Covid-19 Risk Among Airline Passengers: Should the Middle Seat Stay Empty?

Abstract

We use recent data and research results to approximate the probability that an air traveler in coach will contract Covid-19 on a US domestic flight two hours long, both when all coach seats are full and when all but middle seats are full. The point estimates we reach based on data from late June 2020 are 1 in 4,300 for full flights and 1 in 7,700 when middle seats are kept empty. These estimates are subject to both quantifiable and nonquantifiable sources of uncertainty, and sustain known margins of error of a factor about 2.5. However, because uncertainties in key parameters affect both risk estimates the same way, they leave the relative risk ratio for “fill all seats” compared to “middle seat open” close to 1.8 (i.e., close to 1/4,300)/(1/7,700). We estimate the mortality risks caused by Covid-19 infections contracted on airplanes, taking into account that infected passengers can in turn infect others. The point estimates—which use 2019 data about the percentage of seats actually occupied on US flights—range from one death per 400,000 passengers to one death per 600,000. These death-risk levels are considerably higher than those associated with plane crashes but comparable to those arising from two hours of everyday activities during the pandemic.

Arnold Barnett
Sloan School of Management
MIT
Cambridge, MA 02142

abarrett@mit.edu 617 686-1485 E62-568, MIT

(George Eastman Professor of Management Science, Professor of Statistics)
Introduction

Among the many ways the Covid-19 crisis is unprecedented is a public disagreement among US airlines on a safety question. As of July 2020, Alaska, Delta, jetBlue, and Southwest Airlines are keeping middle seats open on their flights to limit infection risk, while Allegiant, American, Spirit, and United Airlines are selling all seats when demand warrants. United Airlines has vigorously defended its policy, describing “middle seats only” as a “PR strategy and not a safety strategy.” Its chief communications officer depicted social distancing as impossible on an airplane, saying:

“When you're on board the aircraft, if you're sitting in the aisle, and the middle seat is empty, the person across the aisle from you is within six feet of you. The person at the window is within six feet of you. The people in the row in front of you are within six feet of you. The people in the row behind you are within six feet of you.”

Yet prominent experts have expressed dismay at the “fill all seats” policy. When American Airlines announced that it would sell as many seats as it could, Dr. Anthony Fauci, the top infectious diseases official at the US National Institutes for Health, told a Senate hearing that "obviously, that's something that is of concern." Dr. Robert Redfield, the director of the US Centers for Disease Control and Prevention, agreed, declaring that "I can tell you that when they announced that the other day, obviously there was substantial disappointment with American Airlines,"
Motivated by this disagreement, this paper is an attempt to estimate the level of risk to US airline passengers under both “middle seats empty” and “fill all seats” policies. Making those estimates entails major complications and uncertainties, which can easily lead one to throw up one’s hands. But even a rough approximation of the risks at issue seems preferable to clashes of unsubstantiated conjectures. This paper strives for such an approximation.

As we will discuss, a first-order estimate is that coach passengers on full flights two hours long on popular US jets suffer a 1 in 4300 risk of contracting Covid-19 from a nearby passenger. Under “middle seat empty,” the risk is approximately 1 in 7700, a factor of 1.8 lower. Both these estimates are subject to sizable quantifiable and unquantifiable uncertainties, though the factor of 1.8 is considerably less so. Given these estimates and some others, one could expect approximately one death from Covid-19 per 400,000 passengers on flights by airlines that would sell all seats if they could. Under “middle seat empty,” the corresponding figure is about one death per 600,000 passengers.

Materials and Methods

To estimate the risk to an uninfected passenger from a passenger experiencing Covid-19, it is necessary to consider three questions:

• What is the probability that a given passenger on board is contagious with Covid-19?
• What is the probability that universal masking can prevent a contagious passenger from spreading the disease?
• How does the risk of infection depend on the locations on the aircraft of both the contagious and uninfected passenger?
The general formula for combining the answers to these questions is:

\[P = Q \times Q_M \times Q_L \quad (I) \]

where

\(P \) = the probability that a particular uninfected passenger contracts Covid-19 during the flight

\(Q \) = the probability that a given passenger on the flight has covid-19

(It is assumed the \(Q \) is small enough that having two or more contagious passengers near the uninfected one is a remote risk.)

\(Q_M \) = the probability that universal mask-wearing on aircraft fails to prevent transmission of Covid-19

\(Q_L \) = the conditional probability that a contagious passenger transmits Covid-19 to the uninfected one if the mask fails

\(Q_L \) and thus \(P \) can depend on whether the operating policy is “fill all seats” or “middle seat empty”

In the forthcoming analysis, we make estimates of these three quantities. Among the primary assumptions underlying these estimates are:

1. The number of actual cases of Covid-19 in the US is a large multiple of the number of confirmed cases. However, asymptomatic carriers of the disease are considerably less contagious than pre-symptomatic and symptomatic ones, and air travelers are considerably less likely to be contagious than the citizenry as a whole.

2. All passengers are wearing masks, and masks are highly effective at preventing transmission of Covid-19.
3. An uninfected passenger is only threatened with Covid-19 by a contagious passenger sitting in the same row, the row ahead, or the row behind. Because of strong air-purification mechanisms on aircraft, the risks posed by other passengers are of secondary importance.

Specifically:

The Estimation of Q

For a given passenger from a particular American state, the risk of contagiousness is estimated in several steps:

- First, one finds N_7, the number of confirmed new Covid-19 infections in that state over the last seven days \([1]\). Seven days is chosen because that is the approximate length of the contagiousness period for someone experiencing Covid-19. (The average such period is a bit below seven days in asymptomatic cases and higher than seven in symptomatic ones; see \([2,3]\).)

- One then divides N_7 by N_{POP}, the state’s estimated population in 2020, to obtain N_7/N_{POP} as the state’s per capita rate of new confirmed cases over the last week.

- Then, in accordance with recent estimates from the US Centers for Disease Control \([4]\), one multiplies N_7 by ten to approximate the actual number of new infections in the state over the previous week.

- Then one recognizes that people with Covid-19 who board airplanes are presumably either asymptomatic, pre-symptomatic, or mildly symptomatic. (Those with severe symptoms are unlikely to be flying.) Because of evidence that asymptomatic Covid-19 carriers constitute about 40% of all carriers and are only about 40% as contagious as the
others [5], one multiplies the prior product by a factor of \(\frac{3}{4} \). (This factor of \(\frac{3}{4} \) arises because
the number of contagious passengers with Covid-19 is approximately \(.4 \times .4 + .6 \times 1 = .76 \) of
the number of passengers with the disease.)

- Then one multiplies by a factor of \(\frac{1}{2} \) approximately to reflect the premise that
passengers who fly are generally more affluent (and less likely to encounter Covid-19 risks)
than the citizenry at large. (This factor treats the half of the population less vulnerable to
the disease as \(\frac{1}{3} \) as likely to suffer it as the half that is more vulnerable. It further treats
air travelers as members of the less-vulnerable half.)

- Finally, one divides by \(N_{POP} \), the state’s estimated population in 2020, to obtain \(N_7/N_{POP} \) as
the state’s per capita rate of new confirmed cases over the last week.

The estimate of \(Q \) consistent with these specifications is:

\[
Q \approx \frac{N_7 \times (10) \times \left(\frac{3}{4} \right) \times \left(\frac{1}{2} \right)}{N_{POP}} = 3.75N_7/N_{POP} \quad (I)
\]

The Estimation of \(Q_M \)

Here we assume that all passengers wear masks. For \(Q_M \), a meta-analysis in *The Lancet*
by Chu et al [6] estimated that mask wearing cuts transmission risk given contagiousness from
17.4% to 3.1%, a reduction of 82%. Ignoring the possibility that the masks under study were
more effective than those worn by airline passengers, we estimate \(Q_M \) as \(1 - .82 = .18 \).

The Estimation of \(Q_L \)
In this analysis, we focus on the coach section of a Boeing 737 or Airbus 320 jet and a flight of two hours (which is about average for a US domestic flight). In a given row, there are six seats: with A, B, and C (the window, middle, and aisle seats, respectively to the left of the aisle,) and D, E, and F (respectively the aisle, middle and window sets right of the aisle).

We focus on a particular passenger who is traveling alone, and assume that the primary infection risk for this passenger arises from other passengers in the same row. We further assume that additional risk arises from passengers in the row ahead and row behind. For two reasons, we treat the risk posed by other passengers as negligible:

- We posit that the airlines are correct when they contend that the powerful air-purification systems on jet aircraft largely negate the risk of aerosol transmission of Covid-19. Thus, when a contagious passenger is in her seat in row 22, she poses little risk to another traveler seated in row 14.

- A study by Hertzberg et. al. in the Proceedings of the National Academy of Sciences [7] suggested that infection risk depends on the duration of exposure to contagious person (as did Brundage [8]). We accept this premise, which implies there is limited risk posed by (say) a contagious passenger who passes one’s row en route to the lavatory. Moreover, we treat the risks associated with boarding the aircraft, leaving the aircraft, visiting the lavatory, and touching surfaces in the passenger cabin, as second-order effects. If this assumption understates
such risks, then the infection estimates presented here would be construed as lower-bounds on Covid-19 risk.

A given passenger can get infected, however, by droplets from a contagious passenger in the same row. But here the risk depends on the distance between the two passengers. The meta-analysis of more than 100 studies in *The Lancet* (Chu et al, 2020; [6]) yields the approximation that infection risk is about 13% given physical contact with the contagious person, and that it falls by essentially a factor of two as the distance from that person increases by one meter. The equation reflecting this pattern of exponential decay is:

\[
R_I \approx 0.13 \times e^{-0.69d}
\]

(II)

where \(d\) = distance in meters between contagious and uninfected person

This formula assumes no barriers between the contagious and uninfected persons. If there were (say) a layer of plexiglass between the two, then transmission risk would essentially drop to zero.

In each coach row in a Boeing 737 or an Airbus 320, the individual seats are approximately 18 inches wide, while the aisle width is about 30 inches. Under the “fill all seats” policy on a full flight, all six of the ABCDEF seats will be occupied. Under “no middle seats,” A/C and D/F will be occupied on a full flight but not B/E. Assuming that (II) refers to passengers without masks, one can use it to estimate the transmission risk posed by others in the same row to an A-seat passenger, given that the contagious passenger’s mask fails (as happens with probability \(Q_M\)):
where $R_T(A,X) = \text{transmission probability absent masks} \text{ given a contagious passenger in seat X of a given row and an uninfected passenger in seat A of that row}.$

Equation (III) taken literally treats infections caused by passengers in different seats as mutually exclusive events. But they are not mutually exclusive: it is possible that contagious persons are seated in both seats 16C and 16F. The actual assumption – consistent with data--is that Q is small enough that having several contagious people close to one another is a second-order effect, with probabilities involving Q^2 or higher powers of Q. In practical terms, therefore, the events of interest are mutually exclusive.

We therefore make the approximation that:

$$R_T(A,X) \approx .13e^{-69d(A,X)} \quad (IV)$$

where $d(A,X) = \text{distance from a person’s head in the middle of seat A to another person’s head in the middle of seat X.}$

For the jets under consideration, the quantity $d(A, B)$ is about 18 inches, while $d(A, C)$ is 18+18= 36 inches, $d(A, D) = 36 + 9 + 30 + 9 = 84$ inches, $d(A, E) = 84 + 18 = 102$ inches, and $d(A,F) = 102 + 18 = 120$ inches. Because a meter is 39.37 inches, $d(A,B)$ in meters is $18/39.37 = .457$, etc.

Analogous expressions arise when the uninfected passenger is in the B, C, ..F seat.

One can use (III) and (IV) to obtain:
\[Q_L(\text{same row}) \approx \begin{cases}
0.115 & \text{under middle seat empty} \\
0.232 & \text{under "fill all seats"}
\end{cases} \]

163 Using similar reasoning, one can likewise determine that:

\[Q_L(B \text{ same row}) \approx 0.282 \text{ under "fill all seats"} \]

\[Q_L(C \text{ same row}) \approx \begin{cases}
0.155 & \text{under middle seat empty} \\
0.291 & \text{under "fill all seats"}
\end{cases} \]

\[Q_L(D \text{ same row}) = Q_L(C \text{ same row}); \]

\[Q_L(E \text{ same row}) = Q_L(B \text{ same row}); \]

\[Q_L(F \text{ same row}) = Q_L(A \text{ same row}); \]

169 Averaging across all the passengers in a given row yields:

\[Q_L(\text{same row}) = \begin{cases}
0.268 \text{ under "fill all seats"} \\
0.135 \text{ under middle seat empty}
\end{cases} \]

171 Hertzberg et al [7] concluded from their computer simulations that, for droplet-mediated respiratory diseases, contagious passengers pose appreciable transmission risk to uninfected travelers within one meter. They therefore concluded that, beyond the same row, transmissions can occur from passengers in the row ahead of an uninfected passenger and in the row behind. Here we process distances using (III) rather than a one-meter yes/no
threshold, but we concur that passengers in the two neighboring rows pose first-order
transmission risk.

In Hertzberg et. al. all contagious passengers within one meter pose equal levels of
transmission risk, regardless of whether they are in the same row as the uninfected passenger.
However, the authors noted that they did not consider the possibility that seatbacks would
impede transmissions between rows. Here we do not ignore that possibility.

While seatbacks can somewhat block droplets from a contagious passenger, they are
presumably less effective than plexiglass, which all but eliminates transmission. Lacking
available studies about the benefit conferred by seatbacks, we make the estimate that they are
about \(\frac{3}{4} \) as effective as plexiglass. More specifically, we assume that:

- When the flight is full, the six passengers one row ahead of the uninfected passenger
 collectively pose \(\frac{1}{4} \) the transmission risk of the five passengers in the same row.

- When the flight is full, the six passengers one row behind the uninfected passenger
 collectively pose \(\frac{1}{4} \) the transmission risk of the five passengers in the same row.

- When the flight follows “middle seats empty” but is otherwise full, the four passengers
 one row ahead of the uninfected passenger collectively pose \(\frac{2}{3} \) the transmission risk of
 the six passengers in that row had the flight been full.
When the flight follows “middle seats empty” but is otherwise full, the four passengers one row behind the uninfected passenger collectively pose 2/3 the transmission risk of the six passengers in that row had the flight been full.

If this factor-of-four reduction overstates the effectiveness of the seatbacks against contagion, then our risk estimates tied to neighboring rows could well be too low.

Under these approximations:

\[Q_L(\text{full flight}) = 1.5Q_L(\text{full flight, same row}) \]

\[Q_L(\text{middle seat empty}) = Q_L(\text{middle seat empty, same row}) + \left(\frac{2}{3} \right) \times \left(\frac{1}{2} \right) Q_L(\text{full flight same row}) \]

Thus:

\[Q_L = \begin{cases} \cdot402 & \text{for full flight} \\ \cdot224 & \text{when middle seat empty} \end{cases} \]

We should stress that Equation (II) summarizes the experiences reported in many disparate studies, probably none of which reflects the exact conditions in a US jet flight two hours long. The risk of infection presumably relates to duration of exposure, but the durations in the summarized studies are often unknown. Moreover, US airlines have argued convincingly that ventilation during their flights suppresses disease spread more effectively than that in a typical indoor setting. Yet the mix of environments in the studies that contributed to (II) is not clear. It is also understood that disease spread is greater when the contagious person is speaking than when he is silent. But the proportional breakdown of exposure time between speaking and silence is unavailable, both for airplanes and in the summarized studies.
A further complication is that, while we are assuming that Equation (II) arises when the contagious person wears no mask, there were apparently some masked individuals in the studies that generated the equation (private communication from Dr. Chu). As noted, we apply an 82% reduction in infection risk because of masks, but (II) already reflects the benefit of masks to some extent.

These circumstances need not compromise the exponential-decay factor in (ii), under which transmission risk drops by a factor of two per meter of distance. But the 13% factor could well be affected, with some considerations suggesting the factor is too high and others that it is too low. This analysis offers a baseline risk estimate using the Chu et al. results at face value, which seems reasonable absent further information about the combinations of conditions that underlie those results.

When the estimates of \(Q, Q_M, \) and \(Q_L \) are at hand, they are multiplied under (I) to obtain a point estimate of \(P \).

Confidence Intervals for the Point Estimates

The point estimates of Covid-19 risk are subject to various sources of uncertainty, some of them subject to quantification. The basic relationship:

\[P \approx Q \times Q_M \times Q_l \quad (I) \]

can be rewritten as:

\[\ln P \approx \ln Q + \ln Q_M + \ln Q_l \]

The confidence intervals in the literature for individual parameters typically suggest that the variables in (I) are approximately lognormal. (e.g. the 95% confidence interval extends from
roughly half the point estimate to double that estimate), and the estimation errors for different variables can be considered independent. Thus, lnP would be essentially normal, and a 95% confidence interval for P can be obtained through exponentiating the 2.5%ile and 97.5%ile of lnP. The calculated confidence intervals pertain to known uncertainty in the risk estimates, and not to the uncertainties in Equation (II) discussed above.

Results

Point Estimates

New confirmed covid-19 cases were sharply increasing in many American states during the last week of June 2020, but continuing to decline in others. Exemplifying the states experiencing spikes was Texas, with 42,254 new cases over 6/24/20 to 6/30/20, while typifying states long past their peaks of new infections was New York, with 5,200 cases over that period. Because the population of Texas in 2020 was estimated at 29.1 million in mid-2020, its per capita rate of new infections that week (i.e., \(N_7/N_{POP} \)) was 1/689. For New York, with a population of 19.5 million, the corresponding rate was 1/3750.

Under (I), the probability a passenger from a particular state has contagious covid-19 is approximated by:

\[
Q \approx 3.75\left(\frac{N_7}{N_{POP}} \right)
\]

Meaning that:

\[
Q \approx \begin{cases} \\
\frac{1}{184} & \text{for Texas} \\
\frac{1}{1000} & \text{for New York}
\end{cases}
\]
For US domestic jet flights as a group, one might approximate Q by taking the average of these estimates for higher-infection-rate Texas and lower-rate New York, which yields $Q \approx \frac{1}{310}$

Even on a flight from Dallas to New York City, there will be Texas natives, New York natives, and transfer passengers who originated elsewhere, so a mid-range estimate seems suitable. Had we instead used new infections over a week in mid-July 2020 (when this is written), the estimate of Q would have increased by a factor of 1.6. We use the late June estimate in the hope that the mid-July upsurge is temporary.

As noted, the probability Q_M for mask failure is estimated as 0.18, while .402 and .224 are treated as, respectively, the transmission probabilities absent masks (Q_L) under “fill every seat” and “middle seat empty.” In consequence, Equation (1) generates the following estimates for dates around 6/30/20:

$$P(\text{infection}) \approx \begin{cases} \frac{1}{4,300} & \text{on full US flights under "fill all seats"} \\ \frac{1}{7,700} & \text{on full US flights under "middle seat empty"} \end{cases}$$

The first of these risk estimates is the average for the passengers in the six filled seats in each row. The second is the average for passengers in the four seats occupied under “middle seat empty.”

Confidence Intervals
As noted earlier, there is nonquantifiable uncertainty in our use of Equation (II), related to ventilation, speech/silence, duration of exposure, and mask usage. But the literature offers margins of error in addition to point estimates for three parameters in the risk calculations:

- The 95% confidence interval for the rate of exponential decay with distance extends from a factor of 1.08 per meter to a factor of 3.76. (We have used a point estimate of two, corresponding to -0.69 in (II).)

- The 95% confidence interval for the failure probability of masks extends from .07 to .34 (point estimate .18)

- The 95% confidence interval for the ratio of actual cases of Covid-19 to confirmed cases extends from 8.7 to 12.7. (point estimate 10).

These confidence intervals suggest that the distributions for the parameter estimates can be approximated as lognormal. For example, the interval for exponential decay goes from about half the point estimate of two to roughly double that estimate. Treating uncertainties in the three parameters as independent, we can estimate the overall degree of imprecision that they (alone) cause in the estimate of P.

In the relationship based on (I):

$$\ln P = \ln Q + \ln Q_M + \ln Q_L,$$

the independence and normality of the three random variables on the right implies that $\ln P$ itself is normally distributed. First we find the mean and standard deviations of $\ln Q$, $\ln Q_M$, and $\ln Q_L$, and then we use them to find the mean, standard deviation, and 95% confidence interval for $\ln P$.
For $\ln Q_M$, we note that its 2.5th percentile is $\ln(.07)$ and its 97.5th percentile is $\ln(.34)$.

From this information and the assumption of lognormality, we readily deduce that the mean of $\ln Q_M$ is the average of $\ln(.07)$ and $\ln(.34)$, while its standard deviation is $(\ln(.34) - \ln(.07))/3.92$.

Because $\ln(.34) = -1.08$ and $\ln(.07) = -2.66$, $\ln Q_M$ is approximately normal with mean -1.87 and standard deviation 0.40. The calculations for $\ln Q$ and $\ln Q_L$ proceed similarly, with the distribution for $\ln Q_L$ dependent on whether the policy under study is “fill all seats” or “middle seats empty.”

The 95% confidence intervals for P are:

\[
\begin{aligned}
\frac{1}{10,500} \text{ to } \frac{1}{1,700} & \quad \text{for full flights under fill all seats.} \\
\frac{1}{19,300} \text{ to } \frac{1}{3,000} & \quad \text{for full flights under middle seat empty}
\end{aligned}
\]

In both instances, there is factor-of-2.5 uncertainty in the point estimates offered earlier (i.e. $\frac{1}{4,300}$ for fill all seats, $\frac{1}{7,700}$ for middle seats empty). It important to note, however, that the two estimates of P arise from the same parameters, and that the uncertainty in those parameters affects both estimates in essentially the same way. The upshot is that the ratio of $P(\text{fill all seats})$ to $P(\text{middle seat empty})$, which is 1.8 based on the point estimates. i.e.,

\[
(1/4,300)/(1/7,700)), \quad \text{would stay stable despite the considerable uncertainty that affects the numerator and denominator of the ratio.}
\]

Discussion
The reason that Covid-19 is so fearsome is that it entails a risk of death. For a coach passenger with a 1% chance of dying from the virus—which is slightly above the chance of 0.7% now assumed to apply to the full population [9]—the estimated mortality risk on a full flight two hours long would be about 1 in 430,000 and about 1 in 770,000 million when all but middle seats are full. But even an airline willing to fill every seat does not expect to do so: it presumably aspires to a passenger load factor (passenger miles divided by seat miles) around 85.1%, which prevailed in 2019 on US flights. Having 85.1% of seats taken is consistent with roughly 55% of middle seats full and 45% empty. With that load factor, a 1% chance of dying from Covid-19 given infection would yield a death risk under “fill all seats” of about 1 in 540,000 rather than 1 in 430,000. Airlines that keep middle seats empty could well try to fill nearly all of them, so their mortality risk would remain about 1 in 770,000.

Actually, covid-19 infections on planes can cause deaths to some people who were not passengers (e.g., a 22-year traveler gets infected, and passes the virus on to his elderly grandparents). A quantity familiar in this pandemic is R_0, the average number of new infections generated directly by an infected person. The quantity $E(\text{Further Inf})$, the mean total number of further infections that person causes, follows:

$$E(\text{Further Inf}) = \frac{R_0}{1 - R_0} \quad \text{for} \quad R_0 < 1 \quad (V)$$

Using the conservative estimate that $R_0 = 0.5 , E(\text{Further Inf}) = 1$ under (V). Assuming a 0.7% death risk for both the person infected on a flight and the people further infected, the expected total number of deaths would be $0.007 + 1 \times 0.007 = 0.014$. Thus, if a given passenger on a full flight has a 1 in 4,300 chance of getting infected, the resulting number of deaths would on
average be about \((1/4300) * 0.014\) = 1 in 310,000. If the flight is 85.1\% full, the estimate would decline to 1 in 390,000. If the flight is 66.7\% full under middle seat empty, the estimate would decline further to 1 in 550,000.

All these death-risk estimates are considerably higher than the risk of perishing in a US air crash unrelated to Covid-19, which is about 1 in 34 million [10]). It is not clear, however, that two hours spent on an airplane entails higher infection risk (or mortality risk) than two hours of everyday activities. In late June 2020, approximately 45,000 Americans were confirmed to have contracted Covid-19 each day. Given that actual infections are estimated to be about ten times confirmed ones [4], roughly 450,000 new infections arose per day among the 330 million Americans. That works out to a daily infection probability of 450,000/330 million, which is \(1/733\). Assuming 16 waking hours, the chance of infection over a two-hour period would be approximately \((2/16)*(1/733) = 1/5900\), which is quite close to our infection risk estimates for a two-hour flight. (If air travelers have lower Covid-19 risk than average citizens—as we have assumed—that could be because they engage in relatively few everyday activities (e.g. fewer rides on buses or visits to supermarkets)). But that circumstance does not affect the risk estimate for such activities.)

Final Remarks

Calculations like the ones here are highly approximate and, as has been evident during this pandemic, projections about it often fall far from the mark. It would therefore be desirable to use actual passenger outcomes to determine what fraction of travelers contracted Covid-19 on their flights. If, averaged over US carriers, the risk level per passenger is estimated as (say) 1 in 6,500, then approximately 90 cases of Covid-19 should emerge each day at a time...
(like early July 2020) when 600,000 US passengers are flying daily. In reality, load factors fell below 50% in July 2020 even on “fill all seats” airlines, meaning that the number of cases that actually arose would be closer to 50 per day.

But it would not be easy to determine how many Covid-19 cases arose on US flights on a given day. If only 10% of infections are confirmed, 50 infections would yield five confirmed ones. Is it plausible that five of the 45,000 confirmed US infections per day arose during air journeys over the previous week? Because follow-ups of known Covid-19 infections are now weak in the US, it is not clear that the circumstances of those five infections would be identified. Further complicating the situation is the fact that air passengers who subsequently get Covid-19 may have been infected elsewhere besides the airplane. Despite these difficulties, it would be worth some effort to substantiate or refute projections that are tied to strong assumptions.

The calculations here, however imperfect, do suggest a measurable reduction in Covid-19 risk when middle seats on aircraft are deliberately kept open. The question is whether relinquishing 1/3 of seating capacity is too high a price to pay for the added precaution.
Acknowledgements

To be supplied

References

