicrobials streamlining (%/week)																		
Resistance rates		\downarrow							•							$\mathbf{+}$		
KP risk/100,000 or/10000PDs	18		0.5	23%		\mathbf{A}	56		\downarrow	\downarrow	•	28				0.9	\checkmark	
KP absolute risk (%)	√ 97		↓ 92	↓ 17		12	12	•	•	10	•		•	•	•	46	\checkmark	•
Risk for HCAIs (AR)			↓55							个59		↓ 84						
% reduction in time for start of Rx				·														
Time savings (hrs/1000 admissions)																		
Hospital stay (%PDs)																	↓15	
Adherence to isolation precautions (%)							↑	\uparrow	↑				\uparrow			↑ 35	↑ 29	
Mortality																		

Table 5: Summary of outcomes for Klebsiella pneumoniae interventions

DDD: Daily defined doses; PDs: Patient days; HCAIs: Healthcare associated infections; AR: Absolute risk, \checkmark : Reduced \uparrow : Increases; \Leftrightarrow : Remained the same; •:

Outbreak was contained

Risk for Klebsiella pneumoniae, other HCAIs, and associated mortality.

Seven studies reported on containment of Klebsiella pneumoniae outbreaks with no outcomes on the residual risk for the bacteria ^{135,136,138,140–142,145}. Two interventions involving active surveillance through screening ¹²⁹ and staff education combined with isolation precautions ¹⁴³ reported a reduction in the resistant rates of Klebsiella pneumoniae. The first intervention was conducted over 14 months in an ICU setting in China ¹²⁹ while the second intervention was undertaken in a 900-bed tertiary hospital in South Korea ¹⁴³. A 24-months intervention in a tertiary hospital (200 beds) involving restriction of group 2 carbapenems for gram negative bacteria recorded no changes in the resistance rates of Klebsiella ¹³².

Regarding the absolute risk of Klebsiella pneumoniae, the largest risk reduction (97%) the 36-months hospital wide intervention described above aimed at eradicating carbapenem resistant *Klebsiella pneumoniae* (CRKP)¹²⁸. This intervention involved physicians, epidemiologists, nurses, and the infection control team. The lowest reported reduction in the absolute risk of *Klebsiella pneumoniae* was from a 17-months multi-faceted intervention that entailed active surveillance, isolation precautions, audits and feedback, environmental cleaning, and staff education¹³⁷.

Another intervention involving staff education, isolation, environmental cleaning, computerized flagging of cases reported a 55% reduction in other HCAIs ¹³⁰ while a second intervention comprising of screening, isolation, environmental disinfection, and care bundles reported an 84% reduction in other HCAIs over a 48 months period ¹³⁹. On the other hand, one study reported a 59% rise in the risk of other HCAIs following an intervention that involved screening, isolation, environmental decontamination, audits, and education over a 17 months duration ¹³⁷. The intervention involved 601 patients retrospectively and 250 patients prospectively in the solid organ transplant (SOT) department. The increase in the

incidence of other carbapenem resistant organisms was attributed to the intrahospital transfer of carriers to the SOT department and the subsequent transfer of post-surgical patients to the ICU where they were allegedly colonized by bacteria ¹³⁷. There are no studies that reported on the impact of interventions on mortality associated with *Klebsiella pneumoniae* in healthcare settings.

Hospital stay and adherence to contact precautions

Only one study recorded outcomes associated with hospital stay whereby there was a 15% reduction in the hospitalization duration that was also associated with 29% increase in adherence with contact precautions ¹⁴⁴. This three-months intervention involved 355 patients in a 17-bed neonatal intensive care unit in Hungary ¹⁴⁴. Another six years intervention involving staff education also reported a 35% improvement in adherence to contact precautions ¹⁴³. Lastly, four additional studies also reported an improvement in adherence to contact precautions although this was not reported in numerical values ^{134–136,140}.

Discussion

Summary of evidence

In this scoping review, we identified studies on antimicrobial stewardship interventions for *Clostridium difficile* and *Klebsiella pneumoniae* in healthcare settings published between 2010 and 2019. The first set of interventions focussed on optimal use of antimicrobial agents and included restrictive antimicrobial policies and treatment protocols, specialists' consultations, notifications and alert systems, as well as audits and feedback (also referred to as academic detailing). The second set of interventions aimed at curbing the healthcare associated transmission of *Clostridium difficile* and *Klebsiella pneumoniae* included surveillance and active screening, isolation precautions, environmental disinfection,

use of care bundles, and education of staff and or patients. There was an additional intervention specific to *Clostridium difficile* namely the use of biocidal linen impregnated with copper oxide which can be grouped as part of the environmental modification measures.

We propose the abbreviation ESCAPE-BIN (Education, Surveillance/Screening, Consultations, Audits, Policies and Protocols, Environmental measures, Bundles of care, Isolation, and Notifications or alerts) to denote these cross-cutting interventions for disrupting the transmission cycle of *Clostridium difficile* and *Klebsiella pneumoniae* in healthcare settings. As discussed previously discussed in this paper, *Clostridium difficile* and *Klebsiella pneumoniae* belong to the wider group of ESKAPE pathogens with common modes of patient-to-patient transmission in healthcare settings such as contact transmission by healthcare workers. The findings above also show that interventions targeting either *Clostridium difficile* and *Klebsiella pneumoniae* have a significant impact on the health care associated risk of other ESKAPE pathogens with similar modes of transmission. As such, strategies like improving adherence to contact precautions targeting any of the organisms could potentially reduce the spread of other pathogens within the same setting. The acronym **ESCAPE-BIN** may therefore be applicable in denoting these interventions for limiting the healthcare transmission of ESKAPE pathogens.

Our review found that most interventions targeting *Clostridium difficile* tend to integrate a component of restrictive antimicrobial policies or treatment protocols. On the other hand, interventions targeting *Klebsiella pneumoniae* mainly incorporated screening, isolation precautions, or environmental disinfection as core strategies. This is also evident in the key outcomes as reported from interventions targeting the two organisms based on the reviewed studies. The identified key outcomes included antimicrobial use, resistance rates, risk reduction, adherence to contact precautions, hospital stay, and time savings. Based on the findings above, it is notable that majority (56%) of the interventions targeting *Clostridium*

difficile aimed at reducing the use of antimicrobial agents. This is consistent with available evidence that demonstrates the inappropriate use of antimicrobial agents as a key risk factor for CDIs. Recent studies have shown that reducing the prescription of antimicrobials in outpatient settings can potentially reduce the incidence of CDIs in both healthcare and community settings ^{147,148}. On the other hand, only 16% of the interventions targeting *Klebsiella pneumoniae* reported an impact on the use of antimicrobial agents as summarised in the findings above.

The impact of the interventions on the risk of infection was reported across the reviewed studies except for seven (39%) studies on *K. pneumoniae* that only focused on outbreak containment. Notably, the largest (97%) reduction in the absolute risk for acquiring the aforementioned organisms was reported from a multifaceted intervention targeting *Klebsiella pneumoniae* that involved surveillance, contact precautions, isolation, notification systems, and antimicrobial policies ¹²⁸. In addition, the researchers also observed that interventions targeting *Klebsiella pneumoniae* generally appear to impact more on the risk of other HCAIs when compared with interventions targeting *Clostridium difficile*. An intervention involving surveillance, contact precautions, care bundles, and environmental decontamination recorded the highest reduction in absolute risk for other HCAIs ¹³⁹. This could possibly be due to their main focus on modifying behaviours of healthcare personnel as opposed to primarily prescription behaviours as the case is evident with *Clostridium difficile* interventions.

Although most of the interventions required changes in the behaviours of healthcare personnel in breaking the transmission cycle of targeted microorganisms, there was limited evidence on the application of behaviour-based strategies to realise this objective. Only a single study incorporated Kotter's stages of behaviour change ¹³¹ and recorded the second

largest (75%) sustained reduction in antimicrobials use over a three years period whereas the remainder of the studies were devoid of behavioural approaches.

Traditionally, health interventions such as promoting handwashing have largely relied on educational strategies to modify people's behaviours with no attention to the underlying factors that influence people's behaviours. On the contrary, it has become increasingly evident that providing education alone is less efficacious and does not guarantee positive behaviour change ¹⁴⁹. This argument is further reinforced by recent evidence that demonstrates the potential effectiveness of behavioural approaches for improved outcomes from health interventions ^{149–151}. As such the apparent limited application of behavioural theory in the studies reviewed under this scoping review represents a gap that warrants further exploration.

We also observed that physicians were the most involved cadre of health professionals in interventions targeting healthcare transmission of *Clostridium difficile* and *Klebsiella pneumoniae*. Almost half of the interventions in the present study involved physicians which was slightly higher than nurses (44%) whereas support staff including care workers participated in nearly one third of the interventions. In healthcare settings, physicians are amongst the least proportionate healthcare workers and their contact with patients may be less frequent compared to nurses and carers looking after patients round the clock. Consequently, it is also worth exploring whether proportionate variations in the cadres involved the above-mentioned interventions influence the key outcomes.

Finally, this review established a paucity of evidence on the application of care bundles and specialist consultations in mitigating the healthcare associated transmission of *Clostridium difficile* and *Klebsiella pneumoniae*. In addition, there was limited evidence on the effect of interventions on adherence to antimicrobial treatment protocols as well as

isolation and contact precautions targeting the *Clostridium difficile* and *Klebsiella pneumoniae*.

Limitations

There are some limitations to this scoping review. In the first place, the study population and settings of included articles were very diverse and no adjustments were undertaken to account for these differences. Secondly, the researchers did not take into account the duration of the specific interventions undertaken to mitigate *Clostridium difficile* and *Klebsiella pneumoniae* in healthcare settings. Lastly, quality assessment was not undertaken for the included studies because the main purpose of this review was basically mapping out potential sources of evidence on the topic of interest.

Conclusions

Antimicrobial resistance represents a global threat requiring urgent measures to protect lives. Reducing the burden of AMR entails a host of multi-level approaches aimed at curbing transmission of the resistant pathogens, and optimizing the use of antibiotics. In this review, we identified the antimicrobial stewardship as well as HCAIs control interventions targeting *Clostridium difficile* and *Klebsiella pneumoniae*. These interventions include Education, Surveillance/Screening, Consultations, Audits, Policies/Protocols, Environmental disinfection, Bundles, Isolation, and Notifications or alerts (ESCAPE-BIN). The key outcomes for the aforementioned interventions include antimicrobial use, cost reductions, resistance rates, risk of infection, time savings, hospital stay, as well as adherence to contact precautions and protocols. There is a further need for investigations the feasibility of behaviour-based approaches in improving adherence of health workers to interventions targeting *Clostridium difficile* and *Klebsiella pneumoniae*.

References

- Mohr, K. I. History of antibiotics research. *Curr. Top. Microbiol. Immunol.* 398, 237– 272 (2016).
- Clardy, J., Fischbach, M. A. & Currie, C. R. The natural history of antibiotics. *Current Biology* vol. 19 (2009).
- Fleming, A. On the antibacterial action of cultures of a penicillium, with special reference to their use in the isolation of B. influenzae. *Br. J. Exp. Pathol.* 10, 226–236 (1929).
- Waksman, S. What is an Antibiotic or an Antibiotic Substance? *Mycologia* 39, 565– 569 (1947).
- Houbraken, J., Frisvad, J. C. & Samson, R. A. Fleming's penicillin producing strain is not Penicillium chrysogenum but P. rubens. *IMA Fungus* 2, 87–95 (2011).
- Zaffiri, L., Gardner, J. & Toledo-Pereyra, L. H. History of antibiotics. from salvarsan to cephalosporins. *Journal of Investigative Surgery* vol. 25 67–77 (2012).
- Klein, E. Y. *et al.* Global increase and geographic convergence in antibiotic consumption between 2000 and 2015. *Proc. Natl. Acad. Sci. U. S. A.* 115, E3463– E3470 (2018).
- Huttner, A. *et al.* Antimicrobial resistance: A global view from the 2013 World Healthcare-Associated Infections Forum. *Antimicrobial Resistance and Infection Control* vol. 2 (2013).
- Légaré, F. *et al.* Training family physicians in shared decision-making to reduce the overuse of antibiotics in acute respiratory infections: A cluster randomized trial. *CMAJ* 184, (2012).

- Alumran, A., Hou, X. Y. & Hurst, C. Assessing the overuse of antibiotics in children in Saudi Arabia: Validation of the parental perception on antibiotics scale (PAPA scale). *Health Qual. Life Outcomes* 11, (2013).
- Martin, M. J., Thottathil, S. E. & Newman, T. B. Antibiotics overuse in animal agriculture: A call to action for health care providers. *American Journal of Public Health* vol. 105 2409–2410 (2015).
- World Health Organization. WHO The top 10 causes of death. 1–7
 https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (2018).
- Gasser, M., Zingg, W., Cassini, A. & Kronenberg, A. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in Switzerland. *The Lancet Infectious Diseases* vol. 19 17–18 (2019).
- Zarb, P. et al. European Centre for Disease Prevention and Control. Surveillance report - Point prevalence survey of healthcareassociated infections and antimicrobial use in European acute care hospitals. Eurosurveillance vol. 17 (2012).
- Antonioli, P. *et al.* A 2-year point-prevalence surveillance of healthcare-associated infections and antimicrobial use in Ferrara University Hospital, Italy. *BMC Infect. Dis.* 20, (2020).
- Cassini, A. *et al.* Burden of Six Healthcare-Associated Infections on European Population Health: Estimating Incidence-Based Disability-Adjusted Life Years through a Population Prevalence-Based Modelling Study. *PLoS Med.* 13, (2016).
- Weiner-Lastinger, L. M. *et al.* Antimicrobial-resistant pathogens associated with pediatric healthcare-associated infections: Summary of data reported to the National Healthcare Safety Network, 2015-2017. *Infect. Control Hosp. Epidemiol.* 41, 19–30

(2020).

- Baptista, A. B., Ramos, J. M. M., das Neves, R. R., de Souza, D. F. & Pimenta, R. S. Diversity of environmental and patients bacteria in the Hospital Geral de Palmas-TO. *J. BIOENERGY FOOD Sci.* 2, 160–164 (2015).
- Singh, N. P., Rani, M., Gupta, K., Sagar, T. & Kaur, I. R. Changing trends in antimicrobial susceptibility pattern of bacterial isolates in a burn unit. *BURNS* 43, 1083–1087 (2017).
- Gundogdu, A., Kilic, H., Ulu-Kilic, A., Aydin, G. & Alp, E. Epidemiological Features of Nosocomial Bloodstream Infections in Pediatric Patients. *KLIMIK J.* 29, 29–35 (2016).
- Liu, S., Wang, M., Zheng, L. & Guan, W. Antimicrobial Resistance Profiles of Nosocomial Pathogens in Regional China: A Brief Report from Two Tertiary Hospitals in China. *Med. Sci. Monit.* 24, 8602–8607 (2018).
- 22. Flores-Treviño, S. *et al.* Screening of biomarkers of drug resistance or virulence in ESCAPE pathogens by MALDI-TOF mass spectrometry. *Sci. Rep.* **9**, (2019).
- Spigaglia, P. *et al.* Multidrug resistance in European Clostridium difficile clinical isolates. *J. Antimicrob. Chemother.* 66, 2227–2234 (2011).
- Hooker, E. A. *et al.* Decreasing Clostridium difficile health care-associated infections through use of a launderable mattress cover. *Am. J. Infect. Control* 43, 1326–1330 (2015).
- Schulz-Stubner, S., Leonards, P. & Zimmer, P. Room Occupancy-Associated Transmission of MDRO, Clostridium difficile, or Norovirus: Results From a Room Surveillance Project. *Infection control and hospital epidemiology* vol. 38 1130–1131

(2017).

- Weiner, L. M. *et al.* Antimicrobial-Resistant Pathogens Associated with Healthcare-Associated Infections: Summary of Data Reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2011-2014. *Infect. Control Hosp. Epidemiol.* 37, 1288–1301 (2016).
- Lake, J. G. *et al.* Pathogen Distribution and Antimicrobial Resistance Among Pediatric Healthcare-Associated Infections Reported to the National Healthcare Safety Network, 2011–2014. *Infect. Control Hosp. Epidemiol.* **39**, 1–11 (2018).
- Lebel, S., Bouttier, S. & Lambert, T. The cme gene of Clostridium difficile confers multidrug resistance in Enterococcus faecalis. *FEMS Microbiol. Lett.* 238, 93–100 (2004).
- Adams, H. M., Li, X., Mascio, C., Chesnel, L. & Palmer, K. L. Mutations associated with reduced surotomycin susceptibility in Clostridium difficile and Enterococcus species. *Antimicrob. Agents Chemother.* 59, 4139–4147 (2015).
- Krutova, M., Matejkova, J., Drevinek, P., Kuijper, E. J. & Nyc, O. Increasing incidence of Clostridium difficile ribotype 001 associated with severe course of the infection and previous fluoroquinolone use in the Czech Republic, 2015. *Eur. J. Clin. Microbiol. Infect. Dis.* 36, 2251–2258 (2017).
- Solomon, K. *et al.* PCR ribotype prevalence and molecular basis of macrolidelincosamide-streptogramin B (MLSB) and fluoroquinolone resistance in Irish clinical Clostridium difficile isolates. *J. Antimicrob. Chemother.* 66, 1976–1982 (2011).
- Piepenbrock, E., Stelzer, Y., Berger, F. & Jazmati, N. Changes in Clostridium (Clostridioides) difficile PCR-Ribotype Distribution and Antimicrobial Resistance in a

German Tertiary Care Hospital Over the Last 10 Years. *Curr. Microbiol.* **76**, 520–526 (2019).

- Shoaei, P. *et al.* Molecular epidemiology of Clostridium difficile infection in Iranian hospitals 11 Medical and Health Sciences 1117 Public Health and Health Services. *Antimicrob. Resist. Infect. Control* 8, (2019).
- Berger, F. K. *et al.* Molecular characterization, toxin detection and resistance testing of human clinical Clostridium difficile isolates from Lebanon. *Int. J. Med. Microbiol.* 308, 358–363 (2018).
- Walkty, A. *et al.* Molecular characterization of moxifloxacin resistance from Canadian Clostridium difficile clinical isolates. *Diagn. Microbiol. Infect. Dis.* 66, 419–424 (2010).
- Tian, T. *et al.* Molecular Characterization of Clostridium difficile Isolates from Human Subjects and the Environment. *PLoS One* 11, e0151964 (2016).
- Dawson, L. F. *et al.* The analysis of para-cresol production and tolerance in Clostridium difficile 027 and 012 strains. *BMC Microbiol.* 11, 86 (2011).
- Isidro, J. *et al.* Imipenem Resistance in Clostridium difficile Ribotype 017, Portugal. *Emerg. Infect. Dis.* 24, 741–745 (2018).
- Barbanti, F. & Spigaglia, P. Characterization of Clostridium difficile PCR-ribotype
 018: A problematic emerging type. *Anaerobe* 42, 123–129 (2016).
- Carman, R. J. *et al.* Multidrug resistant Clostridium difficile ribotype 027 in southwestern Virginia, 2007 to 2013. *Anaerobe* 52, 16–21 (2018).
- 41. Krutova, M., Matejkova, J., Tkadlec, J. & Nyc, O. Antibiotic profiling of Clostridium difficile ribotype 176--A multidrug resistant relative to C. difficile ribotype 027.

Anaerobe 36, 88–90 (2015).

- Asojo, O. A. *et al.* Structural and biochemical analyses of alanine racemase from the multidrug-resistant Clostridium difficile strain 630. *Acta Crystallogr. Sect. D Biol. Crystallogr.* 70, 1922–1933 (2014).
- Tenover, F. C., Tickler, I. A. & Persing, D. H. Antimicrobial-resistant strains of Clostridium difficile from North America. *Antimicrob. Agents Chemother.* 56, 2929– 2932 (2012).
- Baghani, A. *et al.* Highly antibiotic-resistant Clostridium difficile isolates from Iranian patients. *J. Appl. Microbiol.* **125**, 1518–1525 (2018).
- 45. Ilchmann, C. *et al.* Comparison of resistance against erythromycin and moxifloxacin, presence of binary toxin gene and PCR ribotypes in Clostridium difficile isolates from 1990 and 2008. *Eur. J. Clin. Microbiol. Infect. Dis.* **29**, 1571–1573 (2010).
- 46. Nyc, O. *et al.* Two Clusters of Fluoroquinolone and Clindamycin-Resistant Clostridium difficile PCR Ribotype 001 Strain Recognized by Capillary Electrophoresis Ribotyping and Multilocus Variable Tandem Repeat Analysis. *Microb. Drug Resist.* 23, 609–615 (2017).
- Mena, A. *et al.* In vivo selection of moxifloxacin-resistant Clostridium difficile.
 Antimicrob. Agents Chemother. 56, 2788–2789 (2012).
- Obuch-Woszczatyński, P. *et al.* Emergence of Clostridium difficile infection in tuberculosis patients due to a highly rifampicin-resistant PCR ribotype 046 clone in Poland. *Eur. J. Clin. Microbiol. Infect. Dis.* 32, 1027–1030 (2013).
- 49. Dang, U. T. *et al.* Rifamycin Resistance in Clostridium difficile Is GenerallyAssociated with a Low Fitness Burden. *Antimicrob. Agents Chemother.* 60, 5604–5607

(2016).

- Lynch, T. *et al.* Characterization of a Stable, Metronidazole-Resistant Clostridium difficile Clinical Isolate. *PLoS One* 8, e53757 (2013).
- Pituch, H. *et al.* [Assessment of susceptibility to metronidazole and vancomycin of Clostridium difficile strains isolated between 1998-2002]. *Med. Dosw. Mikrobiol.* 55, 253–258 (2003).
- Caspers, P. *et al.* Different Resistance Mechanisms for Cadazolid and Linezolid in Clostridium difficile Found by Whole-Genome Sequencing Analysis. *Antimicrob. Agents Chemother.* 61, (2017).
- Candela, T., Marvaud, J.-C., Nguyen, T. K. & Lambert, T. A cfr-like gene cfr(C) conferring linezolid resistance is common in Clostridium difficile. *Int. J. Antimicrob. Agents* 50, 496–500 (2017).
- 54. Leeds, J. A., Sachdeva, M., Mullin, S., Barnes, S. W. & Ruzin, A. In vitro selection, via serial passage, of Clostridium difficile mutants with reduced susceptibility to fidaxomicin or vancomycin. *J. Antimicrob. Chemother.* 69, 41–44 (2014).
- Mascio, C. T. M., Chesnel, L., Thorne, G. & Silverman, J. A. Surotomycin demonstrates low in vitro frequency of resistance and rapid bactericidal activity in Clostridium difficile, Enterococcus faecalis, and Enterococcus faecium. *Antimicrob. Agents Chemother.* 58, 3976–3982 (2014).
- Cermak, P. *et al.* Strong antimicrobial activity of xanthohumol and other derivatives from hops (Humulus lupulus L.) on gut anaerobic bacteria. *APMIS* 125, 1033–1038 (2017).
- 57. Mendez, M. N. et al. Impact of a piperacillin-tazobactam shortage on antimicrobial

prescribing and the rate of vancomycin-resistant enterococci and Clostridium difficile infections. *Pharmacotherapy* **26**, 61–67 (2006).

- Britton, R. A. & Young, V. B. Role of the intestinal microbiota in resistance to colonization by Clostridium difficile. *Gastroenterology* 146, 1547–1553 (2014).
- Adams, D. J., Eberly, M. D., Goudie, A. & Nylund, C. M. Rising Vancomycin-Resistant Enterococcus Infections in Hospitalized Children in the United States. *Hosp. Pediatr.* 6, 404–411 (2016).
- Seril, D. N., Ashburn, J. H., Lian, L. & Shen, B. Risk factors and management of refractory or recurrent clostridium difficile infection in ileal pouch patients. *Inflamm. Bowel Dis.* 20, 2226–2233 (2014).
- Dicks, L. M. T., Mikkelsen, L. S., Brandsborg, E. & Marcotte, H. Clostridium difficile, the Difficult 'Kloster' Fuelled by Antibiotics. *Curr. Microbiol.* 76, 774–782 (2019).
- Jimenez, A., Alvarado, A., Gomez, F., Carrero, G. & Fajardo, C. Risk factors associated with the isolation of extended spectrum betalactamases producing Escherichia coli or Klebsiella pneumoniae in a tertiary care hospital in Colombia. *BIOMEDICA* 34, 16–22 (2014).
- Durdu, B. *et al.* Risk Factors Affecting Patterns of Antibiotic Resistance and Treatment Efficacy in Extreme Drug Resistance in Intensive Care Unit-Acquired Klebsiella Pneumoniae Infections: A 5-Year Analysis. *Med. Sci. Monit.* 25, 174–183 (2019).
- 64. Rettedal, S., Hoyland Lohr, I., Natas, O., Sundsfjord, A. & Oymar, K. Risk factors for acquisition of CTX-M-15 extended-spectrum beta-lactamase-producing Klebsiella pneumoniae during an outbreak in a neonatal intensive care unit in Norway. *Scand. J.*

Infect. Dis. 45, 54–58 (2013).

- 65. Malek, A. *et al.* Next-Generation-Sequencing-Based Hospital Outbreak Investigation Yields Insight into Klebsiella aerogenes Population Structure and Determinants of Carbapenem Resistance and Pathogenicity. *Antimicrob. Agents Chemother.* 63, (2019).
- Chi, X. *et al.* Genomic Analysis Of A KPC-2-Producing Klebsiella Pneumoniae ST11
 Outbreak From A Teaching Hospital In Shandong Province, China. *Infect. Drug Resist.* 12, 2961–2969 (2019).
- Mu, A. *et al.* Reconstruction of the Genomes of Drug-Resistant Pathogens for Outbreak Investigation through Metagenomic Sequencing. *MSphere* 4, (2019).
- Zautner, A. E. *et al.* Monitoring microevolution of OXA-48-producing Klebsiella pneumoniae ST147 in a hospital setting by SMRT sequencing. *J. Antimicrob. Chemother.* 72, 2737–2744 (2017).
- Renner, L. D. *et al.* Detection of ESKAPE Bacterial Pathogens at the Point of Care Using Isothermal DNA-Based Assays in a Portable Degas-Actuated Microfluidic Diagnostic Assay Platform. *Appl. Environ. Microbiol.* 83, (2017).
- Bernaschi, P. *et al.* Microbial tracking of multidrug-resistant Klebsiella pneumoniae isolates in a pediatric hospital setting. *Int. J. Immunopathol. Pharmacol.* 26, 463–472 (2013).
- Wu, D., Huang, X., Jia, C., Liu, J. & Wan, Q. Clinical Manifestation, Distribution, and Drug Resistance of Pathogens Among Abdominal Solid Organ Transplant Recipients With Klebsiella pneumoniae Infections. *Transplant. Proc.* 52, 289–294 (2020).
- Humayun, A. *et al.* Incidence of metallo-beta-lactamase-producing Klebsiella pneumoniae isolates from hospital setting in Pakistan. *Int. Microbiol.* 21, 73–78

(2018).

- Kryzhanovskaya, O. A. *et al.* Antibiotic Resistance and Its Molecular Mechanisms in Carbapenem-Nonsusceptible Klebsiellapneumoniae Isolated in Pediatric ICUs in Moscow. *Antibiot. i khimioterapiia = Antibiot. chemoterapy [sic]* 61, 22–26 (2016).
- Moghadas, A. J., Kalantari, F., Sarfi, M., Shahhoseini, S. & Mirkalantari, S.
 Evaluation of Virulence Factors and Antibiotic Resistance Patterns in Clinical Urine Isolates of Klebsiella pneumoniae in Semnan, Iran. *JUNDISHAPUR J. Microbiol.* 11, (2018).
- Aljanaby, A. A. J. & Alhasnawi, H. M. R. J. Phenotypic and Molecular Characterization of Multidrug Resistant Klebsiella pneumoniae Isolated from Different Clinical Sources i n Al-Najaf Province-Iraq. *Pakistan J. Biol. Sci. PJBS* 20, 217–232 (2017).
- Metan, G., Ilbay, A., Eser, O. K., Unal, S. & Zarakolu, P. A Silent Epidemic of Colistin- and Carbapenem-Resistant Enterobacteriaceae at a Turkish University Hospital. *Infect. Control Hosp. Epidemiol.* 38, 254–257 (2017).
- Aracil-Garcia, B. *et al.* Rapid increase in resistance to third generation cephalosporins, imipenem and co-resistance in Klebsiella pneumoniae from isolated from 7,140 blood-cultures (2010-2014) using EARS-Net data in Spain. *Enferm. Infecc. Microbiol. Clin.* 35, 480–486 (2017).
- Halaby, T. *et al.* Genomic Characterization of Colistin Heteroresistance in Klebsiella pneumoniae during a Nosocomial Outbreak. *Antimicrob. Agents Chemother.* **60**, 6837– 6843 (2016).
- 79. Zheng, B. et al. Genome sequencing and genomic characterization of a tigecycline-

resistant Klebsiella pneumoniae strain isolated from the bile samples of a cholangiocarcinoma patient. *GUT Pathog.* **6**, (2014).

- Fabbri, G. *et al.* Outbreak of ampicillin/piperacillin-resistant Klebsiella pneumoniae in a neonatal intensive care unit (NICU): investigation and control measures. *Int. J. Environ. Res. Public Health* 10, 808–815 (2013).
- Chen, D. *et al.* Co-outbreak of multidrug resistance and a novel ST3006 Klebsiella pneumoniae in a neonatal intensive care unit: A retrospective study. *Medicine* (*Baltimore*). 98, e14285 (2019).
- Liu, L. *et al.* Carbapenem-resistant Isolates of the Klebsiella pneumoniae Complex in Western China: The Common ST11 and the Surprising Hospital-specific Types. *Clin. Infect. Dis.* 67, S263–S265 (2018).
- Naparstek, L., Carmeli, Y., Chmelnitsky, I., Banin, E. & Navon-Venezia, S. Reduced susceptibility to chlorhexidine among extremely-drug-resistant strains of Klebsiella pneumoniae. *J. Hosp. Infect.* 81, 15–19 (2012).
- Piazza, A. *et al.* Identification of bla VIM-1 Gene in ST307 and ST661 Klebsiella pneumoniae Clones in Italy: Old Acquaintances for New Combinations. *Microb. Drug Resist.* 25, 787–790 (2019).
- Peltier, F. *et al.* Characterization of a multidrug-resistant Klebsiella pneumoniae ST607-K25 clone responsible for a nosocomial outbreak in a neonatal intensive care unit. *J. Med. Microbiol.* 68, 67–76 (2019).
- Mukherjee, S. *et al.* Molecular characterization of NDM-1-producing Klebsiella pneumoniae ST29, ST347, ST1224, and ST2558 causing sepsis in neonates in a tertiary care hospital of North-East India. *Infect. Genet. Evol.* 69, 166–175 (2019).

- Ferreira, R. L. *et al.* High Prevalence of Multidrug-Resistant Klebsiella pneumoniae Harboring Several Virulence and beta-Lactamase Encoding Genes in a Brazilian Intensive Care Unit. *Front. Microbiol.* 9, (2019).
- 88. Moghadampour, M., Rezaei, A. & Faghri, J. The emergence of blaOXA-48 and blaNDM among ESBL-producing Klebsiella pneumoniae in clinical isolates of a tertiary hospital in Iran. *Acta Microbiol. Immunol. Hung.* **65**, 335–344 (2018).
- Asencio Egea, M. A. *et al.* Monoclonal spread of multi-drug resistant CTX-M-15producing Klebsiella pneumoniae. Impact of measures to control the outbreak. *Rev. Esp. Quimioter.* **31**, 237–246 (2018).
- 90. Kotsanas, D. *et al.* 'Down the drain': carbapenem-resistant bacteria in intensive care unit patients and handwashing sinks. *Med. J. Aust.* **198**, 267–269 (2013).
- Jafari, Z. *et al.* Molecular Epidemiology and Drug Resistance Pattern of Carbapenem-Resistant Klebsiella pneumoniae Isolates from Iran. *Microb. DRUG Resist.* 25, 336– 343 (2019).
- Zaki, A. O. B. A. M. E. S. Molecular Study of Klebsiella Pneumoniae Virulence Genes from Patients with Hospital Acquired Sepsis. *Clin. Lab.* 65, (2019).
- Malik, T., Naim, A. & Saeed, A. Molecular Detection of TEM, SHV and CTX-M Genes Among Gram-negative Klebsiella Isolates. *Curr. Drug Deliv.* 15, 417–423 (2018).
- Mammina, C. *et al.* Sequence type 101 (ST101) as the predominant carbapenem-non-susceptible Klebsiella pneumoniae clone in an acute general hospital in Italy. *Int. J. Antimicrob. Agents* 39, 543–545 (2012).
- 95. Eghbalpoor, F. et al. Antibiotic resistance, virulence and genetic diversity of Klebsiella

pneumoniae in community- and hospital-acquired urinary tract infections in Iran. *Acta Microbiol. Immunol. Hung.* **66**, 349–366 (2019).

- 96. Lim, J. M. *et al.* Impact of national interventions to promote responsible antibiotic use: a systematic review. *J. Antimicrob. Chemother*. (2019) doi:10.1093/jac/dkz348.
- Thorpe, K. E., Joski, P. & Johnston, K. J. Antibiotic-resistant infection treatment costs have doubled since 2002, now exceeding \$2 billion annually. *Health Aff.* 37, 662–669 (2018).
- 98. WHO. Antimicrobial resistance and primary health care. World Health Organization (WHO) vol. brief https://www.who.int/docs/default-source/primary-health-careconference/amr.pdf?sfvrsn=8817d5ba_2 (2018).
- Smieszek, T. *et al.* Potential for reducing inappropriate antibiotic prescribing in English primary care. *J. Antimicrob. Chemother.* **73**, ii36–ii43 (2018).
- 100. Wilkinson, A., Ebata, A. & Macgregor, H. Interventions to reduce antibiotic prescribing in LMICs: A scoping review of evidence from human and animal health systems. *Antibiotics* vol. 8 (2019).
- 101. Davies, S. C. Reducing inappropriate prescribing of antibiotics in english primary care:
 Evidence and outlook. *J. Antimicrob. Chemother.* 73, 833–834 (2018).
- 102. Wenzel, R. P. & Edmond, M. B. Infection control: the case for horizontal rather than vertical interventional programs. *Int. J. Infect. Dis.* **14**, (2010).
- 103. Afshari, A., Schrenzel, J., Ieven, M. & Harbarth, S. Bench-to-bedside review: Rapid molecular diagnostics for bloodstream infection - a new frontier? *Critical Care* vol. 16 222 (2012).
- 104. Stein, K. et al. The use and misuse of antibiotics in dentistry: A scoping review. J. Am.

Dent. Assoc. 149, 869-884.e5 (2018).

- 105. Saha, S. K., Barton, C., Promite, S. & Mazza, D. Knowledge, perceptions and practices of community pharmacists towards antimicrobial stewardship: A systematic scoping review. *Antibiotics* vol. 8 263 (2019).
- 106. Moher, D. *et al.* Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. *Syst. Rev.* **4**, 1 (2015).
- 107. Cacchione, P. Z. The Evolving Methodology of Scoping Reviews. *Clin. Nurs. Res.* 25, 115–119 (2016).
- Arksey, H. & O'Malley, L. Scoping studies: Towards a methodological framework.
 Int. J. Soc. Res. Methodol. Theory Pract. 8, 19–32 (2005).
- Goodwin, N. Studying the Organisation and Delivery of Health Services: Research Methods. *Heal. Soc. Care Community* 10, 411–412 (2002).
- 110. Tricco, A. C. *et al.* PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. *Annals of Internal Medicine* vol. 169 467–473 (2018).
- Levac, D., Colquhoun, H. & O'Brien, K. K. Scoping studies: Advancing the methodology. *Implement. Sci.* 5, (2010).
- 112. So, M. *et al.* Effect of an antimicrobial stewardship programme on antimicrobial utilisation and costs in patients with leukaemia: a retrospective controlled study. *Clin. Microbiol. Infect.* 24, 882–888 (2018).
- 113. Tedeschi, S. *et al.* An Antimicrobial Stewardship Program Based on Systematic Infectious Disease Consultation in a Rehabilitation Facility. *Infect. Control Hosp. Epidemiol.* 38, 76–82 (2017).

- 114. Lee, T. C., Frenette, C., Jayaraman, D., Green, L. & Pilote, L. Antibiotic Selfstewardship: Trainee-Led Structured Antibiotic Time-outs to Improve Antimicrobial Use. Ann. Intern. Med. 161, S53–S58 (2014).
- Beaulac, K., Corcione, S., Epstein, L., Davidson, L. E. & Doron, S. Antimicrobial Stewardship in a Long-Term Acute Care Hospital Using Offsite Electronic Medical Record Audit. *Infect. Control Hosp. Epidemiol.* 37, 433–439 (2016).
- 116. Dancer, S. J. *et al.* Approaching zero: temporal effects of a restrictive antibiotic policy on hospital-acquired Clostridium difficile, extended-spectrum β-lactamase-producing coliforms and meticillin-resistant Staphylococcus aureus. *Int. J. Antimicrob. Agents* **41**, 137–142 (2013).
- Elligsen, M. *et al.* Audit and Feedback to Reduce Broad-Spectrum Antibiotic Use among Intensive Care Unit Patients A Controlled Interrupted Time Series Analysis. *Infect. Control Hosp. Epidemiol.* 33, 354–361 (2012).
- 118. Quan, K. A., Cousins, S. M., Porter, D. D., Puppo, R. A. & Huang, S. S. Automated tracking and ordering of precautions for multidrug-resistant organisms. *Am. J. Infect. Control* 43, 577–580 (2015).
- 119. Butler, J. P. Effect of copper-impregnated composite bed linens and patient gowns on healthcare-associated infection rates in six hospitals. *J. Hosp. Infect.* 100, e130–e134 (2018).
- 120. Madden, G. R., Heon, B. E. & Sifri, C. D. Effect of copper-impregnated linens on multidrug-resistant organism acquisition and Clostridium difficile infection at a longterm acute-care hospital. *Infect. Control Hosp. Epidemiol.* **39**, 1384–1386 (2018).
- 121. Anderson, D. J. et al. Effectiveness of targeted enhanced terminal room disinfection on

hospital-wide acquisition and infection with multidrug-resistant organisms and Clostridium difficile: a secondary analysis of a multicentre cluster randomised controlled trial with crossover. *Lancet. Infect. Dis.* **18**, 845–853 (2018).

- 122. Moffa, M. A., Walsh, T. L., Tang, A. & Bremmer, D. N. Impact of an antimicrobial stewardship program on healthcare-associated Clostridium difficile rates at a community-based teaching hospital. J. Infect. Prev. 19, 191–194 (2018).
- 123. Suzuki, H. *et al.* Impact of intensive infection control team activities on the acquisition of methicillin-resistant Staphylococcus aureus, drug-resistant Pseudomonas aeruginosa and the incidence of Clostridium difficile-associated disease. *J. Infect. Chemother.* 19, 1047–1052 (2013).
- 124. Yam, P., Fales, D., Jemison, J., Gillum, M. & Bernstein, M. Implementation of an antimicrobial stewardship program in a rural hospital. *Am. J. Heal. Pharm.* 69, 1142– 1148 (2012).
- 125. Goltsman, G. *et al.* The impact of intensive staff education on rate of Clostridium difficile-associated disease in hospitalized geriatric patients. *Aging Clin. Exp. Res.* (2019) doi:10.1007/s40520-019-01424-y.
- 126. Polen, C. B., Judd, W. R., Ratliff, P. D. & King, G. S. Impact of real-time notification of Clostridium difficile test results and early initiation of effective antimicrobial therapy. *Am. J. Infect. Control* 46, 538–541 (2018).
- 127. Koll, B. S. *et al.* Prevention of hospital-onset Clostridium difficile infection in the New York metropolitan region using a collaborative intervention model. *J. Healthc. Qual.*36, 35–45 (2014).
- 128. Borer, A. et al. A Multifaceted Intervention Strategy for Eradication of a Hospital-

Wide Outbreak Caused by Carbapenem-Resistant Klebsiella pneumoniae in Southern Israel. *Infect. Control Hosp. Epidemiol.* **32**, 1158–1165 (2011).

- Liu, P. *et al.* Active screening diminishes antibiotic resistance to main pathogenic bacteria in the ICU. *Int. J. Clin. Exp. Med.* 9, 4685–4689 (2016).
- 130. Ciobotaro, P., Oved, M., Nadir, E., Bardenstein, R. & Zimhony, O. An effective intervention to limit the spread of an epidemic carbapenem-resistant Klebsiella pneumoniae strain in an acute care setting: from theory to practice. *Am. J. Infect. Control* **39**, 671–677 (2011).
- Andersen, S. E. & Knudsen, J. D. A managed multidisciplinary programme on multiresistant Klebsiella pneumoniae in a Danish university hospital. *BMJ Qual. Saf.* 22, 907–915 (2013).
- Lei Munhoz Lima, A. L. *et al.* Carbapenem stewardship positive impact on hospital ecology. *BRAZILIAN J. Infect. Dis.* 15, 1–5 (2011).
- 133. Schwaber, M. J. *et al.* Containment of a country-wide outbreak of carbapenemresistant Klebsiella pneumoniae in Israeli hospitals via a nationally implemented intervention. *Clin. Infect. Dis.* **52**, 848–855 (2011).
- Agodi, A. *et al.* Containment of an outbreak of KPC-3-producing Klebsiella pneumoniae in Italy. *J. Clin. Microbiol.* 49, 3986–3989 (2011).
- 135. Meletis, G., Oustas, E., Botziori, C., Kakasi, E. & Koteli, A. Containment of carbapenem resistance rates of Klebsiella pneumoniae and Acinetobacter baumannii in a Greek hospital with a concomitant increase in colistin, gentamicin and tigecycline resistance. *New Microbiol.* 38, 417–421 (2015).
- 136. Alrabaa, S. F. et al. Early identification and control of carbapenemase-producing

Klebsiella pneumoniae, originating from contaminated endoscopic equipment. *Am. J. Infect. Control* **41**, 562–564 (2013).

- 137. Geladari, A. *et al.* Epidemiological surveillance of multidrug-resistant gram-negative bacteria in a solid organ transplantation department. *Transpl. Infect. Dis.* **19**, (2017).
- Kassis-Chikhani, N. *et al.* Extended measures for controlling an outbreak of VIM-1 producing imipenem-resistant Klebsiella pneumoniae in a liver transplant centre in France, 2003-2004. *Euro Surveill.* 15, (2010).
- 139. Li, M. *et al.* Infection-prevention and control interventions to reduce colonisation and infection of intensive care unit-acquired carbapenem-resistant Klebsiella pneumoniae : a 4-year quasi-experimental before-and-after study. *Antimicrob. Resist. Infect. Control* 8, 8 (2019).
- 140. Zhou, J., Li, G., Ma, X., Yang, Q. & Yi, J. Outbreak of colonization by carbapenemase-producing Klebsiella pneumoniae in a neonatal intensive care unit: Investigation, control measures and assessment. *Am. J. Infect. Control* 43, 1122–1124 (2015).
- 141. Cantey, J. B. *et al.* Prompt control of an outbreak caused by extended-spectrum beta-lactamase-producing Klebsiella pneumoniae in a neonatal intensive care unit. *J. Pediatr.* 163, 672–673 (2013).
- 142. Gaibani, P. *et al.* Successful containment and infection control of a Carbapenem-resistant Klebsiella pneumoniae outbreak in an Italian hospital. *New Microbiol.* 37, 87–90 (2014).
- 143. Kim, N.-H. *et al.* Successful containment of carbapenem-resistant Enterobacteriaceae by strict contact precautions without active surveillance. *Am. J. Infect. Control* **42**,

1270-1273 (2014).

- 144. Szel, B. *et al.* Successful elimination of extended-spectrum beta-lactamase (ESBL)-producing nosocomial bacteria at a neonatal intensive care unit. *World J. Pediatr.* 13, 210–216 (2017).
- 145. Snitkin, E. S. *et al.* Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. *Sci. Transl. Med.* **4**, 148ra116 (2012).
- Vodicka, E. L. *et al.* Costs of integrating cervical cancer screening at an HIV clinic in Kenya. *Int. J. Gynecol. Obstet.* 136, 220–228 (2017).
- 147. Dantes, R. *et al.* Association between Outpatient Antibiotic Prescribing Practices and Community-Associated Clostridium difficile Infection. *Open Forum Infect. Dis.* ofv113 (2015) doi:10.1093/ofid/ofv113.
- Brown, K., Valenta, K., Fisman, D., Simor, A. & Daneman, N. Hospital ward antibiotic prescribing and the risks of Clostridium difficile infection. *JAMA Intern. Med.* 175, 626–633 (2015).
- 149. Cross, J. Three myths of behaviour change -- what you think you know that you don't [online video]. (2013).
- 150. Huis, A. *et al.* A systematic review of hand hygiene improvement strategies: a behavioural approach. *Implement. Sci.* **7**, (2012).
- 151. Kelly, M. P. & Barker, M. Why is changing health-related behaviour so difficult?*Public Health* 136, 109–116 (2016).

Appendix 1: Search strategy

a. MEDLINE search strategy

Search ID	Search Terms	Results
S1	(MM "Clostridium difficile")	7,452
S2	(MM "Klebsiella pneumoniae")	8,828
S3	S1 OR S2	16,277
S4	(MM "Drug Resistance, Microbial+")	68,909
S5	(MM "Antimicrobial Stewardship")	982
S6	S4 OR S5	69,747
S7	S3 AND S6	1,649
S8	(MM "Cross Infection+")	42,792
S9	S7 AND S8	192
S10	S7 AND S8	187

b. CINAHL Plus

Search ID	Search Terms	Results
S1	(MM "Clostridium Difficile")	2,307
S2	"klebsiella pneumonia*"	2,719
S3	S1 OR S2	5,023
S4	(MM "Drug Resistance, Microbial+")	15,817
S5	(MM "Antimicrobial Stewardship")	427
S6	S4 OR S5	16,176
S7	S3 AND S6	719
S8	(MM "Cross Infection+")	27,268
S9	S7 AND S8	166
S10	S7 AND S8	160
S11	S7 AND S8	127

c. Web of Science Core Collection

Search ID	Search terms	Results
# 1	TS= "clostridium difficile" OR TS= "clostridioides difficile"	12,612
# 2	TS= "klebsiella pneumonia*"	17,207
# 3	#2 OR #1	29,679
# 4	TS= "drug resistance"	50,192
# 5	TS= "antimicrobial stewardship"	3,586
# 6	#5 OR #4	53,661
# 7	#6 AND #3	1,415
# 8	TS= "cross infection" OR TS= nosocomial	17,523

# 9	#8 AND #7	193
# 10	#8 AND #7	193
# 11	#8 AND #7	193

d. PubMed

Search ("Cross Infection"[Majr]) AND (((("Klebsiella pneumoniae"[Mesh]) OR "Clostridium difficile"[Mesh])) AND ((("Drug Resistance"[Mesh] OR "Drug Resistance, Multiple, Bacterial"[Mesh] OR "Drug Resistance, Bacterial"[Mesh] OR "Drug Resistance, Microbial"[Mesh])) OR "Antimicrobial Stewardship"[Majr])) Filters: published in the last 10 years; Humans.

Appendix 2: Data Extraction

a. Clostridium difficile

Reference	Study type	Aims/ objectives	Population/ Setting	Intervention	Outcome/ key findings	Conclusions	Useful notes
112	Retrospective observational time- series.	To examine the effectiveness of an antimicrobial stewardship programme on utilization and cost of antimicrobials in leukemia patients in Canada	Leukemia patients. Canada Multi-site	Academic detailing (aka Audit + Feedback) Duration: 24 months Involved: ID physician, AMR pharmacist	Utilization of antimicrobials reduced from 278DDD/100 PD to 247 DDD/100 PD CDI remained stable	AMS reduces antimicrobial use but has no effect on mortality	ISS persons have neutropenia, mostly treated with broad spectrum antibiotics hence high risk for CDI
113	Quasi- experimental	To assess the impact of an ASP on antimicrobials use, CDIs, and AMR patterns	Rehabilitation hospital 150 beds Spinal injuries patients Bologna, Italy	Bedside ID consultation Revision of antibiotics prophylaxis protocols Staff education Duration: 18 months Involved: ID consultant, physicians, and nurses.	Abx consumption reduced from 42 to 22 DDD/ 100 PDs (Carbapenems from 13 to 0.4 DDD/100PDs, Fluoroquinolones from 11.8 to 0.99 DDD/ 100 PDs) CDIs reduced from 3.6 to 1.2 cases per 10000 PDs Prevalence of KP reduced from 42% to 17% No effect on mortality or length of stay		
114	Quasi- experimental	To optimize the use of antibiotics through trainee-led time outs	Montreal University tertiary care hospital (417 beds) Internal medicine. 2 units, 46 beds 679 inpatients Canada	Twice-weekly time-out audits using a structured electronic checklist and monthly feedback AMS monthly education: 30 minutes to all rotating staff Duration: 18 months Involved: Consultants (ID, critical care, and general medicine)	A 46% reduction of antibiotics costs from \$149 743CAD to \$69 424 78% of the cost reduction linked with reduced use of carbapenems 80% adherence to the audit CDI reduced from 24.2 to 19.6 per 10,000 PDs	An antibiotic self- stewardship bundle to implement the CDC's suggested time-outs seems to have reduced overall costs and targeted antibiotic use.	About 50% use of abx is not necessary or inappropriate
115	Quasi-	To implement an	212 bed-New	CDIs	An overall decrease in antimicrobials	AMS using remote	

	experimental	AMS program in a long-term care hospital using telemedicine Provide antimicrobial oversight To improve the quality of care by standardizing antimicrobial	England Sinai Hospital in Stoughton Massachusetts Oversight undertaken by staff from Tufts Medical Center	Offsite electronic medical record audit. Duration: 12 months Involved: ID physicians and pharmacists	use. Overall usage of anti abx reduced by 6.58DDD/1,000 PDs A reduction in the incidence of HAIs and CDIs (from 1.4 to 0.57/1000PDs)	EMR audit is associated with a reduction in antimicrobials use.	
116	Quasi- experimental	To reduce the number of healthcare associated CDI cases	450-bed district general hospital Hairmyres Hospital (Glasgow, UK)	A restrictive policy on the use of ceftriaxone and ciprofloxacin Educational campaign Duration: 16 months Involved: Doctors, pharmacists and managers.	Overall reduction of targeted antimicrobials (ceftriaxone: 95% and ciprofloxacin: 72.5%) (Ceftriaxone from 46.213 to 2.129 DDD/1000PDs Ciprofloxacin from 109.804 to 30.205 DDDs/1000PDs) 77% reduction in hospital acquisition of CDIs Sustained reduction of CDIs up to 0.259 cases/ 1000 patient beds 3 years post-intervention	Restricting the two antibiotics significantly reduced healthcare associated CDIs	
117	Prospective, controlled interrupted time series	To evaluate the impact of audit and feedback on the use of broad- spectrum antimicrobials in critical care patients	Single site 150-bed tertiary hospital Intensive care unit (3). Italy	Review of all patients on day 3 and 10 after admission with suggestions for optimizing antimicrobial use given to responsible physicians. Then placing a computer-generated progress note on the patient chart, then feedback completed on same day Critical care team Targeted antimicrobials: ceftriaxone, ceftazidime, piperacillin-tazobactam, meropenem, ertapenem, levofloxacin, ciprofloxacin, and vancomycin Duration: 18 months Involved: Consultants, pharmacists, and ID physicians	Use of broad-spectrum antimicrobials reduced from 644 to 503 therapy days per 1,000 PDs Nosocomial CDIs incidence reduced from 11 to 6	Prospective audit and feedback appear to be an effective and safe means for reducing the use of broad-spectrum antimicrobials	Approximately half of antibiotics use in hospitals is inappropriate or not necessary
118	Quasi experimental	Assessing the impact of automated tracking	University of California,	An automated system for identifying, tracking CDIs and other MDROs that	Time savings estimated at 43 hours per 1000 admissions	Automated systems integrated within	No report on CDI outcomes

		and ordering precautions on MDROs	Irvine Medical center 410 beds Serves trauma, burns and cancer patients.	involved monitoring microbiology results, triggering chart-based alerts, ordering for appropriate contact precautions on admission as well as inactivation of the precautions. The alert was in form of a visual header banner on the HER. Duration: Involved: Physician, infection prevention team, and clinicians.	Timely initiation of contact precautions	the EHRs have potential for protecting patients by ensuring precautions are ordered in a timely manner. The system also contributes to time savings for IPC teams.	
119	Quasi- experimental	To assess the effect of biocidal copper oxide impregnated linen on HCAIs CDIs	Multi-site (six hospitals). Sentara Albermarle Healthcare hospitals 1019 beds NC, USA	Replacement of linen with copper oxide impregnated linen Duration: 8 months	A reduction in C. diff associated HCAIs by 41.1-61.2% per 10,000 PDs during the intervention period	The use of the biocidal impregnated copper-oxide linen significantly reduced C. diff associated HCAIs as well as other MDROs	Copper has some biocidal activity against some drug resistant bacteria. Its use in hospital environments potentially reduces the bioburden of HCA pathogens
120	Quasi- experimental	To examine the effect of copper impregnated linens on MDROs and CDIs	Long-term acute care hospital (LTACH). 40-beds Charlottesville, Virginia	Copper-impregnated linens including bedsheets, pillowcases, towels, and washcloths Duration: 27 months	Copper linens were associated with a much higher rate of CDIs. (1.5 to 2.8 cases per 1000PDs) There was a reduction in the compliance with hand hygiene practices (-5.6%)	There was no beneficial effect of the copper impregnated linens	No blinding of staff members
	Secondary analysis of a multicenter cluster RCT (BETR Disinfection)	To assess the effectiveness of disinfection strategies on C. diff incidence in hospital settings BETR (Benefits of enhanced terminal room) disinfection study	Multisite: 9 hospitals in southeastern USA	Four disinfection strategies post- discharge of MDRO or C. diff patients: Standard disinfection with quaternary ammonium solution or 10% hypochlorite (bleach) for C. diff cases. Standard disinfection + UV light or bleach + UV light for C. diff cases. Bleach strategy with 10% hypochlorite Bleach + UV light Duration: 27 months	No significant differences in the hospital-wide risk of the target organisms between standard disinfection and the other three enhanced disinfection strategies. The use of UV light as part of the disinfection strategy significantly reduced the risk of C. diff (from 18.1 to 17.2/1000PDs)	Enhanced terminal room disinfection using UV light contributed to a reduction in the risk of C. diff and VRE. Enhanced terminal room disinfection overcomes the challenges of standard disinfection and potentially reduces acquisition of C. diff and other MDROs.	Contaminated healthcare environments act as sources of infectious pathogens hence the importance of enhanced terminal room disinfection.

122	Quasi- experimental. Retrospective pre- and post- intervention	To assess the impact of an ASP intervention on HA-CDI	The Western Pennsylvania Hospital (WPH). 317-bed community teaching hospital. Approximately 6800 admissions yearly.	Education. Restriction of target antimicrobials requiring prior approval. Audit + feedback. Annual guidelines for antimicrobials use. Duration: 16 months Involved: ID physician and ID pharmacist	Significant reduction in HA-CDIs from 0.84 to 0.28 cases per 1000PDs (P=0.035). A cumulative reduction in the use of clindamycin, ceftriaxone, carbapenems, fluoroquinolones, linezolid, tigecycline (from 295.1 to 261.3 DDD/1000PDs)	Implementing an ASP program significantly reduced the incidence of HA- CDI as well as abx use	Antibiotics associated with higher rates of CDI include fluoroquinolones, clindamycin, and ceftriaxone
123	Pre- and post- intervention	To assess the impact of intensive IPC activities on MRSA, drug resistant P. aeruginosa (DRP), and C. diff acquisition.	Tsukuba Medical Center Hospital (TMCH) Japan. 409 beds. Tertiary emergency medical center.	Screening + notification of new and previous MDROs. Daily review of new patients' medical records/ microbiological results. Contact precautions or standard precautions. Monitoring inappropriate use of carbapenems and promptly instructing responsible doctors. Duration: 12 months Involved: Infection control team, doctors, and ward staff	Reduction of carbapenems' use from 28.5 to 17.8 DDD/1000PDs. Improved uptake of contact precautions. A reduction in the incidence of CDI (from 0.47 to 0.11 cases/1000PDs). Incidence of MRSA and DRP also reduced significantly	Proactive intensive ICT measures have the potential for reducing the hospital transmission of MDROs.	
124	POS	To assess the impact of a technology- mediated pharmacy- directed ASP in a rural hospital	St. Mary Medical center. 141 beds. Community hospital. Washington	Weekly antimicrobial review teleconferences involving an ID pharmacist Duration: 13 months Involved: ID consultant, physicians, doctors, QI staff, pharmacists, and microbiologists.	 Pharmacy-initiated AMS interventions increased from 2.1 to 6.8 interventions per week. Antimicrobial streamlining improved from 44% to 96%. There was enhanced interdisciplinary collaboration. A 51% reduction in the cost of targeted antimicrobials. HA-CDIs reduced from 5.5 to 1.6 		

			cases per 10,000PDs		
125 ROS cross- sectional study To assess the effect intensive staff education on CDAI amongst hospitalize geriatrics	of 390-bed geriatric hospital 217 geriatric patients observed. Israel	Staff education on isolation precautions, handwashing, transporting patients within the hospital, and cleaning. Duration: 24 months Involved: ID specialist, epidemiologic nurse, clinical pharmacist, doctors, nurses, paramedics, cleaners, and porters.	There were no significant differences in the incidence of CDAD pre- and post-intervention.	Intensive staff education did not reduce the nosocomial CDAD rates but remains an important strategy	Toxin positive C. diff is the leading cause of diarrhea amongst geriatrics.
126 Retrospective cohort study To assess the impact of real-time notification upon detecting toxigenic diff	tt Single center. 433 bed tertiary care medical center. Lexington, Kentucky. Adult patients aged more than 18 years	Computer generated real-time notification of toxigenic C. diff results + Initiation of appropriate antimicrobial therapy (Vancomycin or Vancomycin + metronidazole). Contact precautions. Involved: Pharmacist led ASP team	The time for initiating appropriate treatment reduced from 5.75 to 2.05 hours. The ASP intervention shortened the time from diagnosis to recording the appropriate antimicrobial in the EMHRs	The real-time notification intervention reduced the time for entering and initiating the appropriate antimicrobial treatment as well as contact precautions.	
127 POS To assess the impact of a multifaceted collaborative intervention on CD	t Multisite 35 hospitals Is Hospitalized patients, 18+ years. US, NY	C. diff collaborative intervention: IP bundle: Contact precautions, signage, PPE, hand hygiene, isolation precautions Environmental cleaning protocol Duration: 22 months Involved: Internal disciplinary team (Infection preventionist, physicians, nurses, support staff, and QI staff.)	 95% mean compliance with IP bundles 96% mean compliance with environmental cleaning protocol. Reduction in HA-CDIs from about 13.5 to 8.5 per 10,000 	The C. diff collaborative potentially impacts on hospital practices. The intervention influences the other HCAIs	

b. Klebsiella pneumoniae

Reference	Study type	Aims/ objectives	Population/	Intervention	Outcome/ key findings	Conclusions	Useful notes
			Setting				
128	ROS + POS	To devise a local	CRKP patients	ED flagging system	CRKP infections reduced from 5.26		
		strategy for	1000 bed tertiary	Isolation precautions	to 0.18 per 10,000 patient days		
	Quasi-	eradication of a	care university	Eradicating clusters	No nosocomial CRKP infections		

129	experimental Medical records Quasi- experimental?	hospital-wide outbreak caused by carbapenem-resistant Klebsiella pneumoniae (CRKP) To examine the effect of active screening on	hospital ICU.	Environmental and personnel hand cultures Carbapenem restriction policy Duration: 36 months. Involved: Physicians, epidemiologists, nurses, infection control staff Active screening.	diagnosed Meropenem use reduced Improved detection of MDRBs (KP)	Active screening reduces the	
		the resistance rates of MDRBs in ICUs	China	Duration: 14 months		resistance rates of pathogenic bacteria and useful in detecting MDRB	
130	Quasi- experimental	To reduce the prevalence of CRKP (KPC-3)	Medical center Israel	Guidelines for isolation precautions, environmental cleaning, staff education, and computerized notification/ flagging Duration: 48 months. Involved: Consultants, nurses, IP staff, housekeeping staff, patients, and caregivers.	A decrease in the CRKP incidence rate sustained over 30 months from 6.6 to 0.5/10,000PDs Reduction in cross-infections from 6% to 2.7% Surveillance of asymptomatic carriers improved from 20% to 89%	A multidisciplinary IPC programme is effective in controlling the prevalence of CRKP	
131	Quasi- experimental	To optimize the use of antimicrobials	510-bed Danish university hospital Copenhagen University Hospital. Denmark	 Multi-disciplinary change project Kotter's stages of change Multi-level intervention: Professional: Education, clinician leaflets, new drug container, yellow sticker for bed post, signboard for doors, hotline, notification on prescription of restricted antimicrobials Social: Presentations for the quality board, prevalence studies, feedback, newsletter and website. Patient: Information leaflets for isolation precautions Organizational: Revising antimicrobial guidelines, cefuroxime restriction. Duration: 36 months. 	Overall antimicrobials consumption remained unaffected. Immediate and sustained reduction in cefuroxime use (74.5%) An increase in the use of ertapenem, piperacillin/ tazobactam, and b- lactamase sensitive penicillin. Reduction in ESBL-KP diagnostic samples Reduced incidence of ESBL-KP infections from 39.5 to 22.5% Reduced need for isolation precautions	Changing antimicrobial consumption and reducing the incidence of ESBL- KP is possible through a multi- faceted intervention that does not require ongoing antibiotic stewardship	Restricting cephalosporins may reduce ESBL infection rates Carbapenems (B- lactamase inhibitors) are recommended as first-lines for serious ESBL producing bacteria

				Involved: Physicians, nurses, pharmacy staff, and patients.			
132	Quasi- experimental	To evaluate the impact of an AMS program restricting carbapenems (imipenem and meropenem)	Hospital das Clinicas Institute of Orthopedics and Traumatology 200 beds tertiary care hospital. Brazil	Antimicrobial restriction Ertapenem was made mandatory for treatment of ESBL-Enterobacteriaceae Restricting group 2 carbapenems for gram negative bacteria. Duration: 24 months.	A reduction of group 2 carbapenems use from 61.1 DDD to 48.7 DDD/1,000 patient days Susceptibility of K. pneumoniae and P. aeruginosa to trimethoprim- sulfamethoxazole	There was a significant reduction in the use of carbapenems following preferential use of ertapenem.	
133	Prospective Observational study	To contain an outbreak of carbapenem resistant KP	27 Acute care hospitals. 14,000 beds. Israel	Screening Mandatory reporting of every CRE patient to PH authorities Mandatory isolation of hospitalized new and previous carriers (single rooms isolation) Dedicated staff Oversight taskforce that supervised adherence to isolation protocols, provided technical support, and feedback to management. Duration: 14 months. Involved: Nurses, IP staff, microbiologists, laboratory staff, physicians, and Public health staff	Increase in the incidence of KP was halted with a subsequent reduction of 11.7 cases per 100,000	An intervention coordinated centrally showed better outcomes for containment of a KP outbreak as compared to local measures. Strategic planning and national oversight are crucial in addressing AMR	Outbreak control
134	Outbreak investigation	To curb the spread of KPC-3 producing KP	Italy 12-bed ICU hospital Cannizaro hospital, Catania	Screening Environmental cleaning Respiratory equipment disinfection Hand hygiene Single room isolation Weekly meetings between IPTs and ICU staff. Duration: 2 months.	Outbreak containment within 4 months Improved adherence to contact precautions		Outbreak control Ten recognized KPC types (KPC-2 to KPC 11). KPC-2 are the commonest

				Involved: Nurses, ICU staff, IP staff, and cleaning staff.			
135	POS	To curb CRKP and Acinetobacter baumannii	Serres General Hospital 250-bed hospital Greece	Prokroustes action plan: Surveillance and compulsory notification + IPC measures: Isolation precautions Duration: 36 months	Containment of CR associated with KP and PA three years post- intervention. An increase in KP resistant to Colistin, Tigecycline, and gentamycin	There exist challenges for addressing MDROs in regions with established carbapenem resistance.	
136	Observational	To identify and control CRKP originating from endoscopic equipment	206-beds cancer center + 988 beds tertiary hospital. Florida, USA.	Active surveillance using rectal swabs Source isolation Contact precautions Environmental cleaning Hand hygiene PPE: Gowns + gloves MDRO flags on EMRs and charts Duration: 6 months. Involved: Epidemiologists and health personnel	7 CRKP cases identified resistant to imipenem		Transmission of carbapenem resistant genes across microbial spp within the same environment contributes to resistance. KP outbreaks have also been associated with contaminated sinks, IV saline solutions, bath soap, and ultrasonography gel
137	Quasi- experimental	To assess the impact of intensified IC measures on colonization and infections associated with CRKP, P. aeruginosa, and Actionbater baumannii	Hippokration General Hospital. Solid organ transplant department. Thessaloniki, Greece	Active surveillance, contact precautions, hand hygiene, education, environmental cleaning, monitoring adherence, audit and feedback. Duration: 17 months. Involved: Nurses, doctors, non- surgical staff.	Reduction in incidence of colonization from 19 to 9%. Improved adherence to contact precautions. An increase in the monthly incidence of CR bacteria from 2.8 to 6.9/ 1000 PDs	In CR gram -ve bacteria endemic regions, SOT patients have disproportionately higher infections rates of the organisms. Implementation of enhanced IC measures significantly reduces the colonization	
138	POS	To control an outbreak of imipenem resistant K. pneumoniae (IR- KP)	Abdominal surgery care center. 15-bed liver	Screening all patients + Contact isolation + hand hygiene using alcohol-based hand sanitizer. Enhanced measures: Isolating carriers,	Rapid containment of the outbreak	coonzation	

			ICU. France	dedicated staff, restricting ward admissions, and strict control of patient transfers. Duration: 4 months. Involved: Nurses, medical staff, physicians, and microbiologists.			
139	Quasi- experimental	To establish if IPC interventions can reduce CRKP infection in ICU	ICU China 629 patients enrolled.	Screening of cultures, de-escalation interventions, contact precautions, isolation precautions, sterilization and disinfection, and bundles (for IV catheter infections, VAP, CAUTIs, and skin or soft tissue infections). Duration: 24 months Involved: Consultants, physicians, nurses, ID specialists	CRKP incidence reduced from 10.08 to a low of 2.84 cases per 1000 PDs. ICU acquired CRKP bloodstream infections decreased from 2.54 to 0.41 cases per 1000PDs	Comprehensive IPC interventions significantly reduced ICU related CRKP infections	
140	Quasi- experimental	To assess the effect of IPC on a CRKP outbreak	NICU. 20-beds. 8 patients. China	Active surveillance using rectal swabs. IPC measures: hand hygiene, auditing compliance, environmental cleaning, and isolating patients. Duration: 8 months Involved: Nurses and IP professionals	Outbreak containment after isolation and IPC measures.	Physical isolation is important in preventing the spread of MDROs. ASP is useful in reducing the spread of MDROs	
141	Cohort. POS	Assessing the effectiveness of multidisciplinary interventions on the transmission of ESBL- KP	Parkland Memorial Hospital. NICU. 61 infants. Dallas, USA	Re-educating staff. Auditing hand hygiene and environmental sanitation. Contact precautions. Isolating Staff & infants. Reducing overcrowding. Screening NICU cultures frequently. Duration: 3 weeks. Involved: Neonatologists, ID physicians, nurses, managers, epidemiologists, IP staff, and	Outbreak contained within three weeks	Multidisciplinary intervention using standard IPC measures halted the transmission of ESBL-KP in the NICU.	

				environmental officers.			
142	POS	To halt the spread of CRKP	Cà Granda Ospeda- le Maggiore Hospital. ICU. Milan, Italy	Active surveillance. Isolation. Hand hygiene. Duration: 2 months. Involved: Healthcare workers.	Outbreak containment		
143	ROS & POS	To assess the effect of enhanced contact precautions on CRE/ CRKP incidence and resistance rates	Tertiary care university hospital. 900 beds. South Korea	Staff education Contact precautions without active surveillance. Cohort isolation. Hand hygiene. Duration: ?6 years Involved: physicians and medical personnel	An initial increase of the CRE cases (from 1.62 to 9.81/100,000PDs) after which the rates fell back to (0.882/ 100,000PDs0 below baseline levels. A reduction in the resistance rates to imipenem and meropenem following enhanced contact precautions. Hand hygiene adherence improved from 35.2% to 70%	Enhanced infection control measures without active surveillance appear to be effective against the spread of CRE in low prevalence settings	
144	ROS & POS	To stop the spread of ESBL-producing nosocomial bacteria in NICU	17-bed NICU. 355 patients observed. University of Szeged Pediatrics Department. Hungary	Introduction of the INSURE protocol. Antimicrobial regimens review. Microbiological screening. Bathing protocol. Hand hygiene. Continuous monitoring of cases. Duration: 3 months. Involved: Nurses, clinicians, cleaning staff, all staff.	A significant reduction in the proportion of CRKP colonization or infections. Average number of PDs reduced from 343.72 to 292.44 PDs/ month. Hand hygiene compliance improved from 26.02 to 33.6 HH procedures per patient per hospital day.	A successful roll back of the CRE infections and colonization was achieved through an interdisciplinary approach.	ESBL-producing bacteria includes E. coli, Enterobacteriaceae, and KP
145	Quasi- experimental	To track an outbreak of ESBL-KP using WGS	The University Medical Center Groningen (UMCG). 1300 bed tertiary care center.	Screening patients and the environment using WGS. Duration: 6 months. Involved: Nurses, physicians, respiratory therapists, housekeepers, and visitors.	There was no association between the sporadic case of KP and those that had been diagnosed prior to 2013	Tailor-made makers for identifying genomic signatures have potential for improving the efficiency of IPC measures	

Netherlands				
		Netherlands		