
- 1 Association between angiotensin-converting enzyme inhibitors and angiotensin II
- 2 receptor blockers use and the risk of infection and clinical outcome of COVID-19: a
- 3 comprehensive systematic review and meta-analysis.
- 4 Guangbo Qu, MD^{1a}, Liqin Shu, MD^{2a}, Evelyn J. Song, MD³, Dhiran Verghese, MD⁴, John
- 5 Patrick Uy, MD⁴, Ce Cheng, DO⁵, Qin Zhou, PhD⁶, Hongru Yang MD⁷, Zhichun Guo MD⁷,
- 6 Mengshi, Chen⁸, Chenyu Sun, MD, MSc^{4,*}
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui
 Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
- 9 2. Department of Child Health care, Maternal and Child Health Care Hospital of Anhui
- 10 Province (Affiliated Maternal and Child Health Care Hospital of Anhui Medical University),
- 11 Hefei 230001, Anhui, China.
- 3. Department of Medicine, School of Medicine, Johns Hopkins University, Baltimore, MD,USA.
- 4. AMITA Health Saint Joseph Hospital Chicago, 2900 N. Lake Shore Drive, Chicago, 60657,
 Illinois, USA
- 16 5. Department of Internal Medicine, Cape Fear Valley Medical Center, Fayetteville 28304,
- 17 NC, USA
- 18 6. Mayo Clinic, Rochester, MN 55905, USA
- 7. Massachusetts College of Pharmacy and Health Science, 179 Longwood Ave, Boston,
 02115, MA, USA
- 8. Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public
- 22 Health, Central South University.
- a. Guangbo Qu and Liqin Shu contributed equally to this study and should be considered asco-joint first authors.
- ²⁵ *Correspondence to: Chenyu Sun, Internal Medicine, AMITA Health Saint Joseph Hospital
- 26 Chicago, Lake Shore Drive Chicago, Illinois 60657, Chicago, USA. E-mail:
- 27 drsunchenyu@yeah.net.
- 28 Short title: ACEIs and ARBs use and COVID-19 risk

1 Abstract

2	Background The effect of using Angiotensin-converting enzyme inhibitors (ACEIs) and
3	Angiotensin-receptor blockers (ARBs) on the risk of coronavirus disease 2019 (COVID-19)
4	is a topic of recent debate. Although studies have examined the potential association between
5	them, the results remain controversial. This study aims to determine the true effect of
6	ACEI/ARBs use on the risk of infection and clinical outcome of COVID-19.
7	Methods Five electronic databases (PubMed, Web of science, Cochrane library, China
8	National Knowledge Infrastructure database, medRxiv preprint server) were retrieved to find
9	eligible studies. Meta-analysis was performed to examine the association between
10	ACEI/ARBs use and the risk of infection and clinical outcome of COVID-19.
11	Results 22 articles containing 157,328 patients were included. Use of ACEI/ARBs was not
12	associated with increased risk of infection (Adjusted OR: 0.96, 95% CI: 0.91-1.01, I^2 =5.8%)
13	or increased severity (Adjusted OR: 0.90, 95% CI: 0.77-1.05, $I^2=27.6\%$) of COVID-19. The
14	use of ACEI/ARBs was associated with lower risk of death from COVID-19 (Adjusted OR:
15	0.66, 95% CI: 0.44-0.99, I^2 =57.9%). Similar results of reduced risk of death were also found
16	for ACEI/ARB use in COVID-19 patients with hypertension (Adjusted OR: 0.36, 95% CI:
17	$0.17-0.77, I^2=0$).
18	Conclusion This study provides evidence that ACEI/ARBs use for COVID-19 patients does
19	not lead to harmful outcomes and may even provide a beneficial role and decrease mortality

20 from COVID-19. Clinicians should not discontinue ACEI/ARBs for patients diagnosed with

3

Keywords: COVID-19; Angiotensin-converting enzyme inhibitor; Angiotensin-receptor
 blockers; risk; systematic review; meta-analysis.

- 3
- 4

5 1. Introduction

In December 2019, the first case of novel coronavirus disease (COVID-19) caused by
the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was reported in Wuhan,
China [1, 2]. Due to the rapidly increasing number of cases worldwide, on March 11, 2020,
the World Health Organization (WHO) declared the COVID-19 outbreak a global pandemic
As of June 3, 2020, there were 6, 287, 771 confirmed cases and 379, 941 deaths globally per
WHO [3]. COVID-19 has greatly impacted both professional and personal lives of everyone
worldwide.

The epidemiological and clinical characteristics of COVID-19 have been well described 13 in previous studies [4, 5]. Hypertension, diabetes and cardiovascular diseases (CVD) 14 15 including congestive heart failure (CHF) and myocardial infarction are common 16 comorbidities reported in patients with COVID-19 and have been associated with a poor 17 prognosis [5, 6]. Angiotensin-converting enzyme inhibitors (ACEIs) and Angiotensin-receptor blockers (ARBs) are first line anti-hypertensive medications and are 18 included in the guideline-directed therapy for diabetic nephropathy, CHF and myocardial 19 20 infarction. Angiotensin-converting enzyme 2 (ACE2), a membrane-bound aminopeptidase, is 21 widely expressed in certain tissues of human body including lung, intestine, heart, and

1	kidneys, and it has been shown that the use of ACEIs and ARBs can increase the expression
2	
2	of ACE2 [7, 8]. Furthermore, ACE2 acts as a functional receptor and SARS-CoV-2 utilizes
3	the ACE2 for attachment of its spike protein, in the process of its entrance into cells [9,10].
4	These findings led some investigators to hypothesize that the use of ACEIs or ARBs may
5	increase the risk of infection by SARS-CoV-2 and the severity of COVID-19 [11-13].
6	Several clinical studies have been conducted to test this hypothesis. However, a
7	consensus has not been reached regarding how the use of ACEIs or ARBs affects the outcome
8	of patients with COVID-19. The goal of this meta-analysis is to clarify the effects of ACEIs
9	and/or ARBs on the infection risk, severity, and mortality of COVID-19, hoping to shed more
10	light in the prevention and treatment of the current ongoing pandemic.
11	
12	2. Methods
13	This study was conducted and reported according to the Preferred Reporting Items for
14	Systematic Reviews and Meta-Analyses (PRISMA) statement [14].
15	
16	2.1 Literature search and data source
17	We searched five electronic databases (PubMed, Web of science, Cochrane library,
18	China National Knowledge Infrastructure database, medRxiv preprint server) to collect
19	relevant studies published until May 20, 2020. The search strategy was established and
20	performed by two authors. The search terms used included the following:
21	(angiotensin-converting-enzyme inhibitor OR ACEI OR angiotensin-receptor blockers OR

1 ARB) AND (coronavirus OR COVID-19 OR SARS-CoV-2). There was no language 2 limitation on the search. All references of included studies were evaluated for additional 3 studies to include as many eligible studies as possible. For retrieved records, we used 4 reference management software (NoteExpress, college version) to save and filter.

5

6 2.2 Study selection

7 First, we reviewed the title and abstract of retrieved studies and excluded irrelevant ones. Then, we read through the full-text of remaining studies and included eligible studies based 8 on our inclusion and exclusion criteria. Our inclusion criteria are as follows: (1) participants 9 10 were patients diagnosed with COVID-19; (2) patients were reported as having ACEI and/or 11 ARB exposure and non-ACEI and/or ARB exposure (ACEI use versus non-ACEI use; ARB use versus non-ARB use; ACEI/ARB use versus non-ACEIARB use); (3) at least one of 12 13 following outcomes of COVID-19 was reported: positive rate/infection rate, hospital 14 admission rate, severity, mortality in groups of ACEI and/or ARB exposure and non-ACEI 15 and/or ARB exposure or the association between ACEI and/or ARB exposure and the risk of infection, hospital admission, severity, and death due to COVID-19; (4) the study design was 16 17 case-control or cohort. Exclusion criteria are as follows: (1) the studies were reviews, case-reports, or animal experiments; (2) studies did not meet the inclusion criteria; (4) The 18 data of interest was not reported; (4) no clear definition or diagnose methods of COVID-19. 19 20 Two authors (Guangbo Qu and Liqin Shu) conducted the selections independently, and any disagreement was solved through discussion. 21

1

2 **2.3 Data extraction and quality assessment**

Following information was extracted using a standard chart form: first author's name, number of patients, number of patients in ACEI/ARB exposure (only ACEI exposure, only ARB exposure, either ACEI or ARB exposure) and non-exposure groups, patients' characteristics, infection risk, hospital admission, severity, and mortality of patients in each group, odds ratios (ORs) or risk ratios (RRs) or hazard ratio (HRs) of the infection, hospital admission, severity, and mortality of COVID-19.

9 Considering that the included studies were observational studies, the Newcastle-Ottawa
10 Scale (NOS) was used to assess the quality from three aspects: (1) selection of participants;
(2) comparability of groups; (3) assessment of exposure and outcome [15]. NOS contained
12 eight items with scores ranging from 0 to 9 stars. The quality of studies was divided into three
13 categories based on the scores: low quality is 0-3 stars, moderate quality is 4-5 stars, and high
14 quality is 6 stars or above. Two authors (Guangbo Qu and Liqin Shu) assessed quality
15 independently, and disagreement was resolved by consensus.

16

17 **3. Statistical analysis**

Meta-analyses were conducted to assess for associations. Crude and adjusted odds ratios (Crude OR and Adjusted OR), with corresponding 95% confidence intervals, were calculated using the extracted binary data or effect sizes that was reported in all studies. Additionally, if available, Crude OR and/or Adjusted OR were also calculated to explore the association

7

1	between ACEI/ARB use and outcomes of COVID-19 among patients with hypertension. The
2	statistical heterogeneity between studies was identified using the Cochrane's Q test and
3	I-square test. Heterogeneity was present if P value of Q test was less than 0.1 or the value of
4	I^2 was more than 50% [16]. The model for meta-analyses was chosen based on the level of
5	heterogeneity between studies; if obvious heterogeneity was present, then random-effects
6	model was used, otherwise, the fix-effects model was used [17]. Subgroup analysis was
7	conducted based on the characteristics of included studies. Publication bias was identified via
8	Begg's and Egger's tests. If P value of Begg's and Egger's tests were more than 0.05, then
9	publication bias is present. Sensitivity analysis was performed by omitting studies one by one
10	to assess the stability of pooled results. All statistical analyses were performed using STATA
11	software (version 14.0) and Review Manager (version 5.3).
12	

13 4. **Results**

14 4.1 Characteristics of included studies

After initial search, 477 records were retrieved (PubMed: n=166, Web of science: n=228, Cochrane library: n=9, China National Knowledge Infrastructure database: n=27, medRxiv preprint server: n=41, Other sources: n=6). 27 records were excluded for duplication. After reading the titles and abstracts, 391 records were excluded due to irrelevance. After study selection according to the inclusion and exclusion criteria, 36 articles were excluded and one study was further excluded because it was retracted by the journal. Finally, 22 articles containing 157,328 patients were included in this meta-analysis [8, 10, 18-37]. The flow chart

1 of the selection process is displayed in Figure 1.

The characteristics of included studies were shown in Table 1. Of included studies, 11 were conducted in China [8,16,20,21,22,24,25,27,33,35,36], seven were from the United States [19,23,28,29,32,34,37], two were from Italy [10,30], one from Spain [26]. All, but three, were cohort studies. The sample size of each study ranged from 42 to 37,031. Multiple comorbidities were reported and all patients in eight of the studies had hypertension [8,18,22,25,27,32,33,37]. Majority of the studies were high quality studies. Detailed quality assessment results are in Table S1.

9

10 4.2 ACEI/ARB use and COVID-19 infection

Pooled meta-analyses showed that, without adjusting for any confounders, ACEI, ARB, 11 and ACEI/ARB use were not significantly associated with the risk of COVID-19 infection 12 (Crude OR: 1.27, 95% CI: 0.95-1.69 for ACEI use; Crude OR: 1.07, 95% CI: 0.76-1.50 for 13 ABR use; Crude OR: 1.10, 95% CI: 0.84-1.43 for ACEI/ARB use); however, obvious 14 15 heterogeneity was present between studies (All $I^2 > 50\%$) (Table 2, Figure 2). Similarly, after adjusting for confounders, ACEI, ARB, and ACEI/ARB use were not significantly associated 16 with the risk of COVID-19 infection (Adjusted OR: 0.94, 95% CI: 0.87-1.01, I²=0 for ACEI 17 use; Adjusted OR: 0.73, 95% CI: 0.49-1.09, I²=95.1% for ABR use; Adjusted OR: 0.96, 95% 18 CI: 0.91-1.01, $I^2=5.8\%$ for ACEI/ARB use). Furthermore, subgroup analysis based on 19 20 different characteristics of studies showed no correlation between the use of ACEI and/or ARB and risk of COVID-19 infection. 21

1

2 4.3 ACEI/ARB use and hospital admission for COVID-19 3 Pooled meta-analyses showed that patients using ACEI, ARB, and ACEI/ARB had higher risk of hospital admission for COVID-19 compared to patients not using these 4 medications (Adjusted OR: 1.29, 95% CI: 1.07-1.57, I^2 =62.4% for ACEI use; Adjusted OR: 5 1.69, 95% CI: 1.46-1.96, I²=0 for ABR use; Adjusted OR: 1.38, 95% CI: 1.21-1.57, I²=34.5% 6 for ACEI/ARB use) (Table 2 and Figure 3). 7 8 4.4 ACEI/ARB use and severity of COVID-19 9 Use of ACEI, ARB, and ACEI/ARB was not associated with severity of COVID-19 10 11 infection for both pooled crude and adjusted OR (Adjusted OR: 0.90, 95% CI: 0.72-1.14, $I^2=0$ for ACEI use; Adjusted OR: 0.91, 95% CI: 0.74-1.13, $I^2=45.8\%$ for ABR use; Adjusted 12 OR: 0.90, 95% CI: 0.77-1.05, $I^2=27.6\%$ for ACEI/ARB use). Additionally, subgroup analysis 13 based on different characteristics (study design, region, race, study quality) also did not show 14 any significant association (Table 2 and Figure 4). Furthermore, for patients with 15 hypertension, ACEI, ARB, and ACEI/ARB use was not significantly associated with severity 16 17 of COVID-19 infection (Table S2). 18 4.5 ACEI/ARB use and COVID-19 related mortality 19 Only one study reported the association between ACEI and ARB use and risk of death 20

from COVID-19 without adjusting confounders separately (OR: 0.91, 95% CI: 0.38-2.17 for

1	ACEI use; OR: 0.77, 95% CI: 0.41-1.43 for ABR use) [18]. Only one study reported no
2	significant association between ACEI use and risk of death from COVID-19 (OR: 0.97, 95%
3	CI: 0.69-1.34) [30]. The pooled crude OR showed no significant association between
4	ACEI/ARB use and risk of death from COVID-19 (Crude OR: 0.88, 95% CI: 0.66-1.18,
5	I^2 =60.9%). However, the pooled adjusted ORs showed that patients on ACEI/ARB had a
6	lower risk of death from COVID-19 (Adjusted OR: 0.66, 95% CI: 0.44-0.99, I^2 =57.9%). No
7	study reported the association between ARB use and the risk of death from COVID-19 (Table
8	2 and Figure 5). Furthermore, subgroup analysis on studies from China or studies of Asian
9	population found that ACEI/ARB use was associated with a lower risk of death from
10	COVID-19. For patients with hypertension, ACEI/ARB use also was associated with a lower
11	risk of death from COVID-19 (Adjusted OR: 0.36, 95% CI: 0.17-0.77, I ² =0) (Table S3).
12	
13	4.6 Publication bias and results of sensitivity analysis
14	There was no significant publication bias among meta-analyses with two or more studies
14 15	
	There was no significant publication bias among meta-analyses with two or more studies
15	There was no significant publication bias among meta-analyses with two or more studies included (All P values were more than 0.05) based on Begg's and Egger's tests (Table S4).
15 16	There was no significant publication bias among meta-analyses with two or more studies included (All P values were more than 0.05) based on Begg's and Egger's tests (Table S4). Sensitivity analysis showed that no study had significant impact on the stability of pooled
15 16 17	There was no significant publication bias among meta-analyses with two or more studies included (All P values were more than 0.05) based on Begg's and Egger's tests (Table S4). Sensitivity analysis showed that no study had significant impact on the stability of pooled
15 16 17 18	There was no significant publication bias among meta-analyses with two or more studies included (All P values were more than 0.05) based on Begg's and Egger's tests (Table S4). Sensitivity analysis showed that no study had significant impact on the stability of pooled results from meta-analyses.
15 16 17 18 19	There was no significant publication bias among meta-analyses with two or more studies included (All P values were more than 0.05) based on Begg's and Egger's tests (Table S4). Sensitivity analysis showed that no study had significant impact on the stability of pooled results from meta-analyses.

11

1	expression [7, 38, 39], it was initially hypothesized that increased expression of ACE2 from
2	ACEI/ARB may increase the risk of SARS-COV-2 entrance into respiratory epithelial cells
3	through binding to the structural transmembrane ACE2 receptor. Therefore, ACEI/ARB may
4	theoretically increase the susceptibility of infection and lead to worse outcomes from
5	COVID-19 [11, 40]. However, even though elevated expression of ACE2 caused by
6	ACEI/ARB use has been found in animal studies [7, 38, 39], no evidence has indicated
7	similar effects in human studies. Many studies have been published in the recent months
8	attempting to better understand the effects of ACEI/ARB in COVID-19 patients [8, 10, 19, 29,
9	30].

Our systematic review and meta-analysis shows that ACEI/ARBs use is not significantly 10 11 associated with increased infection risk and severity of COVID-19 and is actually associated 12 with a decreased risk of death from COVID-19. However, it does lead to an increased risk of hospital admissions. The increased risk of hospitalization admissions in patients on 13 14 ACEI/ARB should be interpreted with caution because in the included studies, residual 15 confounding factors such as comorbidities like CVD were not well adjusted for [19, 30]. 16 Patients who are taking ACEI/ARB likely have underlying cardiovascular comorbidities and 17 prior studies demonstrated that patient comorbidities including hypertension and CVD are associated with severe COVID-19 infections, requiring hospitalization, and increased 18 mortality [41, 42]. Therefore, additional large, prospective, randomized studies are needed to 19 20 better characterize the effect of ACEI/ARB use on rate of hospitalization of COVID-19 patients. 21

12

1	Interestingly, the pooled crude ORs did not show significant association between
2	ACEI/ARB use and the risk of death from COVID-19, but after pooling the adjusted ORs,
3	ACEI/ARB use was associated with a decreased risk of death from COVID-19 in all patients
4	and in those with hypertension. However, the crude OR did not found a significant
5	association of ACEI use and the risk of death from COVID-19. This difference seen bet the
6	crude and adjusted ORs is likely because some important confounders were adjusted for
7	adjusted ORs, which may reflect the true association between ACEI/ARB use and risk of
8	death from COVID-19. Additionally, none of the studies reported the association between
9	ARB use and risk of death from COVID-19; therefore, pooled adjusted OR for ARBs was not
10	calculated.

11 ACEI/ARBs are commonly used in the treatment of hypertension and CHF to inhibit 12 Angiotensin II and downregulate the Renin-angiotensin-aldosterone system (RAAS) [43]. The decreased risk of death is likely due to continued management of patients' existing 13 underlying diseases as poorly controlled hypertension and CHF are both associated with 14 15 worse outcomes in COVID-19 patients [44]. Additionally, the anti-inflammatory and 16 immune-modulatory properties of ACEI/ARBs may also explain their protective effect. 17 Heightened inflammatory response is an important factor leading to adverse outcomes of 18 COVID-19 patients [45]. Previously, it has been shown that Angiotensin II increases expression of inflammatory cytokines via activation of Angiotensin II receptor type 1 (AT1R) 19 [46]. ACEI/ARB decreases the level of Angiotensin II, potentially attenuating the 20 21 inflammatory response. Additionally, ACEI/ARB reduces T-cell depletion in peripheral blood

13

1	and inhibits dendritic cell maturation and Th1 and Th17 cell polarization, resulting in a more
2	potent immune system [47]. This hypothesis is supported in the study by Meng et al, in which
3	it was demonstrated that ACEI/ARB use in COVID-19 patients was associated with lower
4	IL-6 level, increased CD3 and CD8 T-cell counts, and decreased peak viral load [25].
5	This systemic review and meta-analysis comprehensively explored the effect of
6	ACEI/ARB use on infection risk and different clinical outcomes related to COVID-19. Our
7	study is consistent with results from prior studies on this topic, where they also demonstrated

9 mortality [48-50]. Additionally, we also included information not available in previous

8

11

that ACEI/ARB use does not increase the severity of COVID-19 infection and decreases

10 systemic reviews such as the association between ACEI/ARB use and hospitalization due to

COVID-19. This study helps to shed light into the current debate on the use of ACEI/ARBs

12 in patients with COVID-19 and demonstrates that ACEI/ARB use does not lead to increased

13 risk of COVID-19 infection and may even decrease the risk of death from COVID-19. The

14 results from this study supports the joint statement from American Heart Association (AHA),

15 Heart Failure Society of America (HFSA) and American College of Cardiology (ACC) and

the statement from the European Society of Cardiology (ESC) Council on Hypertension that

17 patients with COVID-19 taking ACEI/ARBs should continue their treatment [51].

A few limitations present in our study should be noted. First, all the studies included are observational studies, making it difficult to infer accurate causation. Second, no data was provided regarding the dose and exposure duration of ACEI/ARBs; therefore, we could not determinate whether COVID-19 infection is affected by the dose and duration of ACEI/ARBs

exposure. Third, beta blockers can also prevent ACE2 activity [52], therefore, the effect of ACEI/ARB use may be underestimated for patients with CVD who also take beta blockers. Finally, given that some important confounders (such as comorbidities) have not been adjusted for in the included studies, the true association between ACEI/ARB use and the risk of hospitalization could not be well inferred.

6

1

2

3

4

5

7 Conclusion

In conclusion, ACEI/ARB use does not affect the risk and severity of COVID-19 infection and actually leads to a decreased mortality from COVID-19. The effect of ACEI/ARB use on hospitalization needs to be further assessed with adjusting for potential confounders. The potential protective role of ACEI/ARB supports the recommendation that these agents should not be discontinued for COVID-19 patients if they are already on them.

13

14 6. Acknowledgements

Guangbo Qu and Chenyu Sun contributed to the study design, the development of research protocol, and supervision of whole steps of this study. Liqin Shu designed the search strategy and conducted the literature search. Guangbo Qu and Liqin Shu conducted study selection, data extraction and quality assessment of included studies. Chenyu Sun checked the literature search and data extraction. Guangbo Qu performed data analyses and created tables and figures. Guangbo Qu and Chenyu Sun took responsibility for the interpretation of results. Guangbo Qu wrote the first draft of manuscript. Liqin Shu, Evelyn J. Song, Ce Cheng,

1	Dhiran Verghese, John Patrick Uy, Qin Zhou, Hongru Yang, Zhichun Guo, Chenyu Sun
2	contributed to the edition and revision of the draft of manuscript. All authors reviewed and
3	approved final version of the manuscript.
4	
5	
6	7. Funding
7	This study is financially supported by Hunan Provincial Key Laboratory of Clinical
8	Epidemiology. (2020ZNDXLCL002)
9	
10	8. Disclosure of interest
11	The authors have no interest to disclosure.
12	
13	Reference
14	[1] Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, Zhao X, Huang B, Shi W, Lu R, Niu P,
15	Zhan F, Ma X, Wang D, Xu W, Wu G, Gao GF, Tan W, China Novel Coronavirus
16	Investigating and Research Team. A novel coronavirus from patients with pneumonia in
17	China, 2019. N Engl J Med 2020; 382: 727-733.
18	[2] Muniyappa R, Gubbi S. COVID-19 pandemic, coronaviruses, and diabetes mellitus. Am J
19	Physiol Endocrinol Metab 2020; 318: E736-E741.
20	[3] World Health Organization. Coronavirus disease 2019 (COVID-19). Situation report -
21	135. Geneva, Switzerland: World Health Organization; June 3, 2020. Available online:

1	https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200603-covid
2	-19-sitrep-135.pdf?sfvrsn=39972feb_2
3	[4] Chen N, Zhou M, Dong X, Qu J, Gong F, Han Y, Qiu Y, Wang J, Liu Y, Wei Y, Xia J, Yu T,
4	Zhang X, Zhang L. Epidemiological and Clinical Characteristics of 99 Cases of 2019
5	Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study. Lancet 2020; 395:
6	507-513.
7	[5] Li B, Yang J, Zhao F, Zhi L, Wang X, Liu L, Bi Z, Zhao Y. Prevalence and Impact of
8	Cardiovascular Metabolic Diseases on COVID-19 in China. Clin Res Cardiol 2020; 109:
9	531-538.
10	[6] Guan WJ, Liang WH, Zhao Y, Liang HR, Chen ZS, Li YM, Liu XQ, Chen RC, Tang CL,
11	Wang T, Ou CQ, Li L, Chen PY, Sang L, Wang W, Li JF, Li CC, Ou LM, Cheng B,
12	Xiong S, Ni ZY, Xiang J, Hu Y, Liu L, Shan H, Lei CL, Peng YX, Wei L, Liu Y, Hu YH,
13	Peng P, Wang JM, Liu JY, Chen Z, Li G, Zheng ZJ, Qiu SQ, Luo J, Ye CJ, Zhu SY,
14	Cheng LL, Ye F, Li SY, Zheng JP, Zhang NF, Zhong NS, He JX, China Medical
15	Treatment Expert Group for COVID-19. Comorbidity and Its Impact on 1590 Patients
16	With COVID-19 in China: A Nationwide Analysis. Eur Respir J 2020; 55: 2000547.
17	[7] Ferrario CM, Jessup J, Chappell MC, Averill DB, Brosnihan KB, Tallant EA, Diz DI,
18	Gallagher PE. Effect of angiotensin-converting enzyme inhibition and angiotensin II
19	receptor blockers on cardiac angiotensin-converting enzyme 2. Circulation 2005; 111:
20	2605-2610.
21	[8] Yang G, Tan Z, Zhou L, Yang M, Peng L, Liu J, Cai JL, Yang R, Han J, Huang Y, He S.

1	7
T	1

1	Effects Of ARBs And ACEIs On Virus Infection, Inflammatory Status And Clinical
2	Outcomes In COVID-19 Patients With Hypertension: A Single Center Retrospective
3	Study. Hypertension 2020; 76: 51-58. doi: 10.1161/HYPERTENSIONAHA.120.15143.
4	[9] Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL,
5	Luzuriaga K, Greenough TC, Choe H, Farzan M. Angiotensin-converting enzyme 2 is a
6	functional receptor for the SARS coronavirus. Nature 2003; 426: 450-454.
7	[10] Mancia G, Rea F, Ludergnani M, Apolone G, Corrao G. Renin-Angiotensin-Aldosterone
8	System Blockers and the Risk of Covid-19. N Engl J Med 2020 May 1. doi:
9	10.1056/NEJMoa2006923. [Epub ahead of print].
10	[11] Diaz JH. Hypothesis: Angiotensin-Converting Enzyme Inhibitors and Angiotensin
11	Receptor Blockers May Increase the Risk of Severe COVID-19. J Travel Med 2020 Mar
12	18. doi: 10.1093/jtm/taaa041. Online ahead of print.
13	[12] Fang L, Karakiulakis G, Roth M. Are Patients With Hypertension and Diabetes Mellitus
14	at Increased Risk for COVID-19 Infection? Lancet Respir Med 2020; 8: e21.
15	[13] G O'Mara. Could ACE inhibitors, and particularly ARBs, Increase susceptibility to
16	COVID-19 infection? BMJ 2020; 368: m406.
17	[14] Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items
18	for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6:
19	e1000097.
20	[15] Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the
21	quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 2010; 25: 603-605.

1	[16] Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in
2	meta-analyses. BMJ 2003; 327: 557-560.
3	[17] Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002;
4	21: 1539-1558.
5	[18] Li J, Wang X, Chen J, Zhang H, Deng A. Association of Renin-Angiotensin System
6	Inhibitors With Severity or Risk of Death in Patients With Hypertension Hospitalized for
7	Coronavirus Disease 2019 (COVID-19) Infection in Wuhan, China. JAMA Cardiol 2020
8	Apr 23. doi: 10.1001/jamacardio.2020.1624. [Epub ahead of print].
9	[19] Mehta N, Kalra A, Nowacki AS, Anjewierden S, Han Z, Bhat P, Carmona-Rubio AE,
10	Jacob M, Procop GW, Harrington S, Milinovich A, Svensson LG, Jehi L, Young JB,
11	Chung MK. Association of Use of Angiotensin-Converting Enzyme Inhibitors and
12	Angiotensin II Receptor Blockers With Testing Positive for Coronavirus Disease 2019
13	(COVID-19). JAMA Cardiol 2020 May 5. doi: 10.1001/jamacardio.2020.1855. [Epub
14	ahead of print].
15	[20] Peng YD, Meng K, Guan HQ, Leng L, Zhu RR, Wang BY, He MA, Cheng LX, Huang K,
16	Zeng QT. [Clinical characteristics and outcomes of 112 cardiovascular disease patients
17	infected by 2019-nCoV]. Zhonghua Xin Xue Guan Bing Za Zhi 2020; 48: E004. [Article in
18	Chinese]
19	[21] Huang Z, Cao J, Yao Y, Jin X, Luo Z, Xue Y, Zhu C, Song Y, Wang Y, Zou Y, Qian J, Yu
20	K, Gong H, Ge J. The effect of RAS blockers on the clinical characteristics of
21	COVID-19 patients with hypertension. Ann Transl Med 2020; 8: 430.

1	[22] Zhang P, Zhu L, Cai J, Lei F, Qin JJ, Xie J, Liu YM, Zhao YC, Huang X, Lin L, Xia M,
2	Chen MM, Cheng X, Zhang X, Guo D, Peng Y, Ji YX, Chen J, She ZG, Wang Y, Xu Q,
3	Tan R, Wang H, Lin J, Luo P, Fu S, Cai H, Ye P, Xiao B, Mao W, Liu L, Yan Y, Liu M,
4	Chen M, Zhang XJ, Wang X, Touyz RM, Xia J, Zhang BH, Huang X, Yuan Y, Rohit L,
5	Liu PP, Li H. Association of Inpatient Use of Angiotensin Converting Enzyme Inhibitors
6	and Angiotensin II Receptor Blockers with Mortality Among Patients With Hypertension
7	Hospitalized With COVID-19. Circ Res 2020; 126: 1671-1681.
8	[23] Reynolds HR, Adhikari S, Pulgarin C, Troxel AB, Iturrate E, Johnson SB, Hausvater A,
9	Newman JD, Berger JS, Bangalore S, Katz SD, Fishman GI, Kunichoff D, Chen Y,
10	Ogedegbe G, Hochman JS. Renin-Angiotensin-Aldosterone System Inhibitors and Risk
11	of Covid-19. N Engl J Med 2020 May 1. doi: 10.1056/NEJMoa2008975. [Epub ahead of
12	print].
13	[24] Feng Y, Ling Y, Bai T, Xie Y, Huang J, Li J, Xiong W, Yang D, Chen R, Lu F, Lu Y, Liu
14	X, Chen Y, Li X, Li Y, Summah HD, Lin H, Yan J, Zhou M, Lu H, Qu J. COVID-19
15	with Different Severity: A Multicenter Study of Clinical Features. Am J Respir Crit Care
16	Med 2020; 201: 1380-1388.
17	[25] Meng J, Xiao G, Zhang J, He X, Ou M, Bi J, Yang R, Di W, Wang Z, Li Z, Gao H, Liu L,
18	Zhang G. Renin-angiotensin system inhibitors improve the clinical outcomes of
19	COVID-19 patients with hypertension. Emerg Microbes Infect 2020; 9: 757-760.
20	[26] de Abajo FJ, Rodríguez-Martín S, Lerma V, Mejía-Abril G, Aguilar M, García-Luque A,
21	Laredo L, Laosa O, Centeno-Soto GA, Gálvez MA, Puerro M, González-Rojano E,

1	Pedraza L, de Pablo I, Abad-Santos F, Rodríguez-Mañas L, Gil M, Tobías A, Rodrí
2	guez-Miguel A, Rodríguez-Puyol D, MED-ACE2-COVID19 study group. Use of
3	renin-angiotensin-aldosterone system inhibitors and risk of COVID-19 requiring
4	admission to hospital: a case-population study. Lancet 2020; 395: 1705-1714.
5	[27] Zeng Z, Sha T, Zhang Y, Wu F, Hu H, Li H, Han J, Song W, Huang Q, Chen Z.
6	Hypertension in patients hospitalized with COVID-19 in Wuhan, China: A single-center
7	retrospective observational study. <i>medRxiv preprint</i> 2020. doi:
8	10.1101/2020.04.06.20054825.
9	[28] Bean D, Kraljevic Z, Searle T, Bendayan R, Pickles A, Folarin A, Roguski L, Noor K,
10	Shek A, o'gallagher K, Zakeri R, Shah A, Teo J, Dobson RJB. ACE-inhibitors and
11	Angiotensin-2 Receptor Blockers are not associated with severe SARS- COVID19
12	infection in a multi-site UK acute Hospital Trust. medRxiv preprint 2020. doi:
13	10.1101/2020.04.07.20056788.
14	[29] Rentsch CT, Kidwai-Khan F, Tate JP, Park LS, King Jr JT, Skanderson M, Hauser RG,
15	Schultze A, Jarvis CI, Holodniy M, Re III VL, Akgun KM, Crothers K, Taddei TH,
16	Freiberg MS, Justice AC. Covid-19 Testing, Hospital Admission, and Intensive Care
17	Among 2,026,227 United States Veterans Aged 54-75 Years. medRxiv preprint 2020. doi:
18	10.1101/2020.04.09.20059964.
19	[30] Giorgi Rossi P, Marino M, Formisano D, Venturelli F, Vicentini M, Grilli R, The Reggio
20	Emilia COVID-19 Working Group. Characteristics and outcomes of a cohort of
21	SARS-CoV-2 patients in the Province of Reggio Emilia, Italy. medRxiv preprint 2020.

1	
Т	

doi: 10.1101/2020.04.13.20063545.

2	[31] Spiegeleer AD, Bronselaer A, Teo JT, Byttebier G, Tre GD, Belmans L, Dobson R,
3	Wynendaele E, Van De Wiele C, Vandaele F, Van Dijck D, Bean D, Fedson D,
4	Spiegeleer BD. The effects of ARBs, ACEIs and statins on clinical outcomes of
5	COVID-19 infection among nursing home residents. medRxiv preprint 2020. doi:
6	10.1101/2020.05.11.20096347.
7	[32] Khera R, Clark C, Lu Y, Guo Y, Ren S, Truax B, Spatz ES, Murugiah K, Lin Z, Omer
8	SB, Vojta D, Krumholz HM. Association of Angiotensin-Converting Enzyme Inhibitors
9	and Angiotensin Receptor Blockers with the Risk of Hospitalization and Death in
10	Hypertensive Patients with Coronavirus Disease-19. medRxiv preprint 2020. doi:
11	10.1101/2020.05.17.20104943.
12	[33] Liu Y, Huang F, Xu J, Yang P, Qin Y, Cao M, Wang Z, Li X, Zhang S, Ye L, Lv J, Wei J,
13	Xie T, Gao H, Xu KF, Wang F, Liu L, Jiang C. Anti-hypertensive Angiotensin II receptor
14	blockers associated to mitigation of disease severity in elderly COVID-19 patients.
15	medRxiv preprint 2020. doi: 10.1101/2020.03.20.20039586.
16	[34] Richardson S, Hirsch JS, Narasimhan M, Crawford JM, McGinn T, Davidson KW, the
17	Northwell COVID-19 Research Consortium; Barnaby DP, Becker LB, Chelico JD,
18	Cohen SL, Cookingham J, Coppa K, Diefenbach MA, Dominello AJ, Duer-Hefele J,
19	Falzon L, Gitlin J, Hajizadeh N, Harvin TG, Hirschwerk DA, Kim EJ, Kozel ZM,
20	Marrast LM, Mogavero JN, Osorio GA, Qiu M, Zanos TP. Presenting Characteristics,
21	Comorbidities, and Outcomes Among 5700 Patients Hospitalized With COVID-19 in the

/	h	0	
	Z	2	

1	New York City Area.	JAMA 2020;	323: 2052-2059.

[35] Guo T, Fan Y, Chen M, Wu X, Zhang L, He T, Wang H, Wan J, Wang X, Lu Z. 2 3 Cardiovascular Implications of Fatal Outcomes of Patients With Coronavirus Disease 2019 (COVID-19). JAMA Cardiol 2020; e201017. 4 5 [36] Yan H, Valdes AM, Vijay A, Wang S, Liang L, Yang S, Wang H, Tan X, Du J, Jin S, Huang K, Jiang F, Zhang S, Zheng N, Hu Y, Cai T, Aithal GP. Role of Drugs Affecting 6 the Renin-Angiotensin-Aldosterone System on Susceptibility and Severity of COVID-19: 7 A Large Case-Control Study from Zheijang Province, China. medRxiv preprint 2020. doi: 8 9 10.1101/2020.04.24.20077875. [37] Ip A, Parikh K, Parrillo JE, Mathura S, Hansen E, Sawczuk IS, Goldberg SL. 10 11 Hypertension and Renin-Angiotensin-Aldosterone System Inhibitors in Patients with Covid-19. medRxiv preprint 2020. doi: 10.1101/2020.04.24.20077388. 12 [38] Soler MJ, Barrios C, Oliva R, Batlle D. Pharmacologic modulation of ACE2 expression. 13 Curr Hypertens Rep 2008; 10: 410-414. 14 [39] Burchill LJ, Velkoska E, Dean RG, Griggs K, Patel SK, Burrell LM. Combination 15 16 Renin-Angiotensin System Blockade and Angiotensin-Converting Enzyme 2 in 17 Experimental Myocardial Infarction: Implications for Future Therapeutic Directions. Clin Sci (Lond) 2012; 123: 649-658. 18 [40] Rico-Mesa JS, White A, Anderson AS. Outcomes in Patients With COVID-19 Infection 19 20 Taking ACEI/ARB. Curr Cardiol Rep, 202; 22: 31. [41] Wang B, Li R, Lu Z, Huang Y. Does Comorbidity Increase the Risk of Patients With 21

1	COVID-19: Evidence From Meta-Analysis. Aging (Albany NY) 2020; 12: 6049-6057.
2	[42] Mantovani A, Beatrice G, Dalbeni A. Coronavirus Disease 2019 and Prevalence of
3	Chronic Liver Disease: A Meta-Analysis. Liver Int 2020 Apr 4. doi: 10.1111/liv.14465.
4	[43] Doulton TW. ACE inhibitor-angiotensin receptor blocker combinations: a clinician's
5	perspective. Mini Rev Med Chem 2006; 6: 491-497.
6	[44] Rico-Mesa JS, White A, Anderson AS. Outcomes in Patients with COVID-19 Infection
7	Taking ACEI/ARB. Curr Cardiol Rep 2020; 22: 31. doi:10.1007/s11886-020-01291-4.
8	[45] Quartuccio L, Sonaglia A, McGonagle D, Fabris M, Peghin M, Pecori D, Monte AD,
9	Bove T, Curcio F, Bassi F, Vita SD, Tascini C. Profiling COVID-19 Pneumonia
10	Progressing Into the Cytokine Storm Syndrome: Results From a Single Italian Centre
11	Study on Tocilizumab Versus Standard of Care. J Clin Virol 2020; 104444. doi:
12	10.1016/j.jcv.2020.104444.
13	[46] Wang X, Khaidakov M, Ding Z, Mitra S, Lu J, Liu S, Mehta JL. Cross-talk between
14	inflammation and angiotensin II: studies based on direct transfection of cardiomyocytes
15	with AT1R and AT2R cDNA. Exp Biol Med 2012; 237: 1394-1401.
16	[47] Liu J, Zhang PS, Yu Q, Liu L, Yang Y, Guo FM, Qiu HB. Losartan inhibits conventional
17	dendritic cell maturation and Th1 and Th17 polarization responses: Novel mechanisms
18	of preventive effects on lipopolysaccharide-induced acute lung injury. Int J Mol Med
19	2012; 29: 269-276.
20	[48] Aref A. Abdulhak B, Kashour T, Noman A, Tlayjeh H, Mohsen A, Al-Mallah MH,

21 Tleyjeh IM. Angiotensin Converting Enzyme Inhibitors and Angiotensin Receptor

\mathbf{A}	
· //	

1	Blockers and Outcome of COVID-19 : A Systematic Review and Meta-analysis.
2	medRxiv preprint 2020. doi: 10.1101/2020.05.06.20093260.
3	[49] Zhang X, Yu J, Pan L, Jiang HY. ACEI/ARB Use and Risk of Infection or Severity or
4	Mortality of COVID-19: A Systematic Review and Meta-analysis. Pharmacol Res 2020
5	May 15: 104927. doi: 10.1016/j.phrs.2020.104927.
6	[50] Ghosal S, Mukherjee Jagat J, Sinha B, Gangopadhyay KK. The effect of angiotensin
7	converting enzyme inhibitors and angiotensin receptor blockers on death and severity of
8	disease in patients with coronavirus disease 2019 (COVID-19): A meta-analysis.
9	medRxiv preprint 2020. doi: 10.1101/2020.04.23.20076661.
10	[51] American Heart Association (AHA), Heart Failure Society of America (HFSA) and
11	American College of Cardiology (ACC). Patients taking ACE-i and ARBs who contract
12	COVID-19 should continue treatment, unless otherwise advised by their physician.
13	2020.
14	[52] Wang Y, Moreira Mda C, Heringer-Walther S, Schultheiss HP, Siems WE, Wessel N,
15	Walther T. Beta blockers prevent correlation of plasma ACE2 activity with
16	echocardiographic parameters in patients with idiopathic dilated cardiomyopathy. J
17	Cardiovasc Pharmacol 2015; 65: 8-12.
18	
19	
20	

21 Figure legends

1 Figure 1. Flow diagram of study selection for this systematic review and meta-analysis.

2 Figure 2. Pooled results of meta-analyses for the association between ACEI/ARB use and risk 3 of COVID-19 infection. (A) Pooled crude OR for the comparison between ACEI use versus 4 non-ACEI use; (B) Pooled crude OR for the comparison between ARB use versus non-ARB 5 use; (C) Pooled crude OR for the comparison between ACEI/ARB use versus 6 non-ACEI/ARB use; (D) Pooled adjusted OR for the comparison between ACEI use versus 7 non-ACEI use; (E) Pooled adjusted OR for the comparison between ARB use versus non-ARB use; (F) Pooled adjusted OR for the comparison between ACEI/ARB use versus 8 non-ACEI/ARB use. 9

Figure 3. Pooled results of meta-analyses for the association between ACEI/ARB use and risk of hospital admission for COVID-19. (A) Pooled adjusted OR for the comparison between ACEI use versus non-ACEI use; (B) Pooled adjusted OR for the comparison between ARB use versus non-ARB use; (C) Pooled adjusted OR for the comparison between ACEI/ARB use versus non-ACEI/ARB use.

Figure 4. Pooled results of meta-analyses for the association between ACEI/ARB use and risk of severity of COVID-19 infection. (A) Pooled crude OR for the comparison between ACEI use versus non-ACEI use; (B) Pooled crude OR for the comparison between ARB use versus non-ARB use; (C) Pooled crude OR for the comparison between ACEI/ARB use versus non-ACEI/ARB use; (D) Pooled adjusted OR for the comparison between ACEI use versus non-ACEI use; (E) Pooled adjusted OR for the comparison between ARB use versus non-ACEI use; (E) Pooled adjusted OR for the comparison between ARB use versus non-ACEI use; (F) Pooled adjusted OR for the comparison between ACEI/ARB use versus

1 non-ACEI/ARB use.

- 2 Figure 5. Pooled results of meta-analyses for the association between ACEI/ARB use and risk
- 3 of death from COVID-19. (A) Pooled crude OR for the comparison between ACEI/ARB use
- 4 versus non-ACEI/ARB use; (B) Pooled adjusted OR for the comparison between ACEI/ARB
- 5 use versus non-ACEI/ARB use.

6

7 Tables

- 8 Table 1. Characteristics of included studies.
- 9 Table 2. Meta-analysis on the association between ACEI/ARB use and risk of infection,
- 10 hospital admission, severity, and death of COVID-19.
- 11
- 1
- 12
- 13
- 14
- 15
- 16
- 17
- _,
- 18
- 19

20

			27
1			

Table 1. Characteristics of included studies	έ.
--	----

First author	Year	Region	Race	Study design	Total	ACEI/ARB exposure	Non-ACEI/ARB exposure	Age (years)	Male/Female	Diagnostic criteria of COVID-19	Comorbidity	Comparison groups	Reported association outcome	Quality
Li J [18]	2020	China	Asian	Retrospective cohort	362	115	247	66.0 (59.0-73.0)	189/173	The diagnosis and treatment scheme for COVID-19 of Chinese (5th edition).	Hypertension (100%); Cerebrovascular disease (18.8%); Coronary heart disease(17.1%) ; Heart failure(2.8%); Diabetes (35.1%); Digestive disorder(21.5%); Respiratory disease(5.0%); Neurological disease(10.5%); Solid tumor(3.0%); Chronic renal disease(9.7%)	ACEI vs Non-ACEI; ARB vs Non-ARB; ACEI vs Other drugs; ARB vs Other drugs ACEI vs ARB ACEI vs ARB	Severity and death risk	Moderate
Mehta N[19]	2020	United States	Mixed	Retrospective cohort	18,472	2,285	16,187	49±21	7384/12725	Laboratory testing using RT-PCR	Diabetes(n=86); Coronary artery disease(n=58); Hypertension (n=186); Chronic obstructive pulmonary disease (n=46); Heart failure (n=52)	ACEI vs Non–ACEI; ARB vs Non–ARB; ACEI/ARB vs Non–ACEI/ARB	Infection and death risk	Moderate
Peng YD [20]	2020	China	Asian	Retrospective cohort	112	22	90	62.0 (55.0-67.0)	53/59	The diagnosis and treatment scheme for COVID-19 of Chinese (5th edition).	Hypertension (82.1%);Coronary heart disease (55.4%); Heart failure (35.7%); Diabetse (20.5%)	ACEI/ARB vs Non-ACEI/ARB	Death risk	Moderate
Huang Z [21]	2020	China	Asian	Retrospective	50	20	30	52.65±13.12 for ACEI/ARB exposure; 67.77±12.84 for Non-ACEI/ARE exposure	27/23	The diagnosis and treatment scheme for COVID-19 of Chinese (6th edition).	Diabetes(8.0%); Coronary heart disease(2.0%); Chronic obstructive pulmonary disease(2.0%); Anemia (2.0%)	ACEI/ARB vs Non-ACEI/ARB	Severity and death risk	Moderate

64 (55-68) for New Coronavirus Pneumonia ACEI/ARB Hypertension (100%); Diabetes (n=244); Coronary heart Prevention and Control disease (n=131); Chronic renal diseases (n=35); Zhang P Retrospective exposure; Program (5th edition) 118 940 603/525 ACEI/ARB vs Non-ACEI/ARB 2020 China 1128 Death risk High Asian [22] 64 (57-69) for published by the National Cerebrovascular diseases (n=41); Chronic liver disease cohort Non-ACEI/ARB Health Commission of China (n=21); Chronic obstructive pulmonary disease (n=6) and WHO interim guidance exposure 65 (57-72) for ACEI/ARB The Fifth Trial Version of the Hypertension (100%); Diabetes (30.2%); Respiratory disease Retrospective exposure; (4.7%); Kidney disease (2.4%); Hepatic disease (6.3%); ACEI/ARB vs Non-ACEI/ARB Severity and death risk Yang G [8] 2020 China Asian 126 43 83 62/64 Chinese National Health High 67 (62-75) for cohort Commission Cardiopathy (18.3%); Neurological disease (7.9%) non-ACEI/ARB exposure Positive nasopharyngeal swab specimens tested with at least 8071 for two real-time Mancia G Cardiovascular disease (23.1%); Respiratory disease (6.4%); ACEI vs Non-ACEI; 2020 Italy NA Case-control 37031 ACEI; NA NA 23371/13660 reverse-transcriptase-Infection risk High [10] Kidney disease (3.0%); Cancer (15.5%) ARB vs Non-ARB; 7304 for ARB polymerase-chain-reaction assays targeting different

genes of SARSCov-2.

Reynolds HR [23]	2020	United States	Mixed	Retrospective	12,594	1044 for ACEI; 1328 for ARB; 2319 for ACEI or ARB	NA	49 (34–63)	5229/7365	A series of SARS-CoV-2 RNA test	Hypertension (34.6%); Heart failure (6.2%); myocardial infarction (4.2%); Diabetes (18.0%); Chronic kidney disease (9.6%); Obstructive lung disease (14.6%)	ACEI vs Non-ACEI; ARB vs Non-ARB; ACEI/ARB vs Non-ACEI/ARB	Infection risk	High
Feng Y [24]	2020	China	Asian	Retrospective cohort	476	8 for ACEI; 27 for ARB; 33 for ACEI or ARB	NA	53(40-64)	271/205	The diagnosis and treatment scheme for COVID-19 of Chinese (5th edition).	Hypertension (23.7%); Cardiovascular disease (8.0%); Diabetes (10.3%); Malignancy (2.5%); Cerebrovascular disease (3.6%); Immunosuppression (1.5%); COPD (4.6%); Chronic nephropathy (0.8%); Others (21.6%)	ACEI vs Non-ACEI; ARB vs Non-ARB; ACEI/ARB vs Non-ACEI/ARB	Severity risk	Moderate
Meng J [25]	2020	China	Asian	Retrospective cohort	42	17	25	64.5 (55.8–69.0)	24/18	The guidelines established by the National Health Commission of the People's Republic of China.	Hypertension (100%); other comorbidities (not reported)	ACEI/ARB vs Non-ACEI/ARB	Death risk	Moderate
de Abajo FJ [26]	2020	Spain	NA	Case-control	12529	2432 for ACEI; 1860 for ARB	NA	75.3±12.3	7645/4884	a PCR-confirmed diagnosis of COVID-19	Hypertension (50.0%); Diabetes (20.9%); Dyslipidaemia (31.7%); Ischaemic heart disease (7.8%); Heart failure (3.8%); Atrial fibrillation (8.8%); Thromboembolic disease (2.7%); Cerebrovascular accident (5.1%); COPD (8.3%); Asthma (5.7%); Cancer (14.2%); Chronic renal failure (5.3%)	ACEI vs Non-ACEI; ARB vs Non-ARB	Infection risk	High
Zeng Z [27]	2020	China	Asian	Retrospective	75	28	47	67±11	35/40	the criteria of COVID-19 previously established by the WHO	Hypertension (100%)	ACEI/ARB vs Non-ACEI/ARB	Infection, severity and death risk	Moderate

Hypertension (53.8%); Diabetes(34.8%); HF(8.9%); Bean DM United Retrospective IHD(13.3%); COPD(10.1%); Asthma(14.1%); CKD(17.2%); ACEI/ARB vs Non-ACEI/ARB 2020 Mixed 1200 399 801 67.96±17.07 686/514 NA Death risk High Kingdom cohort Stroke/TIA(19.6%) 2778 for 1011 for Non-ACEI; ACEI; 3226 for Asthma (7.5%); Cancer(15.1%); Chronic kidney disease Infection, Hospitalization Rentsch United Retrospective PCR tested positive for (14.8%); COPD(26.2%); Diabetes (32.8%); Hypertension ACEI/ARB vs Non-ACEI/ARB 2020 Mixed 3789 563 for ARB; Non-ARB; 65.7 (60.5-70.7) 3417/372 High SARS-CoV-2 and ICU risk CT[29] States cohort 1532 for 2257 for (65.0%); Liver disease (12.3%); Vascular disease (28.9%) ACEI or ARB Non-ACEI or

31

ARB

[28]

Gior		2020	Italy	NA	Retrospective	2653	NA	NA	All age group	1328/1325	all symptomatic patients who tested positive with PCR	NA	ACEI vs Non-ACEI	Hospitalization and death	High
P[30] Spiej AD [geleer	2020	Belgium	NA	Retrospective	154	30	124	86±7	51/103	clinical grounds and/or PCR lab testing	Hypertension (25.3%); Diabetes(18.2%)	ACEI/ARB vs Non-ACEI/ARB	Infection and severity risk	High
Kher [32]	a R	2020	United States	Mixed	Retrospective	10196 2	3083 for ACEI; 1957 for ARB	NA	≥18	4675/5521	PCR tested positive for SARS-CoV-2	Hypertension (100%)	ACEI vs Others; ARB vs Others; ACEI vs ARB	Hospitalization and death risk	High
Liu Y	7 [33]	2020	China	Asian	Retrospective	46	2 for ACEI; 10 for ARB	NA	>65	NA	The diagnosis and treatment scheme for COVID-19 of	Hypertension (100%)	ACEI vs Non-ACEI; ARB vs Non-ARB	Severity risk	Moderate

Chinese

168 for ACEI; Richardson United Retrospective PCR tested positive for Hypertension (56.6%); Coronary artery disease(11.1%); 3437/2263 2020 Mixed 5700 245 for ARB; 953 63(52-75) ACEI/ARB vs Non-ACEI/ARB Death risk High SARS-CoV-2 S [34] COPD(5.4%); Cancer (6%) States cohort 413 for ACEI or ARB 168 for Hypertension (32.6%); CHD (11.2%); 19 for ACEI The interim guidance of Retrospective Guo T [35] 2020 Non-ACEI or 58.50±14.66 91/96 Cardiomyopathy(4.3%); Diabetes(15.0%); COPD (2.1%); ACEI/ARB vs Non-ACEI/ARB High China Asian 187 Death risk theWorldHealth Organization or ARB cohort ARB Malignant neoplasm (7.0%); Chronic kidney disease (3.2%) 5for ACEI; The diagnosis and treatment 53 for ARB; Diabetes(6.14%); Hypertension (20.28%); Cardio or ACEI vs Non-ACEI; Yan H [36] 2020 Case-control 49,277 48.75±14.19 23817/25460 scheme for COVID-19 of China NA Infection and severity risk High Asian 58 for ACEI cerebrovascular disease (1.3%); Tumour (2.0%) ARB vs Non-ARB Chinese (5th edition). or ARB 669 for Andrew Ip 460 for ACEI United Retrospective

NA

2020

States

[37]

NA

cohort

1129

or ARB

Non-ACEI or

ARB

NA

NA

32

Hypertension (100%)

ACEI/ARB vs Non-ACEI/ARB

Death risk

Moderate

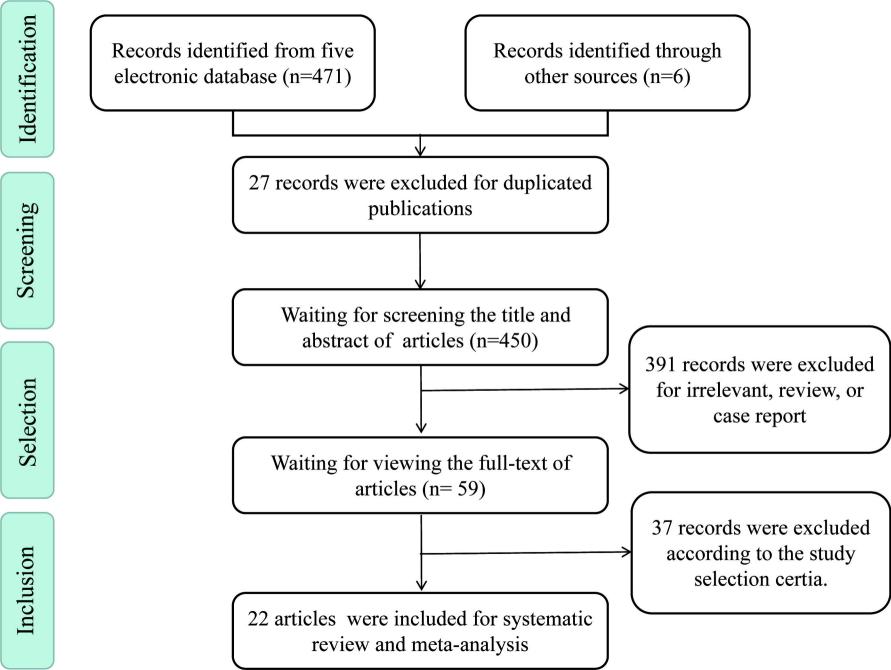
Subgroup	Number of studies	Crude OR	95%	6CI	Р	I2(%)	Model	Number of studies	Adjusted OR	959	%CI	Р	I2(%)	Model
Subgroup Analy	sis for Risk	of Infect	ion											
ACEI use vs non	-ACEI use													
Overall	4	1.27	0.95	1.69	0.103	91.9	R	4	0.94	0.87	1.01	0.106	0	F
Study design														
Case-control	2	1.16	1.08	1.24	< 0.001	12.2	F	2	0.96	0.86	1.06	0.381	0	F
Cohort	2	1.44	0.92	2.24	0.108	93.0	R	2	0.91	0.8	1.03	0.139	0	F
Region														
China	1	0.72	0.3	1.72	0.461	NA	NA	1	0.65	0.27	1.6	0.348	NA	NA
Italy	1	1.16	1.08	1.24	< 0.001	NA	NA	1	0.96	0.87	1.07	0.439	NA	NA
United States	2	1.44	0.92	2.24	0.108	93.0	R	2	0.91	0.8	1.03	0.139	0	F
Race														
Asian	1	0.72	0.3	1.72	0.461	NA	NA	1	0.65	0.27	1.6	0.348	NA	NA
Mixed	2	1.44	0.92	2.24	0.108	93.0	R	2	0.91	0.8	1.03	0.139	0	F
Unknown	1	1.16	1.08	1.24	< 0.001	NA	NA	1	0.96	0.87	1.07	0.439	NA	NA
Quality														
High	4	1.27	0.95	1.69	0.103	91.9	R	3	0.94	0.87	1.03	0.192	0	F
Moderate	0	NA	NA	NA	NA	NA	NA	1	0.89	0.72	1.10	0.281	NA	NA
ARB use vs non-	ARB use													
Overall	4	1.07	0.76	1.50	0.709	95.7	R	4	0.73	0.49	1.09	0.120	95.1	R

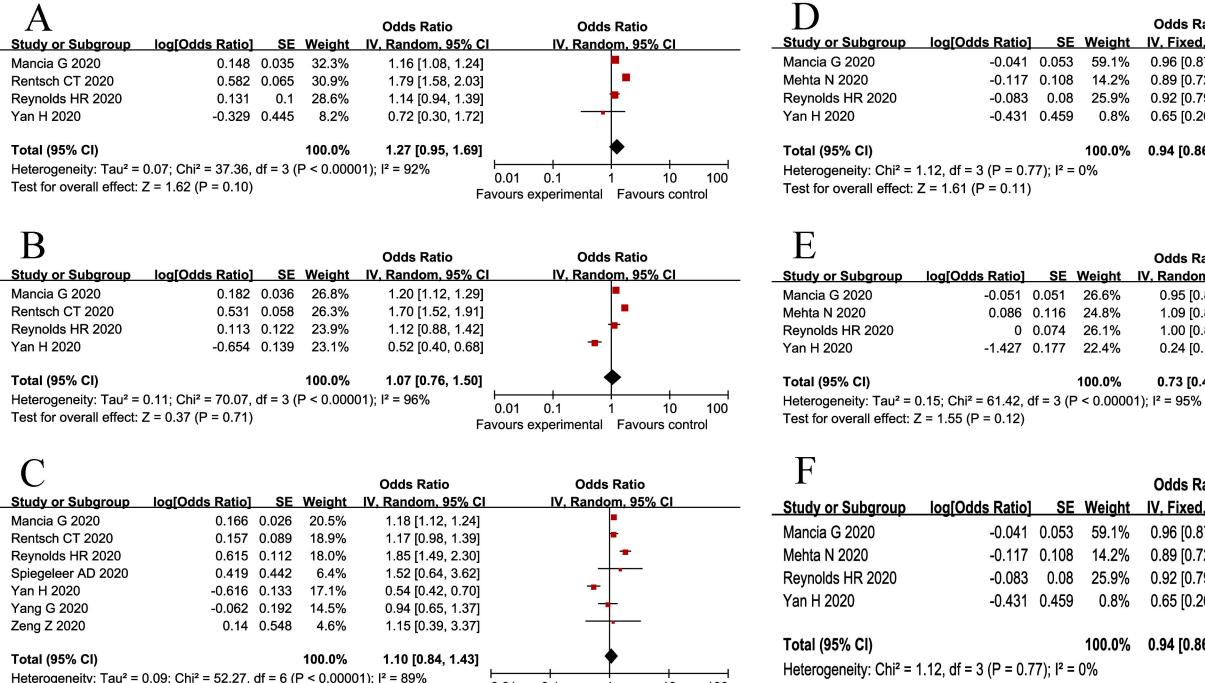
Table 2. Meta-analysis on the association between ACEI/ARB use and risk of infection, hospital admission, severity, and d	leath of COVID-19.
Tucie 2. New analysis on the association even rield; The ase and tish of interaction, hospital admission, severily, and e	

Case-control 2 0.80 0.35 1.81 0.59 97.0 R 2 0.48 0.13 1.86 0.289 98.2 R Cohort 2 1.40 0.93 2.10 0.107 89.5 R 2 1.03 0.91 1.16 0.688 0 F Region U U U U U U 0.48 0.13 1.86 0.289 98.2 R Cohort 2 1.40 0.93 2.10 0.107 89.5 R 2 1.03 0.91 1.16 0.688 0 F Region U U U China 1 0.52 0.40 0.68 <0.001 NA NA 1 0.95 0.86 1.05 0.314 NA NA Italy 1 1.20 1.12 1.29 <0.001 NA NA 1 0.95 0.86 1.05 0.314 NA NA	
Region China 1 0.52 0.40 0.68 <0.001 NA NA 1 0.24 0.17 0.34 <0.001 NA NA Italy 1 1.20 1.12 1.29 <0.001	
China 1 0.52 0.40 0.68 <0.001 NA NA 1 0.24 0.17 0.34 <0.001 NA NA Italy 1 1.20 1.12 1.29 <0.001	l
Italy 1 1.20 1.12 1.29 <0.001 NA NA 1 0.95 0.86 1.05 0.314 NA NA United States 2 1.40 0.93 2.10 0.107 89.5 R 2 1.03 0.91 1.16 0.688 0 F	
United States 2 1.40 0.93 2.10 0.107 89.5 R 2 1.03 0.91 1.16 0.688 0 F	4
	4
Race	ł
Asian 1 0.52 0.40 0.68 <0.001 NA NA 1 0.24 0.17 0.34 <0.001 NA NA	4
Mixed 2 1.40 0.93 2.10 0.107 89.5 R 2 1.03 0.91 1.16 0.688 0 F	ł
Unknown 1 1.20 1.12 1.29 <0.001 NA NA 1 0.95 0.86 1.05 0.314 NA NA	4
Quality	
High 4 1.07 0.76 1.50 0.709 95.7 R 3 0.64 0.38 1.06 0.083 96.6 R	
Moderate 0 NA NA NA NA NA NA 1 1.09 0.87 1.37 0.457 NA NA	4
ACEI/ARB use vs non-ACEI/ARB use	
Overall 7 1.10 0.84 1.43 0.488 88.6 R 6 0.96 0.91 1.01 0.142 5.8 F	ł
Study design	
Case-control 2 0.81 0.38 1.74 0.583 97.0 R 2 0.66 0.26 1.68 0.387 75.3 R	
Cohort 5 1.31 0.96 1.77 0.089 71.8 R 3 0.97 0.89 1.05 0.425 0 F	l
Region	
China 3 0.75 0.47 1.21 0.241 70.2 R 1 0.36 0.14 0.93 0.035 NA NA	4
United States 2 1.46 0.93 2.29 0.096 90.3 R 2 0.97 0.89 1.05 0.398 0 F	!
Belgium 1 1.52 0.64 3.61 0.343 NA NA 1 2.72 0.42 17.74 0.296 NA NA	A

Italy	1	1.18	1.12	1.24	< 0.001	NA	NA	1	0.96	0.89	1.03	0.273	NA	NA
Race														
Asian	3	0.75	0.47	1.21	0.241	70.2	R	1	0.36	0.14	0.93	0.035	NA	NA
Mixed	2	1.46	0.93	2.29	0.096	90.3	R	4	0.97	0.89	1.05	0.425	0	F
Unknown	2	1.18	1.12	1.24	< 0.001	0	F	1	0.96	0.89	1.03	0.273	NA	NA
Quality														
High	6	1.1	0.83	1.44	0.515	90.5	R	5	0.96	0.91	1.02	0.152	24.4	F
Moderate	1	1.15	0.39	3.37	0.799	NA	NA	1	0.97	0.81	1.16	0.733	NA	NA
Subgroup Analys	is for Risk	c of Hospi	ital Adr	nission										
ACEI use vs non-	ACEI use													
Overall	NA	NA	NA	NA	NA	NA	NA	3	1.29	1.07	1.57	0.009	62.4	R
Study design														
Case-control	NA	NA	NA	NA	NA	NA	NA	1	1.13	0.97	1.31	0.111	NA	NA
Cohort	NA	NA	NA	NA	NA	NA	NA	2	1.46	1.06	2.02	0.021	57.9	R
Region														
Italy	NA	NA	NA	NA	NA	NA	NA	1	1.30	1.11	1.52	0.001	NA	NA
United States	NA	NA	NA	NA	NA	NA	NA	1	1.84	1.22	2.78	0.004	NA	NA
Spain	NA	NA	NA	NA	NA	NA	NA	1	1.13	0.97	1.31	0.111	NA	NA
Race														
Mixed	NA	NA	NA	NA	NA	NA	NA	1	1.84	1.22	2.78	0.004	NA	NA
Unknown	NA	NA	NA	NA	NA	NA	NA	2	1.21	1.09	1.35	0.001	38.2	F
Quality														
High	NA	NA	NA	NA	NA	NA	NA	2	1.21	1.09	1.35	0.001	38.2	F

Moderate	NA	NA	NA	NA	NA	NA	NA	1	1.84	1.22	2.78	0.004	NA	NA
ARB use vs non-A	ARB use													
Overall	NA	NA	NA	NA	NA	NA	NA	2	1.69	1.46	1.96	< 0.001	0	F
Study design														
Case-control	NA	NA	NA	NA	NA	NA	NA	1	1.70	1.46	1.99	< 0.001	NA	NA
Cohort	NA	NA	NA	NA	NA	NA	NA	1	1.61	1.04	2.50	0.033	NA	NA
Region														
United States	NA	NA	NA	NA	NA	NA	NA	1	1.61	1.04	2.50	0.033	NA	NA
Spain	NA	NA	NA	NA	NA	NA	NA	1	1.70	1.46	1.99	< 0.001	NA	NA
Race														
Mixed	NA	NA	NA	NA	NA	NA	NA	1	1.61	1.04	2.50	0.033	NA	NA
Unknown	NA	NA	NA	NA	NA	NA	NA	1	1.70	1.46	1.99	< 0.001	NA	NA
Quality														
High	NA	NA	NA	NA	NA	NA	NA	1	1.70	1.46	1.99	< 0.001	NA	NA
Moderate	NA	NA	NA	NA	NA	NA	NA	1	1.61	1.04	2.5	0.033	NA	NA
ACEI/ARB use vs	s non-ACE	EI/ARB u	se											
Overall	NA	NA	NA	NA	NA	NA	NA	4	1.38	1.21	1.57	< 0.001	34.5	F
Study design														
Case-control	NA	NA	NA	NA	NA	NA	NA	1	1.39	0.93	2.07	0.107	NA	NA
Cohort	NA	NA	NA	NA	NA	NA	NA	3	1.45	1.11	1.88	0.006	56.3	R
Region														
United States	NA	NA	NA	NA	NA	NA	NA	2	1.59	1.03	2.44	0.035	57.7	R
Spain	NA	NA	NA	NA	NA	NA	NA	1	1.39	0.93	2.07	0.107	NA	NA

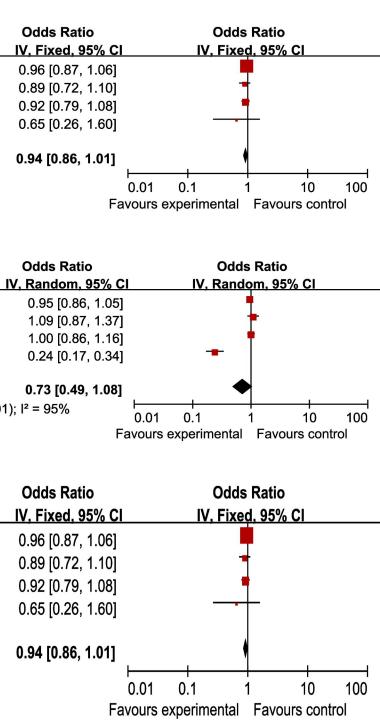

Italy	NA	NA	NA	NA	NA	NA	NA	1	1.30	1.11	1.52	0.001	NA	NA
Race														
Mixed	NA	NA	NA	NA	NA	NA	NA	2	1.59	1.03	2.44	0.035	57.7	R
Unknown	NA	NA	NA	NA	NA	NA	NA	2	1.31	1.14	1.52	< 0.001	0	F
Quality														
High	NA	NA	NA	NA	NA	NA	NA	3	1.31	1.14	1.50	< 0.001	0	F
Moderate	NA	NA	NA	NA	NA	NA	NA	1	1.93	1.38	2.71	< 0.001	NA	NA
Subgroup Analys	is for Risk	s of Sever	ity											
ACEI use vs non-	ACEI use	;												
Overall	5	1.01	0.63	1.60	0.982	75.3	R	2	0.90	0.72	1.14	0.939	0	F
Study design														
Case-control	1	0.91	0.69	1.21	0.510	NA	NA	1	0.90	0.71	1.14	0.374	NA	NA
Cohort	4	0.99	0.51	1.90	0.964	60.7	R	1	1.23	0.19	7.95	0.828	NA	NA
Region														
China	3	0.73	0.40	1.33	0.308	0	F	1	1.23	0.19	7.95	0.828	NA	NA
Italy	1	0.91	0.69	1.21	0.510	NA	NA	0	NA	NA	NA	NA	NA	NA
United States	1	1.63	1.34	1.99	0.001	NA	NA	1	0.90	0.71	1.14	0.374	NA	NA
Race														
Asian	3	0.73	0.4	1.33	0.308	0	F	1	1.23	0.19	7.95	0.828	NA	NA
Mixed	1	1.63	1.34	1.99	0.001	NA	NA	1	0.90	0.71	1.14	0.374	NA	NA
Unknown	1	0.91	0.69	1.21	0.510	NA	NA	0	NA	NA	NA	NA	NA	NA
Quality														

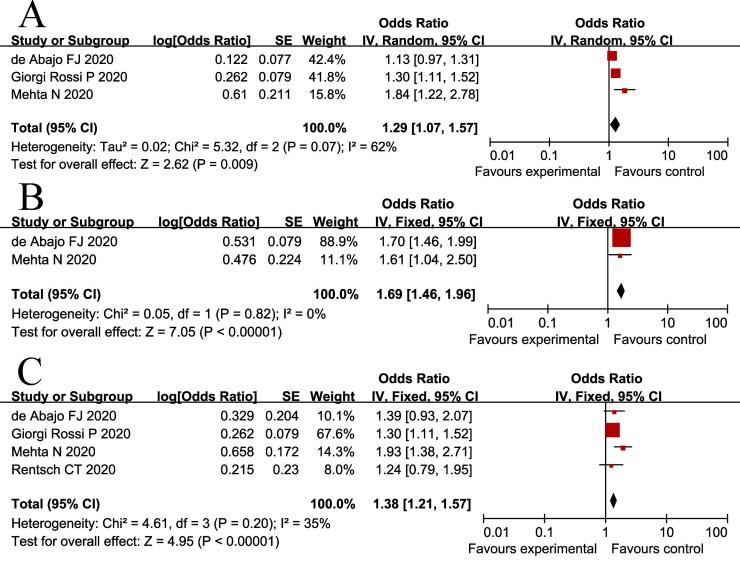

High	2	1.34	1.14	1.58	< 0.001	91.0	R	2	0.90	0.72	1.14	0.939	0	F
Moderate	3	0.73	0.4	1.33	0.308	0	F	0	NA	NA	NA	NA	NA	NA
ARB use vs non-A	ARB use													
Overall	5	0.75	0.41	1.39	0.090	91.8	R	3	0.91	0.74	1.13	0.409	45.8	F
Study design														
Case-control	1	0.83	0.63	1.10	0.190	NA	NA	1	0.77	0.36	1.64	0.498	NA	NA
Cohort	4	0.70	0.29	1.69	0.427	91.8	R	2	0.59	0.17	2.09	0.413	71.2	R
Region														
China	3	0.48	0.16	1.50	0.206	86.9	R	2	0.60	0.31	1.16	0.723	NA	NA
Italy	1	0.83	0.63	1.10	0.190	NA	NA	1	0.96	0.77	1.20	0.128	48.1	F
United States	1	1.76	1.47	2.10	< 0.001	NA	NA	0	NA	NA	NA	NA	NA	NA
Race														
Asian	3	0.48	0.16	1.50	0.206	86.9	R	2	0.60	0.31	1.16	0.723	NA	NA
Mixed	1	1.76	1.47	2.10	< 0.001	NA	NA	1	0.96	0.77	1.20	0.128	48.1	F
Unknown	1	0.83	0.63	1.10	0.190	NA	NA	0	NA	NA	NA	NA	NA	NA
Quality														
High	2	1.22	0.58	2.54	0.599	95.0	R	2	0.94	0.76	1.17	0.594	0	F
Moderate	3	0.48	0.16	1.50	0.206	86.9	R	1	0.25	0.06	1.01	0.052	NA	NA
ACEI/ARB use v	s non-ACE	I/ARB u	se											
Overall	11	0.75	0.48	1.17	0.201	88.7	R	4	0.9	0.77	1.05	0.197	27.6	F
Study design														
Case-control	1	0.87	0.71	1.06	0.173	NA	NA	1	0.82	0.41	1.65	0.578	NA	NA
Cohort	10	0.72	0.41	1.27	0.255	87.0	R	3	0.62	0.27	1.38	0.239	50.8	R

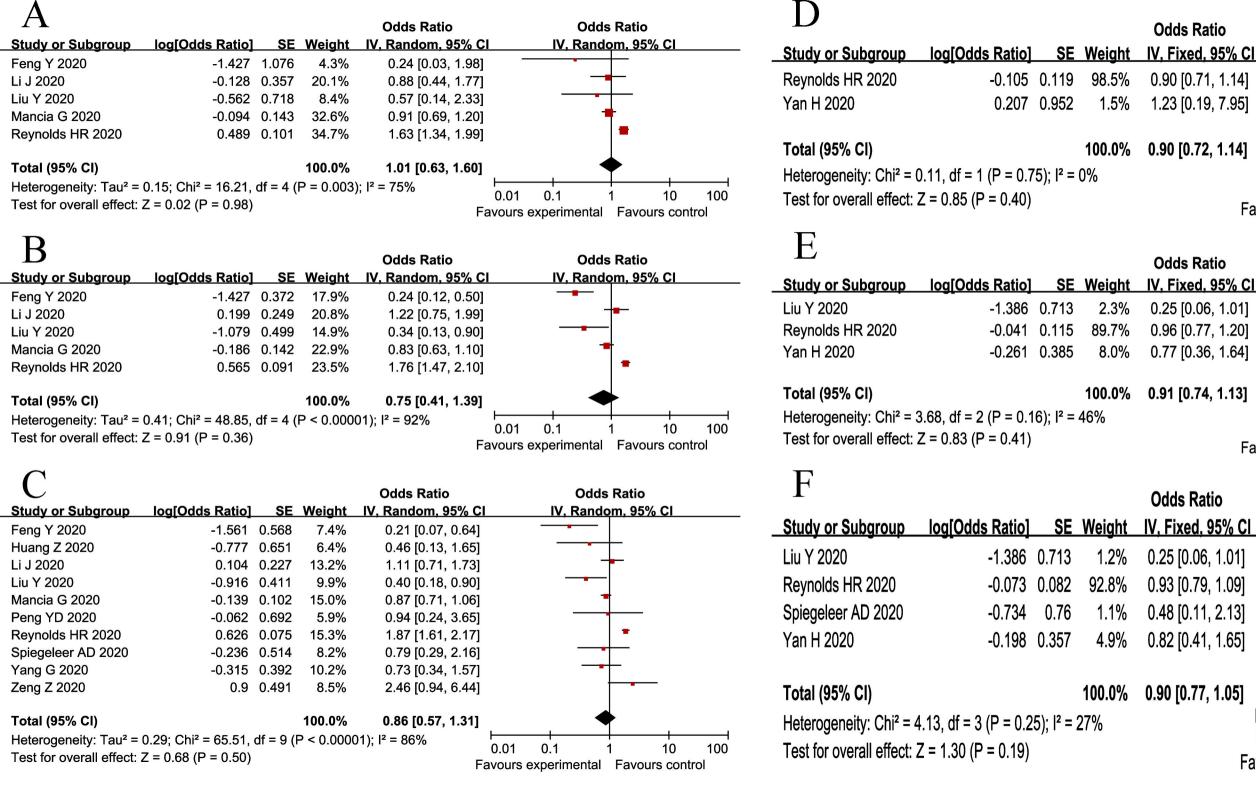
Region														
China	8	0.61	0.34	1.09	0.093	73.8	R	2	0.53	0.17	1.63	0.269	55.0	R
United States	1	1.87	1.62	2.16	< 0.001	NA	NA	1	0.93	0.79	1.09	0.377	NA	NA
Belgium	1	0.79	0.29	2.16	0.647	NA	NA	1	0.48	0.11	2.13	0.334	NA	NA
Italy	1	0.87	0.71	1.06	0.173	NA	NA	0	NA	NA	NA	NA	NA	NA
Race														
Asian	8	0.61	0.34	1.09	0.093	73.8	R	2	0.53	0.17	1.63	0.269	55.0	R
Mixed	1	1.87	1.62	2.16	< 0.001	NA	NA	1	0.93	0.79	1.09	0.377	NA	NA
Unknown	2	0.87	0.71	1.06	0.154	0	F	1	0.48	0.11	2.13	0.334	NA	NA
Quality														
High	4	1.05	0.59	1.88	0.860	92.6	R	3	0.92	0.79	1.07	0.279	0	F
Moderate	7	0.59	0.30	1.17	0.129	77.5	R	1	0.25	0.06	1.01	0.052	NA	NA
Subgroup Analysi	is for Risk	s of Death	l											
ACEI use vs non-	ACEI use	<u>.</u>												
Overall	2	0.51	0.19	1.38	0.185	74.6	R	2	0.52	0.15	1.82	0.307	93.8	R
Study design														
Case-control	0	NA	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA	NA
Cohort	2	0.51	0.19	1.38	0.185	74.6	R	2	0.52	0.15	1.82	0.307	93.8	R
Region														
China	1	0.91	0.38	2.18	0.832	NA	NA	0	NA	NA	NA	NA	NA	NA
Italy	0	NA	NA	NA	NA	NA	NA	1	0.97	0.70	1.35	0.857	NA	NA
Multiple areas	1	0.33	0.20	0.54	< 0.001	NA	NA	1	0.27	0.16	0.46	< 0.001	NA	NA
Race														

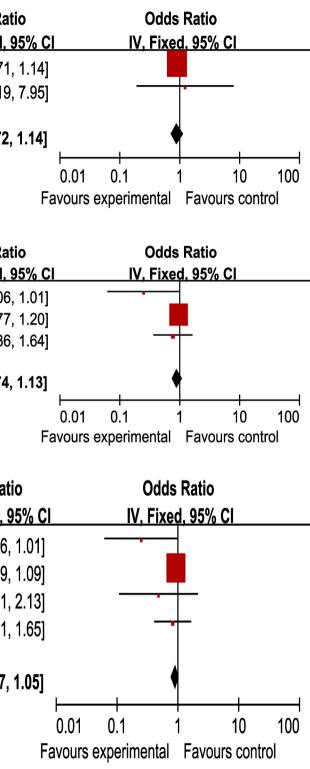
Asian	1	0.91	0.38	2.18	0.832	NA	NA	0	NA	NA	NA	NA	NA	NA	
Mixed	1	0.33	0.20	0.54	< 0.001	NA	NA	1	0.27	0.16	0.46	< 0.001	NA	NA	
Unknown	0	NA	NA	NA	NA	NA	NA	1	0.97	0.70	1.35	0.857	NA	NA	
Quality															
High	1	0.33	0.20	0.54	< 0.001	NA	NA	2	0.52	0.15	1.82	0.307	93.8	R	
Moderate	1	0.91	0.38	2.18	0.832	NA	NA	0	NA	NA	NA	NA	NA	NA	
ARB use vs non-A	RB use														
Overall	2	1.1	0.81	1.49	0.531	39.5	F	NA	NA	NA	NA	NA	NA	NA	
Study design															
Case-control	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Cohort	2	1.1	0.81	1.49	0.531	39.5	F	NA	NA	NA	NA	NA	NA	NA	
Region															
China	1	0.77	0.41	1.44	0.412	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Multiple areas	1	1.23	0.87	1.74	0.242	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Race															
Asian	1	0.77	0.41	1.44	0.412	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Mixed	1	1.23	0.87	1.74	0.242	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Quality															
High	1	1.23	0.87	1.74	0.242	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Moderate	1	0.77	0.41	1.44	0.412	NA	NA	NA	NA	NA	NA	NA	NA	NA	
ACEI/ARB use vs	non-ACI	EI/ARB u	se												
Overall	11	0.87	0.66	1.15	0.322	57.0	R	5	0.51	0.31	0.84	0.009	78.4	R	
Study design															

Case-control	0	NA	NA	NA	NA	NA	NA	0	NA	NA	NA	NA	NA	NA
Cohort	11	0.87	0.66	1.15	0.322	57.0	R	5	0.51	0.31	0.84	0.009	78.4	R
Region														
China	6	0.74	0.42	1.30	0.299	32.5	F	2	0.36	0.17	0.77	0.009	0	F
United States	3	1.05	0.61	1.82	0.866	85.6	R	0	NA	NA	NA	NA	NA	NA
United Kingdom	1	0.83	0.64	1.07	0.155	NA	NA	1	0.63	0.47	0.84	0.002	NA	NA
Multiple areas	1	0.65	0.18	2.34	0.510	NA	NA	1	0.27	0.16	0.46	< 0.001	NA	NA
Italy	0	NA	NA	NA	NA	NA	NA	1	0.97	0.70	1.35	0.857	NA	NA
Race														
Asian	6	0.74	0.42	1.30	0.299	32.5	F	2	0.36	0.17	0.77	0.009	0	F
Mixed	4	1.06	0.76	1.50	0.719	56.9	R	2	0.43	0.19	0.97	0.043	86.8	R
Unknown	1	0.66	0.51	0.86	0.002	NA	NA	1	0.97	0.70	1.35	0.857	NA	NA
Quality														
High	5	0.88	0.59	1.34	0.571	75.9	R	5	0.51	0.31	0.84	0.009	78.4	R
Moderate	6	0.73	0.59	0.92	0.006	23.9	F	0	NA	NA	NA	NA	NA	NA

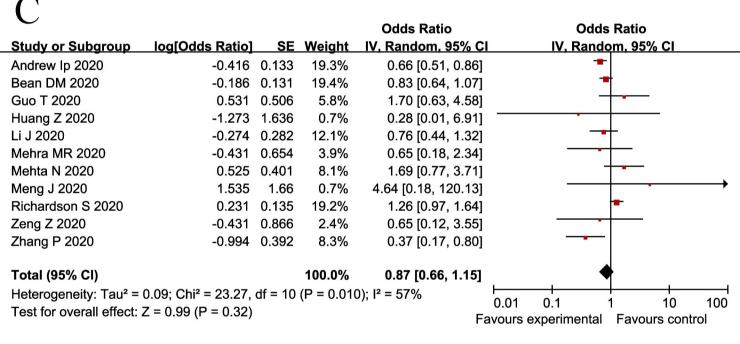

Test for overall effect: Z = 0.69 (P = 0.49)


0.01 0.1 Favours experimental Favours control


10


100

Test for overall effect: Z = 1.61 (P = 0.11)



Γ							
				Odds Ratio	Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95% CI	IV, Random, 95% Cl		
Li J 2020	-0.094	0.444	43.5%	0.91 [0.38, 2.17]			
Mehra MR 2020	-1.109	0.253	56.5%	0.33 [0.20, 0.54]			
Total (95% CI)			100.0%	0.51 [0.19, 1.38]			
Heterogeneity: Tau ² = (0.38; Chi² = 3.95, df	= 1 (P	= 0.05); l ²	= 75%			
Test for overall effective	zrinat ¢log 31ttps:#doi.p80/1	0.1101/2	2020.07.02.20	0144717; this version posted	90013, 2020. The copyright holder for this preprint Wouvers increases the avenue in construction of the second sec		
(which was	It is	made a	vailable unde	er a CC-BY-NC-ND 4.0 Inter	national license.		
Л							
В							
_				Odds Ratio	Odds Ratio		
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Fixed, 95% CI	IV, Fixed, 95% Cl		
Li J 2020	-0.261	0.319	23.5%	0.77 [0.41, 1.44]	<u></u>		
Mehra MR 2020	0.207	0.177	76.5%	1.23 [0.87, 1.74]			
Total (95% CI)			100.0%	1.10 [0.81, 1.49]	•		
Heterogeneity: $Chi^2 = 1.65$, $df = 1$ (P = 0.20); $l^2 = 39\%$							
Test for overall effect: Z = 0.63 (P = 0.53)					0.01 0.1 1 10 100		
				Fav	ours experimental Favours control		

D			Odds Ratio	Odds Ratio				
Study or Subgroup	log[Odds Ratio] SE	Weight	IV, Random, 95% Cl	IV, Random, 95% Cl				
Giorgi Rossi P 2020	-0.03 0.169	51.3%	0.97 [0.70, 1.35]	+				
Mehra MR 2020	-1.309 0.269	48.7%	0.27 [0.16, 0.46]					
Total (95% CI)		100.0%	0.52 [0.15, 1.82]					
Heterogeneity: Tau ² = 0.77; Chi ² = 16.21, df = 1 (P < 0.0001); I ² = 94%								
Test for overall effect: 2	Z = 1.02 (P = 0.31)	F	avours experimental Favours control					
				nne pradicije ine prestanjenova kontere. U 146 0 00 vijitalje je objektiva ka				

				Odds Ratio	Odds Ratio			
Study or Subgroup	log[Odds Ratio]	SE	Weight	IV, Random, 95%	CI IV, Random, 95% CI			
Bean DM 2020	-0.462 0	.148	27.3%	0.63 [0.47, 0.84	4] —			
Giorgi Rossi P 2020	-0.03 0	.169	26.6%	0.97 [0.70, 1.3	5] 🕂			
Mehra MR 2020	-1.309 0	.269	22.6%	0.27 [0.16, 0.4	6]			
Yang G 2020	-1.139 0	.784	7.9%	0.32 [0.07, 1.49	9]			
Zhang P 2020	-0.994 0	.454	15.5%	0.37 [0.15, 0.9	0]			
Total (95% Cl)			100.0%	0.51 [0.31, 0.84	4]			
Heterogeneity: Tau ² = 0.22; Chi ² = 18.57, df = 4 (P = 0.0010); $I^2 = 78\%$								
Test for overall effect: Z	2 = 2.62 (P = 0.009)		0.01 0.1 1 10 100 Favours experimental Favours control					