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Abstract 
Objectives: Microbial resistance exhibits dependency patterns between different antibiotics, 
termed cross-resistance and collateral sensitivity. These patterns differ between 
experimental and clinical settings. It is unclear whether the differences result from biological 
reasons or from confounding, biasing results found in clinical settings. We set out to 
elucidate the underlying dependency patterns between resistance to different antibiotics 
from clinical data, while accounting for patient characteristics and previous antibiotic usage.  
Methods:  Additive Bayesian network modelling was employed to simultaneously estimate 
relationships between variables in a dataset of bacterial cultures derived from hospitalized 
patients and tested for resistance to multiple antibiotics. Data contained resistance results, 
patient demographics, and previous antibiotic usage, for five bacterial species: E. coli 
(n=1054), K. pneumoniae (n=664), P. aeruginosa (n=571), CoNS (n=495), and P. mirabilis 
(n=415). 
Results: All links between resistance to the various antibiotics were positive. Multiple direct 
links between resistance of antibiotics from different classes were observed across bacterial 
species. For example, resistance to gentamicin in E.coli  was directly linked with resistance 
to ciprofloxacin (OR = 8.39, 95%CI[5.58, 13.30]) and sulfamethoxazole-trimethoprim (OR = 
2.95, 95%CI[1,97, 4.51]). In addition, resistance to various antibiotics was directly linked with 
previous antibiotic usage. 
Conclusions:  Robust relationships among resistance to antibiotics belonging to different 
classes, as well as resistance being linked to having taken antibiotics of a different class, 
exist even when taking into account multiple covariate dependencies. These relationships 
could help inform choices of antibiotic treatment in clinical settings. 

  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.07.02.20144006doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.02.20144006
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 

Introduction 
The increase in antibiotic resistance frequencies of bacterial pathogens is leading to an 
ever-growing burden on healthcare systems, in terms of costs for newer drugs, extended 
hospital stays, and increased followup visits, as well as increased cost in terms of lost 
productivity and mortality.1,2 According to a new report by the United States Centers for 
Disease Control, annually in the USA, 2.8 million people suffer from infections that are 
resistant to antibiotics, resulting in 35,000 deaths per year. They reported that 
multidrug-resistant P. aeruginosa, one of the bacterial species examined in the present 
paper, was estimated to cause nearly 10% of the deaths attributable to antibiotic resistant 
bacteria and over $750M dollars in direct healthcare costs in the USA in 2017.3 Hence, 
understanding the nature of the relationships among patient covariates and the resistance to 
the different drugs in the current arsenal of antibiotics is crucial. 
 
Beyond well studied, patient-related, predictors for antibiotic resistance, such as age, 
patients’ independence status, previous antibiotic usage, and more,4–6 resistance to different 
antibiotics is often not independent. Cross-resistance, for instance, refers to the existence of 
positive associations between resistance to different antibiotics across bacterial pathogens. 
Such dependencies are a phenomenon known for nearly as long as antibiotics have been 
available,7 with the mechanisms behind it numerous.8 
 
Cross-resistance can occur due to inherent biological attributes of bacterial pathogens, when 
antibiotics have similar mechanisms of action and hence shared mechanisms of resistance; 
cross-resistance between chemically dissimilar antibiotics can also occur due to horizontal 
gene transfer of genetic elements coding for resistance to multiple antibiotics.9 Conversely, 
there is also evidence of cross-sensitivity, or collateral sensitivity, where negative 
associations between resistance to different antibiotics are observed. However, while 
collateral sensitivity has been demonstrated in laboratory experiments,10–13 when examining 
cultures obtained from patients in a hospital setting, it appears that host factors induce 
mostly positive correlations between resistance to different antibiotics.8 As a result of the 
complex relationships of resistance among different antibiotics, examining resistance to a 
single antibiotic or even pairs of antibiotics is insufficient. A multivariate approach which 
allows multiple drug resistances as dependent variables is warranted to allow uncovering the 
underlying structure of the observed resistance patterns, which can include conditional 
dependencies between the antibiotics. One such approach, that we utilize in this paper, is 
additive Bayesian network (ABN) modelling.14–16 
 
ABN modelling is a purely data-driven approach to inferring underlying probabilistic structure 
of a set of variables. By essentially searching all possible directed acyclic graphs (DAGs) 
linking a set of variables, evidence for potential causal links can be revealed from the data 
without making strong prior assumptions. An approach with few prior assumptions regarding 
dependencies is of great utility in this area, where resistance to many different drugs and the 
presence of several important covariates need to be analyzed, but no strong hypotheses 
regarding many of the connections are available. The method has been successfully applied 
in veterinary studies of disease,17 as well as to antibiotic resistance in animals.18–20 A related 
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Bayesian approach was employed in a study of meticillin-resistant Staphylococcus aureus 
transmission in humans.21 However, to our knowledge, the present application is the first 
time ABN has been used in a study of antibiotic resistance to infer cross-resistance patterns 
in human infections. 
 
In this study, we employed ABN modelling to explore the interrelationships among bacterial 
resistance to several antibiotics, using data from bacterial cultures obtained from a single 
hospital in Israel. We used ABN modeling separately on each of the five bacterial species 
most frequent in our dataset, to examine predictors of resistance and the interrelationships 
among the antibiotics tested. (See Supplementary material for an illustrative example of the 
advantage of ABN modelling of cross-resistance compared to traditional regression 
approaches.) 

Materials and methods 

Ethics 
The study was approved by the Helsinki Committee of Rabin Medical Center. 

Data 
We obtained data pertaining to bacterial cultures drawn in Rabin Medical Center, Israel, from 
2013-05-01 to 2015-12-31. The corresponding demographics, previous hospitalizations, and 
previous in-hospital antibiotic usage in the year prior to the infection, of patients from whom 
the cultures were drawn, were also available. Bacterial cultures were tested for antibiotic 
resistance for an array of antibiotics which had varying rates of resistance, and results of 
non-susceptibility and resistance were combined into a ‘resistant’ category. Bacterial 
infections were considered nosocomial if infections occurred >48 hours after admission. A 
summary of these variables is presented in Table 1. For our analyses, we selected the five 
bacterial species with the largest sample sizes available in the dataset: Escherichia coli, 
Klebsiella pneumoniae, Pseudomonas aeruginosa, Proteus mirabilis, and 
Coagulase-negative staphylococci (CoNS). 
 
Table 1:  Descriptive statistics of patients and bacterial isolates. 
 

 E. coli 
(n=1054) 

K. pneumoniae 
(n=664) 

P. 
aeruginosa 

(n=571) 

P. mirabilis 
(n=415) 

CoNS 
(n=495) 

Age: Mean (SD) 76.7 (14.8) 73.5 (15.0) 71.7 (16.1) 74.8 (14.1) 72.8 (18.0) 

Female 568 (53.9%) 251 (37.8%) 197 (34.5%) 131 (31.6%) 221 (44.6%) 

T.F.aminoglycoside 142 (13.5%) 137 (20.6%) 120 (21.0%) 101 (24.3%) 90 (18.2%) 

T.F.fluoroquinolone 268 (25.4%) 214 (32.2%) 142 (24.9%) 97 (23.4%) 136 (27.5%) 

T.F.betalactam 515 (48.9%) 468 (70.5%) 437 (76.5%) 271 (65.3%) 305 (61.6%) 
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T.F.other 406 (38.5%) 354 (53.3%) 380 (66.5%) 237 (57.1%) 268 (54.1%) 

Hosp: Mean (SD) 2.05 (1.29) 2.68 (1.10) 2.91 (1.11) 2.91 (1.29) 2.41 (1.19) 

Nosocomial 237 (22.5%) 244 (36.7%) 344 (60.2%) 198 (47.7%) 196 (39.6%) 

Polymicrobial culture 192 (18.2%) 225 (33.9%) 289 (50.6%) 213 (51.3%) 35 (7.1%) 

Amikacin  93 (14.0%)    

Ampicillin 858 (81.4%)     

Ceftazidime   74 (13.0%)   

Cefuroxime    233 (56.1%)  

Chloramphenicol     239 (48.3%) 

Ciprofloxacine 523 (49.6%) 389 (58.6%)  241 (58.1%)  

Erythromycin     328 (66.3%) 

Fusidic acid     218 (44.0%) 

Gentamicin 216 (20.5%) 279 (42.0%) 87 (15.2%) 219 (52.8%) 196 (39.6%) 

Imipenem   91 (15.9%)   

Ofloxacin     291 (58.8%) 

Oxacillin     366 (73.9%) 

Sulf-Trim 534 (50.7%)   279 (67.2%) 253 (51.1%) 

Note: T.F. prefix denotes having taken an antibiotic from the given class; Hosp = Log of the 
number of days hospitalized in the prior year plus 1; Sulf-Trim = 
sulfamethoxazole-trimethoprim. Antibiotics listed refer to resistance to those antibiotics. 

Statistical analysis 
We selected which antibiotics to include in the analysis by keeping only those with minimal 
missing data and which did not reduce the number of complete cases appreciably (<10% 
loss). We performed some variable selection to assure stable statistical models with no 
perfect or near-perfect separation, by not including perfectly or near perfectly correlated 
antibiotics and selecting only antibiotics which contained a minimum of 3% resistance in 
each bacterial subsample. Variables excluded from analysis are presented in Table 2, along 
with their tetrachoric correlations with the relevant included variables. This resulted in 
analysis of between three and seven antibiotics for the five bacterial species, each analyzed 
separately. When constructing the ABN, the following covariates were included, in addition 
to the antibiotic resistance variables: demographic variables (age, sex, and days hospitalized 
in the previous year), binary culture type variables (nosocomial and polymicrobial), and a 
binary variable for antibiotic use in hospital in the previous year. Antibiotics used were first 
grouped into classes and the three most frequent classes across the entire dataset were 
included, along with whether any other antibiotics were taken which did not belong to the 
three largest classes. The classes were aminoglycosides, fluoroquinolones, betalactams, 
and other antibiotics not part of these three classes. The rationale of using binary indicators 
for prior treatment relied on antibiotics differing in their course lengths, due to variables such 
as the dosage, mechanism of action, and administration route. Due to our aggregation of 
antibiotics into broad classes, and missing data regarding administration route, we chose to 
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represent the treatment data using a binary indicator. Table 1 presents summary statistics 
for all variables used in our models. 
 
Data were analyzed using ABN modelling,14,15 with version 2.1 of the R package abn 16 on an 
R 3.6.1 installation.22 Briefly, ABN modelling is a purely data-driven, exploratory approach, 
originating in machine learning, that is often used for hypothesis generation for causation 
among a set of variables. By essentially searching all possible directed acyclic graphs 
(DAGs) linking a set of variables, a model for the dependency of the variables in the data 
can be inferred without making strong prior assumptions. This model, depicted in a DAG, 
shows which variables are directly connected, or linked, via arcs, and the coefficients of 
these arcs are directly analogous to the adjusted odds ratios obtained from multiple logistic 
regression analysis. While no assumptions of causal relationships are required, we restricted 
the model space to disallow causal paths that made no sense for our study: (1) sex could 
only cause other variables and not be caused by any other variable, (2) age at testing could 
be caused by sex but no other variable, (3) the four variables for antibiotics given in the 
previous year could only be caused by age and sex and no other variable, (4) hospitalization 
in the prior year could not be caused by presence of nosocomial infection but could be 
caused by any other variable, (5) nosocomial infection could not be caused by resistance to 
any drug but can be caused by any other variable; and (6) polymicrobial cultures as well as 
all drug resistances could be caused by any of the variables. In addition, no causal paths 
were forced to be in the model. 
 
There are several steps involved when implementing an ABN analysis. We first used the 
exact search method to determine the maximum number of parents (i.e., nodes that have an 
arc causing another node) needed for any child (i.e., variable caused by another variable) in 
the model, above which there was no improvement in likelihood, by repeatedly running the 
exact search and setting the maximum number of parents between one and six. Never were 
more than four parents needed (see Supplementary Table S1). Next, we used a parametric 
bootstrapping approach to correct for overfitting.23 This was done by simulating 1000 
samples of the same size as in the original data, by feeding the ABN model chosen (which 
arcs were present and their parameter estimates) to the JAGS software, version 4.3.0.24 This 
produces random samples generated from the parameter estimates of the chosen model. 
These samples were each analyzed with ABN in exactly the same way as performed initially. 
Next, we examined each of the 1000 ABN models and retained only those arcs present in a 
majority (at least 50%) of them, a common cutoff as suggested by the ABN developers.14 
Supplementary Table S1 contains the number of arcs present in the model both before and 
after bootstrapping. Finally, we ran ABN on the original dataset constraining the model to 
only include the selected consensus arcs.This final model was used to produce 95% 
Bayesian credible intervals for each of the parameter estimates, which are analogous to 
coefficients from logistic regression models, i.e., the OR of the effect of parent (independent) 
on child (dependent) variable. Due to the existence of topologies that are equivalent in terms 
of likelihood in Bayesian networks,20,25–30 we present the models’ arcs and their 
corresponding parameters, but do not interpret their direction. 
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Results 
Before fitting the ABNs, we removed antibiotic variables which were nearly identical in their 
resistance patterns. This yielded expected results between similar antibiotics but also some 
extremely high associations between antibiotics of different classes. For example, we found 
that in all cultures where they were tested, the betalactams ceftazidime, ceftriaxone, and 
cefuroxime were all perfectly inter-correlated, and ertapenem and piperacillin were nearly 
perfectly correlated with them. However, amikacin and ampicillin were nearly perfectly 
correlated in the E.coli dataset, yet are members of different drug classes. These and 
additional highly correlated pairs of antibiotics can be found in Table 2. It is important to note 
that the results derived below are practically identical for members of the antibiotic pairs 
presented in Table 2. 
 
Table 2: Antibiotic resistances excluded from analysis due to redundancies or 
missing data, along with their tetrachoric correlations with highly-correlated included 
variables 

Dataset Antibiotic removed 
Antibiotic it is correlated 
with 

Tetrachoric 
correlation 

E.coli Amikacin Ampicillin 0.97 

E.coli Ceftazidime Cefuroxime 1.00 

E.coli Ceftriaxone Cefuroxime 1.00 

E.coli Cefuroxime Ciprofloxacin 0.79 

E.coli Cefuroxime Ofloxacin 1.00 

E.coli Ertapenem Cefuroxime 0.94 

K. pneumoniae Ceftazidime Cefuroxime 1.00 

K. pneumoniae Ceftriaxone Cefuroxime 1.00 

K. pneumoniae Ertapenem Cefuroxime 0.94 

K. pneumoniae Cefuroxime Ciprofloxacin 0.82 

K. pneumoniae Sulf-Trim Ciprofloxacin 0.78 

 
We present the final ABNs estimated from our data, for five bacterial species, in Figures 1 
through 5. Each arc in the plots represents an estimated direct link between the variables, 
where adjacent numbers are the parameter estimates of the OR of this link, along with their 
95% credible intervals. In addition, these values are presented in equation form in 
Supplementary Tables 2-6, which includes the directionality of the arcs. Notably, none of the 
credible intervals contained the value one, i.e. no association, although this is not a required 
condition by the Bayesian network structure discovery algorithm.14 This strengthens the 
notion that the connections found by our models are robust. 
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Figure 1:  ABN model for E. coli. Arcs denote direct links between variables and adjacent 
values are ORs derived from the model, along with their 95% credible intervals (see Table 
S2). Nodes with antibiotic names denote resistance to those antibiotics (enclosed in the light 
grey rectangle [green in the color online version]). T.F. prefix denote variables indicating 
having taken an antibiotic from the given class in the prior year (enclosed in the dark grey 
rectangle [red in the color online version]); Hosp = log(days hospitalized + 1); Poly = 
polymicrobial culture; AMP = ampicillin; CIP = ciprofloxacin; GEN = gentamicin; Sulf-Trim = 
sulfamethoxazole-trimethoprim; Sex=male. 
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Figure 2:  ABN model for K. pneumoniae. Arcs denote direct links between variables, and 
adjacent values are ORs derived from the model, along with their 95% credible intervals (see 
Table S3). Nodes with antibiotic names denote resistance to those antibiotics (enclosed in 
the light grey rectangle [green in the color online version]). T.F. prefix denotes variables 
indicating having taken an antibiotic from the given class in the prior year (enclosed in the 
dark grey rectangle [red in the color online version]); Hosp = log(days hospitalized + 1); Poly 
= polymicrobial culture; AMK = amikacin; CIP = ciprofloxacin; GEN = gentamicin. 
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Figure 3 : ABN model for P. aeruginosa. Arcs denote direct links between variables, and 
adjacent values are ORs derived from the model, along with their 95% credible intervals (see 
Table S4). Nodes with antibiotic names denote resistance to those antibiotics (enclosed in 
the light grey rectangle [green in the color online version]). T.F. prefix denotes variables 
indicating having taken an antibiotic from the given class in the prior year (enclosed in the 
dark grey rectangle [red in the color online version]); Hosp = log(days hospitalized + 1); Poly 
= polymicrobial culture; CAZ = ceftazidime; GEN = gentamicin; IPM = imipenem; Sex=male. 
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Figure 4:  ABN model for P. mirabilis. Arcs denote direct links between variables, and 
adjacent values are ORs derived from the model, along with their 95% credible intervals (see 
Table S5). Nodes with antibiotic names denote resistance to those antibiotics (enclosed in 
the light grey rectangle [green in the color online version]). T.F. prefix denotes variables 
indicating having taken an antibiotic from the given class in the prior year (enclosed in the 
dark grey rectangle [red in the color online version]); Hosp = log(days hospitalized + 1); Poly 
= polymicrobial culture; CXM = cefuroxime; CIP = ciprofloxacin; GEN = gentamicin; Sulf-Trim 
= sulfamethoxazole-trimethoprim; Sex=male. 
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Figure 5 : Directed acyclic graph of the final reduced model for CoNS. Arcs denote direct 
links between variables, and adjacent values are ORs derived from the model, along with 
their 95% credible intervals (see Table S6). Nodes with antibiotic names denote resistance 
to those antibiotics (enclosed in the light grey rectangle [green in the color online version]). 
T.F. prefix denotes variables indicating having taken an antibiotic from the given class in the 
prior year (enclosed in the dark grey rectangle [red in the color online version]); Hosp = 
log(days hospitalized + 1); Poly = polymicrobial culture; CHL = chloramphenicol; ERY = 
erythromycin; Fusid = fusidic acid; GEN = gentamicin; OFX = ofloxacin; OXA = oxacillin; 
Sulf-Trim = sulfamethoxazole-trimethoprim; Sex=male. 
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To summarize the analyses across the five bacterial species examined, we constructed a 
matrix of all possible arcs present in any of the five models (see Supplementary Figure 1). 
Within each cell, we present the number of models which contained the corresponding arc 
over the number of analyses which could have contained that arc (that is, counting datasets 
in which both variables were present). For ease of interpretation, variables which appeared 
in only a single model were then omitted (Figure 6). Importantly, the signs of all coefficients, 
when arcs were found, were consistent throughout the analysis of all five datasets. That is, 
no link between variables was found negative for a certain bacterial species and positive in 
another. 
 
Figure 6:  Consistency matrix showing proportion of models which contain a given arc. Each 
cell presents the proportion of models containing both variables and having a direct link 
between them (negative representing OR < 1). Shading represents the proportion of models 
containing the arc (in color in the online version). All signs of links were consistent between 
the datasets and shown in the figure. Variables which appear in only one of the 5 bacterial 
species datasets were omitted for clarity (but are found in Figure S1). Sex = male; T.F. prefix 
denotes having taken an antibiotic from the given class; Hosp = log(days hospitalized + 1); 
Poly = polymicrobial culture; CIP = ciprofloxacin; GEN = gentamicin; Sulf-Trim = 
sulfamethoxazole-trimethoprim.  

 
 
The most important results from our analyses were the direct connections found between 
resistance to different antibiotics. These were consistently positive throughout all 
antibiotics and all bacterial species (Figures 1-5) . This implies that even when 
accounting for the possible connections between the different variables, acquisition of 
resistance to a certain antibiotic only served to enhance the probability of resistance to other 
antibiotics in our data.  
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.07.02.20144006doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.02.20144006
http://creativecommons.org/licenses/by-nc-nd/4.0/


14 

Interestingly, we found several robust links between antibiotics of different classes. Direct 
links from different antibiotic classes to gentamicin were especially prevalent. Gentamicin 
and sulfamethoxazole-trimethoprim were directly linked in the E. coli (Figure 1) and P. 
mirabilis (Figure 4) datasets. Furthermore, gentamicin resistance was directly linked to 
resistance to several betalactam antibiotics. It was directly linked to both resistance to 
ceftazidime and imipenem (Figure 3) in the P. aeruginosa dataset and to cefuroxime (Figure 
4) in the P. mirabilis dataset. Gentamicin resistance was also directly linked to resistance to 
ciprofloxacin, a fluoroquinolone, in the E. coli, K. pneumoniae, and P. mirabilis datasets 
(Figures 1, 2, and 4, respectively). Additionally, sulfamethoxazole-trimethoprim, was directly 
linked to ciprofloxacin in both datasets where they were tested (E. coli, Figure 1; P. mirabilis, 
Figure 4). 
 
In all bacterial species we found a positive, direct link between having taken a betalactam, 
aminoglycoside, or “other” (i.e., any antibiotic not a member of the three classes which were 
most frequently used) antibiotic in the prior year, with days hospitalized in the prior year. In 
addition, three out of five of the analyses found a relationship between days hospitalized in 
the prior year and having taken a fluoroquinolone antibiotic. These relationships are 
somewhat expected, as more days spent at the hospital likely positively associated with 
having received antibiotic treatment, and vice versa. 
 
Age and sex were only directly linked in the P. mirabilis dataset (Figure 4), with females 
being older at the time of the bacterial infection. When analyzing E. coli (Figure 1), K. 
pneumoniae (Figure 2), and CoNS (Figure 5), we found that older people were less likely to 
be prescribed an antibiotic in the “other” category. Older people were also less likely to be 
prescribed a betalactam in the CoNS model (Figure 5). Males were more likely to be 
prescribed aminoglycosides (E. Coli, Figure 1; P. mirabilis, Figure 4; CoNS, Figure 5), 
betalactams and other antibiotics (E. Coli, Figure 1; P. mirabilis, Figure 4), and 
fluoroquinolones (E. Coli, Figure 1). Additionally, males had infections with increased 
resistance to ciprofloxacin in the E. coli dataset (Figure 1), and to ceftazidime in the P. 
aeruginosa dataset (Figure 3). Resistance to cefuroxime was also positively linked to age in 
the E. coli dataset.  
 
Having a nosocomial infection was directly linked to the presence of multiple bacteria in the 
culture in nearly all bacterial species, as has been shown,31,32 with CoNS being the one 
exception. This is plausible, as CoNS are often isolated as a result of culture 
contamination,33 and their presence might be associated with a decreased probability of the 
culture yielding other bacterial species. Correspondingly, the presence of additional bacterial 
species in a sample containing CoNS was less frequent than in all other bacterial species 
(7%, see Table 1). Nosocomial infection was also related to the number of days hospitalized 
during the prior year in all five bacterial species. This is expected, since acquiring a 
nosocomial infection by definition entails that the patient was hospitalized beforehand. 
Additionally, nosocomial infections were directly linked to having taken a fluoroquinolone in 
the P. aeruginosa dataset (Figure 3) and having taken an aminoglycoside in the E. coli 
dataset (Figure 1). Polymicrobial cultures were only directly linked to decreased resistance 
to one drug (ciprofloxacin) in only one bacterial species (P. mirabilis, Figure 4). 
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Discussion 
We have performed an additive Bayesian network analysis in an attempt to uncover the 
underlying dependency structure among patient covariates, measures of antibiotic use, and 
different antibiotic resistance types, in cultures of five bacterial species. Such an analysis 
has the advantage of not only shedding light on the relationships between all pairs of 
variables examined, but can identify which variables are directly linked rather than only 
having indirect associations. 
 
All the connections between resistance to antibiotics identified by our statistical models, in all 
examined bacterial species, indicated positive associations. That is, resistance to a certain 
antibiotic was never found to decrease resistance to other antibiotics. Furthermore, some of 
the associations between resistance to different antibiotics were so strong they could not be 
included in the ABN models without causing numerical issues. This is expected with very 
similar antibiotics, but surprisingly appeared between antibiotics of different classes as well 
(Table 2). 
 
Altogether, our results appear at odds with recent experimental findings. Although 
cross-resistance is prevalent in experimental settings, even between different classes of 
antibiotics, collateral sensitivity is also often observed.10–13,34 Nevertheless, as opposed to 
experimental data, clinical findings usually identify positive associations between resistance 
of different antibiotics.35 However, the reasons for the discrepancy between the experimental 
and clinical results may be hard to elucidate due to the potential presence of confounders in 
observational, clinical data. By using ABN modelling, we made a step towards resolving this 
problem and obtained estimates that reflect innate cross-resistance patterns rather than 
heavily confounded associations. Hence, our results strengthen the notion that at least some 
of the cross-resistance patterns observed in clinical settings relate to innate bacterial 
mechanisms of resistance acquisition. For instance, the direct cross-resistance we identified 
between fluoroquinolones and macrolides, between beta-lactams and aminoglycosides, and 
between aminoglycosides and quinolones, have been previously demonstrated in other 
clinical settings.36–38  Some other direct links in our models conform with prior biological and 
clinical knowledge: infections occurring within hospitals are expected to have a higher 
chance of containing several organisms than community acquired infections, and indeed 
nosocomial infections have been shown to be associated with polymicrobial cultures.39 
Moreover, resistance of E.coli to ciprofloxacin and of various gram-negative bacteria to third 
generation cephalosporins has been shown to be higher in males.40,41 Although hypotheses 
regarding the reasons for this association have been suggested, e.g., different ages of 
hospitalizations due to urinary tract infections or avoidance of certain antibiotics during 
pregnancy, its definitive reason remains unclear.  
 
Our results could have practical implications on strategies of antibiotic treatment. Knowledge 
of predictors for antibiotic resistance, and in particular for cross-resistance and previous 
antibiotic usage, is important for tailoring efficient antibiotic treatment regimes to patients. 
Combination therapy, for example, where a patient is treated with multiple antibiotics 
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simultaneously, has been shown to yield beneficial results to mitigate resistance.37,42,43 
However, the efficiency of combination therapy can be hampered by acquisition of multiple 
antibiotic resistance in the infecting bacteria. By having estimates of risks for 
cross-resistance based on patient demographics and previous antibiotic usage, we can 
mitigate this risk and seek to treat with combinations of antibiotics which have lower 
probability of cross-resistance. Alternatively, if such drug combinations are unavailable, 
attention could be focused on identifying new drugs meeting those needs in the future. 
 
Moreover, our results could be used to suggest appropriate drugs for population-level 
alternating or cycling regimes of antibiotic therapy, which have been hypothesized in various 
settings as a way to reduce emergence of antibiotic resistance.44–46 Suggestions for selecting 
such drugs using estimates inferred from ABNs take into account the clinical characteristics 
of the patients and circulating bacterial strains. Hence, ABNs can identify patterns of 
cross-resistance which might be different than those obtained in vitro and can provide 
additional information about the potential efficiency of different antibiotic regimes. For 
example, alternating between gentamicin and cefuroxime has been offered as a treatment 
strategy against E.coli based on in vitro estimates,10 but our results suggest that these are 
directly linked and that ampicillin should have lower cross-resistance with gentamicin (Table 
2 and Figure 1). 
 
However, a limitation of our study is that our data lack previous exposure to antibiotics 
outside the hospital. Potentially, patients could have been exposed to antibiotic treatment in 
the community rather than during hospitalization, introducing noise into our estimates of the 
effects of previous antibiotic usage. However, our previous study on a similar dataset 
showed that prior antibiotic use in the hospital is a strong predictor for antibiotic resistance 
which can yield high accuracy predictions even without outpatient antibiotic use.5 
Additionally, the consistency of our estimates between bacterial species, as well as relatively 
narrow coverage of the estimated CIs, indicate that our results should be robust to these 
missing data.  
 
To conclude, our study provides estimates for cross-resistance between different antibiotics 
in bacterial pathogens isolated in clinical settings. By using an ABN model, we control for 
confounders and provide results for direct and indirect links between different patient 
characteristics and antibiotic resistance. Although our analysis does not provide direct 
causal effect estimates, it presents a step towards studying causal effects on antibiotic 
resistance patterns. Revealing the dependency structures of multiple variables 
simultaneously instead of analysing associations affecting a single dependent variable 
should provide more robust and less spurious relationships between variables. Hence, our 
results should be of utility in decision making regarding antibiotic treatments strategies. 

Funding 
This research was supported by the Tel Aviv University Data-Science Center. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.07.02.20144006doi: medRxiv preprint 

https://www.zotero.org/google-docs/?tjlSIo
https://www.zotero.org/google-docs/?Fz5ex7
https://www.zotero.org/google-docs/?ZND1RF
https://www.zotero.org/google-docs/?TPcIdC
https://doi.org/10.1101/2020.07.02.20144006
http://creativecommons.org/licenses/by-nc-nd/4.0/


17 

References 
1. Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin 
Microbiol Infect 2016; 22: 416–22. 
2. Rodríguez-Rojas A, Rodríguez-Beltrán J, Couce A, Blázquez J. Antibiotics and antibiotic 
resistance: a bitter fight against evolution. Int J Med Microbiol IJMM 2013; 303: 293–7. 
3. Anon. Antibiotic Resistance Threats in the United States. Atlanta, GA, USA: Department 
of Health and Human Services, CDC; 2019. Available at: 
http://dx.doi.org/10.15620/cdc:82532. 
4. Yelin I, Snitser O, Novich G, et al.  Personal clinical history predicts antibiotic resistance of 
urinary tract infections. Nat Med 2019; 25: 1143–52. 
5. Lewin-Epstein O, Baruch S, Hadany L, Stein G, Obolski U. Predicting antibiotic resistance 
in hospitalized patients by applying machine learning to electronic medical records. medRxiv 
2020: 2020.06.03.20120535. 
6. Chatterjee A, Modarai M, Naylor NR, et al. Quantifying drivers of antibiotic resistance in 
humans: a systematic review. Lancet Infect Dis 2018; 18: e368–78. 
7. Anon. CROSS RESISTANCE TO ANTIBIOTICS. J Am Med Assoc  1952; 148: 470–1. 
8. Obolski U, Dellus-Gur E, Stein GY, Hadany L. Antibiotic cross-resistance in the lab and 
resistance co-occurrence in the clinic: Discrepancies and implications in E.coli. Infect Genet 
Evol J Mol Epidemiol Evol Genet Infect Dis 2016; 40: 155–61. 
9. Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of 
antibiotic resistance. Nat Rev Microbiol 2015; 13: 42–51. 
10. Imamovic L, Sommer MOA. Use of Collateral Sensitivity Networks to Design Drug 
Cycling Protocols That Avoid Resistance Development. Sci Transl Med 2013; 5: 
204ra132-204ra132. 
11. Pál C, Papp B, Lázár V. Collateral sensitivity of antibiotic-resistant microbes. Trends 
Microbiol 2015; 23: 401–7. 
12. Lázár V, Nagy I, Spohn R, et al. Genome-wide analysis captures the determinants of the 
antibiotic cross-resistance interaction network. Nat Commun 2014; 5: 4352. 
13. Munck C, Gumpert HK, Wallin AIN, Wang HH, Sommer MOA. Prediction of resistance 
development against drug combinations by collateral responses to component drugs. Sci 
Transl Med 2014; 6: 262ra156-262ra156. 
14. Kratzer G, Lewis FI, Comin A, Pittavino M, Furrer R. Additive Bayesian Network 
Modelling with the R Package abn. ArXiv Prepr ArXiv191109006 2019. 
15. Lewis FI, Ward MP. Improving epidemiologic data analyses through multivariate 
regression modelling. Emerg Themes Epidemiol 2013; 10: 4. 
16. Kratzer G, Pittavino M, Lewis FI, Furrer R. abn: an R package for modelling multivariate 
data using additive Bayesian networks. 2019. Available at: 
https://CRAN.R-project.org/package=abn. 
17. Ruchti S, Meier AR, Würbel H, Kratzer G, Gebhardt-Henrich SG, Hartnack S. 
Pododermatitis in group housed rabbit does in Switzerland—Prevalence, severity and risk 
factors. Prev Vet Med  2018; 158: 114–21. 
18. Ludwig A, Berthiaume P, Boerlin P, Gow S, Léger D, Lewis FI. Identifying associations in 
Escherichia coli antimicrobial resistance patterns using additive Bayesian networks. Prev Vet 
Med 2013; 110: 64–75. 
19. Hartnack S, Odoch T, Kratzer G, et al.  Additive Bayesian networks for antimicrobial 
resistance and potential risk factors in non-typhoidal Salmonella isolates from layer hens in 
Uganda. BMC Vet Res 2019; 15: 212. 
20. Hidano A, Yamamoto T, Hayama Y, et al. Unraveling Antimicrobial Resistance Genes 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.07.02.20144006doi: medRxiv preprint 

https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://doi.org/10.1101/2020.07.02.20144006
http://creativecommons.org/licenses/by-nc-nd/4.0/


18 

and Phenotype Patterns among Enterococcus faecalis Isolated from Retail Chicken 
Products in Japan. PLoS ONE 2015; 10. Available at: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4363150/. Accessed February 17, 2020. 
21. Waterhouse M, Morton A, Mengersen K, Cook D, Playford G. Role of overcrowding in 
meticillin-resistant Staphylococcus aureus transmission: Bayesian network analysis for a 
single public hospital. J Hosp Infect 2011; 78: 92–6. 
22. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, 
Austria: R Foundation for Statistical Computing; 2019. Available at: 
https://www.R-project.org/. 
23. Friedman N, Goldszmidt M, Wyner A. Data Analysis with Bayesian Networks: A 
Bootstrap Approach. ArXiv13016695 Cs Stat 2013. Available at: 
http://arxiv.org/abs/1301.6695. Accessed April 21, 2020. 
24. Plummer M. JAGS: A program for analysis of Bayesian graphical models using Gibbs 
sampling. Proc 3rd Int Workshop Distrib Stat Comput 2003; 124: 1–10. 
25. Lewis FI, McCormick BJJ. Revealing the Complexity of Health Determinants in 
Resource-poor Settings. Am J Epidemiol 2012; 176: 1051–9. 
26. Poon AFY, Lewis FI, Pond SLK, Frost SDW. Evolutionary Interactions between N-Linked 
Glycosylation Sites in the HIV-1 Envelope. PLoS Comput Biol 2007; 3. Available at: 
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1779302/. Accessed February 17, 2020. 
27. Poon AFY, Lewis FI, Pond SLK, Frost SDW. An Evolutionary-Network Model Reveals 
Stratified Interactions in the V3 Loop of the HIV-1 Envelope. PLoS Comput Biol 2007; 3. 
Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2082504/. Accessed February 
17, 2020. 
28. Poon AFY, Lewis FI, Frost SDW, Kosakovsky Pond SL. Spidermonkey: rapid detection 
of co-evolving sites using Bayesian graphical models. Bioinformatics 2008; 24: 1949–50. 
29. Lycett SJ, Ward MJ, Lewis FI, Poon AFY, Kosakovsky Pond SL, Brown AJL. Detection of 
Mammalian Virulence Determinants in Highly Pathogenic Avian Influenza H5N1 Viruses: 
Multivariate Analysis of Published Data. J Virol 2009; 83: 9901–10. 
30. Milns I, Beale CM, Smith VA. Revealing ecological networks using Bayesian network 
inference algorithms. Ecology 2010; 91: 1892–9. 
31. Siegman-Igra Y, Kulka T, Schwartz D, Konforti N. Polymicrobial and monomicrobial 
bacteraemic urinary tract infection. J Hosp Infect 1994; 28: 49–56. 
32. Weinstein MP, Reller LB, Murphy JR. Clinical importance of polymicrobial bacteremia. 
Diagn Microbiol Infect Dis 1986; 5: 185–96. 
33. Altindis M, Koroglu M, Demiray T, et al. A Multicenter Evaluation of Blood Culture 
Practices, Contamination Rates, and the Distribution of Causative Bacteria. Jundishapur J 
Microbiol 2016; 9. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834024/. 
Accessed April 22, 2020. 
34. Adamus-Białek W, Wawszczak M, Arabski M, et al. Ciprofloxacin, amoxicillin, and 
aminoglycosides stimulate genetic and phenotypic changes in uropathogenic Escherichia 
coli strains. Virulence 2019; 10: 260–76. 
35. Chang H-H, Cohen T, Grad YH, Hanage WP, O’Brien TF, Lipsitch M. Origin and 
Proliferation of Multiple-Drug Resistance in Bacterial Pathogens. Microbiol Mol Biol Rev 
2015; 79: 101–16. 
36. Hwang TJ, Hooper DC. Association between fluoroquinolone resistance and resistance 
to other antimicrobial agents among Escherichia coli urinary isolates in the outpatient setting: 
a national cross-sectional study. J Antimicrob Chemother 2014; 69: 1720–2. 
37. Monedero I, Caminero JA. Management of multidrug-resistant tuberculosis: an update. 
Ther Adv Respir Dis 2010; 4: 117–27. 
38. Tsukamoto N, Ohkoshi Y, Okubo T, et al.  High Prevalence of Cross-Resistance to 
Aminoglycosides in Fluoroquinolone-Resistant Escherichia coli Clinical Isolates. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.07.02.20144006doi: medRxiv preprint 

https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://doi.org/10.1101/2020.07.02.20144006
http://creativecommons.org/licenses/by-nc-nd/4.0/


19 

Chemotherapy 2013; 59: 379–84. 
39. Yo C-H, Hsein Y-C, Wu Y-L, et al. Clinical predictors and outcome impact of 
community-onset polymicrobial bloodstream infection. Int J Antimicrob Agents 2019; 54: 
716–22. 
40. Lee DS, Choe H-S, Kim HY, et al. Role of age and sex in determining antibiotic 
resistance in febrile urinary tract infections. Int J Infect Dis 2016; 51: 89–96. 
41. Livermore DM, Nichols T, Lamagni TL, Potz N, Reynolds R, Duckworth G. 
Ciprofloxacin-resistant Escherichia coli from bacteraemias in England; increasingly prevalent 
and mostly from men. J Antimicrob Chemother 2003; 52: 1040–2. 
42. REX Consortium. Heterogeneity of selection and the evolution of resistance. Trends Ecol 
Evol 2013; 28: 110–8. 
43. Vandamme A-M, Camacho RJ, Ceccherini-Silberstein F, et al. European 
Recommendations for the Clinical Use of HIV Drug Resistance Testing: 2011 Update. AIDS 
Rev 2011; 13. Available at: https://pubmed.ncbi.nlm.nih.gov/21587341/. Accessed May 23, 
2020. 
44. Kim S, Lieberman TD, Kishony R. Alternating antibiotic treatments constrain evolutionary 
paths to multidrug resistance. Proc Natl Acad Sci U S A 2014; 111: 14494–9. 
45. Obolski U, Hadany L. Implications of stress-induced genetic variation for minimizing 
multidrug resistance in bacteria. BMC Med 2012; 10: 89. 
46. Obolski U, Stein GY, Hadany L. Antibiotic Restriction Might Facilitate the Emergence of 
Multi-drug Resistance. PLOS Comput Biol 2015; 11: e1004340. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted September 2, 2020. ; https://doi.org/10.1101/2020.07.02.20144006doi: medRxiv preprint 

https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://www.zotero.org/google-docs/?UsgytR
https://doi.org/10.1101/2020.07.02.20144006
http://creativecommons.org/licenses/by-nc-nd/4.0/

