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Abstract 

Background 

The pressures exerted by the pandemic of COVID-19 pose an unprecedented demand on health care 

services. Hospitals become rapidly overwhelmed when patients requiring life-saving support outpace 

available capacities. We here describe methods used by a university hospital to forecast caseloads and time 

to peak incidence. 

Methods 

We developed a set of models to forecast incidence among the hospital catchment population and describe 

the COVID-19 patient hospital care-path. The first forecast utilized data from antecedent allopatric 

epidemics and parameterized the care path model according to expert opinion (static model). Once 

sufficient local data were available, trends for the time dependent effective reproduction number were 

fitted and the care-path was parameterized using hazards for real patient admission, referrals, and 

discharge (dynamic model). 

Results 

The static model, deployed before the epidemic, exaggerated the bed occupancy (general wards 116 

forecasted vs 66 observed, ICU 47 forecasted vs 34 observed) and predicted the peak too late (general ward 

forecast April 9, observed April 8, ICU forecast April 19, observed April 8). After April 5, the dynamic model 

could be run daily and precision improved with increasing availability of empirical local data. 

Conclusions 

The models provided data-based guidance in the preparation and allocation of critical resources of a 

university hospital well in advance of the epidemic surge, despite overestimating the service demand. 

Overestimates should resolve when population contact pattern before and during restrictions can be taken 

into account, but for now they may provide an acceptable safety margin for preparing during times of 

uncertainty. 

 

  



Introduction 

The COVID-19 pandemic poses a public health threat, which, if left unmitigated, has proven potential to 

rapidly overwhelm health care systems1–3. In particular, the demand of patients that require ventilator 

support becomes critical when available ICU capacities are exceeded4. Non-pharmaceutical interventions 

have therefore been implemented to ameliorate the tidal wave at the peak of the epidemic (the so-called 

flattening of the curve)5–7. While national or international measures such as border closures, social-

distancing, lock-downs, and furloughs have their merit in slowing the epidemic8,9, they also interrupt global 

supply chains and may thus starve health care systems from necessary equipment10. 

 

Acute care, and especially tertiary care hospitals are advised to increase their capacity (beds, personnel and 

equipment) well in advance to cope with the expected numbers of COVID-19 patients with severe and 

critical conditions11. Although some well-known examples show that this can be achieved by creating "new" 

beds in temporary, purpose-build structures
12,13

, it most often is accomplished by freeing up existing bed 

capacity. However, this is often at the expense of hospital beds for non-COVID-19 patients14, and may carry 

opportunity costs and a protracted burden of disease. A timely estimate of the required capacity to treat 

COVID-19 patients is therefore critical for the planning of sufficient hospital capacity for both COVID-19 and 

regular patients. 

 

The typical course of an epidemic makes early predictions about the volume and timing of peak incidence 

difficult due to the lack of reliable local data at a time when forecasting and planning becomes crucial. We 

here present how monitoring of antecedent allopatric epidemic waves, combined with timely local 

estimates, and continuous monitoring between March 15 and April 28 2020 helped a university tertiary care 

center in South-Western Germany in preparing for the pandemic and the up-scaling of bed capacity. For 

hospital management this offers a forecast within defined credibility boundaries allowing for better bed 

planning, allocation and procurement of essential resources. 

 

Methods 

The University Medical Center Freiburg (Universitätsklinikum Freiburg, UKF) is a 1,600 bed tertiary care 

center and is the largest regional hospital in South-West Germany. As an acute care hospital it draws 

patients from about 60% of the health districts Freiburg/Breisgau/Hochschwarzwald. As a tertiary referral 

and trauma center, it serves other district hospitals in the Upper-Rhine region that borders Switzerland to 

the South and the French Alsace, Departments Haut-Rhin and Bas-Rhin, to the West. 

 

COVID-19 cases were defined as symptomatic individuals with RT-PCR positivity for SARS-Cov-2 ascertained 

at one of three accredited diagnostic laboratories. Tests were carried out at community diagnostic centers, 

GPs, or on admission to the UKF. Positive results were reported to the district health authorities according 



to German notifiable disease law, and recorded as COVID-19 on hospital admission in electronic patient 

records. For COVID-19 patients, dates of admission, between ward referrals, and discharge were kept in 

electronic patient records available through the hospital patient administration system. 

 

Prediction of the expected bed demand at the UKF was initially constrained by the availability of valid and 

representative data. We therefore performed a two stage approach to model the expected incidence of 

COVID-19 patients among the UKF catchment population. In the first stage, we used a static incidence 

model based on extrapolations of antecedent allopatric epidemic waves and parameterized a hospital care 

path model using a panel of experts. In the second stage, we used a dynamic incidence model, informed by 

the number of confirmed cases for the health districts Freiburg/Breisgau/Hochschwarzwald, and 

parameterized the care path model using the individual electronic patient records as documented by the 

UKF hospital patient administration system. 

 

Static incidence model 

To provide a forecast prior to the local epidemic surge, we analyzed aggregated data from Italy and 

Germany as reported by the John Hopkins University
15

, as well as sub-national data for the region Lombardy 

and the province of Lodi available through the website of the Italian Dipartimento della Protezione Civile16. 

We calculated the delay between the cumulative per capita incidence in each region relative to the Italian 

epidemic, and normalized the epidemic curves by correcting for this delay, thus overlaying and combining 

all curves into a single epidemic trajectory. We tested the trajectory for saturation properties and decided 

on a tentative epidemic peak on which we mirrored the epidemic curve, following a symmetry conjecture. 

 

To predict the Freiburg regional epidemic, we calibrated the epidemic curve to the UKF catchment 

population (taking into account observed delays) by multiplying the per capita values with the catchment 

population size of the UKF. Calculation of catchment size was based on relative number of admissions to the 

UKF in comparison to all other hospitals in the state of Baden-Württemberg (11. Mio inhabitants) taken 

from a comprehensive dataset recording all patient admissions on an annual basis. The database was made 

available by the largest health insurer (Allgemeine Ortskrankenkasse Baden-Württemberg, AOK-BW). 

 

Dynamic incidence model 

We produced local data informed estimates, using the dynamic incidence model, after cumulative case 

counts reached 1/1,000 in the Freiburg/Breisgau/Hochschwarzwald health districts (492,000 inhabitants). 

We imputed the likely date of infection for each COVID-19 case in the health district and estimated the 

time-varying effective reproduction number (RT)17 based on the probability distribution of the serial 

intervals between consecutive case generations18. We used an individual-based stochastic simulation to 

predict the local future incidence, assuming that RT declined exponentially over time, fitting Rf(t) = a ebt to 



the estimated RT. This declining function serves as a phenomenological approximation to the observed 

changes in RT and is used to calculate the transmission parameter of the SIR model (see supplementary text 

S1). 

 

Care path model 

To convert the forecasted regional incidence to bed demand, we created an agent-based model for the in-

hospital care path (Figure 1), consisting of: (C) Confirmed cases, equal to the results of the above incidence 

models, (GW) patients admitted to general wards, and (ICU) patients admitted to intensive care units. 

Patients are assumed to follow one of three possible tracks through the hospital: 1) admitted and 

discharged to and from GW. 2) admitted to GW, moved to ICU, and then discharged from ICU, or 3) directly 

admitted to ICU and discharged from there. Within the model, we make no distinction between discharge 

and death, and removed patients as end of stay. The model thus contains 5 parameters: the distributions of 

the length of stay in the GW and ICU, the distribution of time from infection to hospital admission, the 

proportion of patients admitted to hospital, and the proportion of patients directly admitted to ICU. 

 

In the first stage, we used a consensus care-path parameterized by judgment of a panel of experts. In 

absence sufficient local data, we asked 4 consultant experts (3 intensivists, 1 infectious diseases specialist) 

to make estimates about the expected care path of COVID-19 patients during their treatment in the UKF. 

 

Once the number of admitted COVID-19 patients had surpassed 150, we parameterized the empirical care-

path using the individual electronic patient records as documented by the UKF hospital patient 

administration system. Based on these observations, we added a fourth compartment for those patients 

who left the ICU and returned to a general ward and named this a step-down unit (SD). 

 

We analyzed the time until end of stay in each compartment split between those patients being transferred 

to another compartment and those ending their stay. We fit both exponential and Weibull distributions to 

the hazard functions of leaving each compartment. These served as the main parameters in the empirically 

informed care-path. Furthermore, we calculated the admission rate as the cumulative number of 

admissions divided by the cumulative number of confirmed cases, and similarly, we determined the 

proportion of patients being directly admitted to the ICU. 

 

Results 

During the first two weeks of March 2020, the region of Lombardy in Italy and the Departments Haut-Rhin 

and Bas-Rhin in France saw a rapid expansion of the COVID-19 epidemic1,19,20. The civil protection 

authorities in Italy reported confirmed cases on a daily basis. We observed that cumulative case counts for 

Germany followed the same exponential trajectory as the province of Lodi, the region of Lombardy and Italy 



as a whole, albeit with some delay but similar growth rates (Figure 2A&B). The delay between Germany and 

Italy was estimated to be 10 days, while Lodi province was 21 days ahead of Italy. As shown in Fig. 2A&B 

only the trajectory for Lodi showed an obvious and sustained slowing of the growth rate prior to March 15. 

We chose March 7 as the saturation point for the epidemic in Lodi province, and assuming an equivalent 

dynamic, the peak for Germany could be projected to occur on April 7. Applying the combined trajectory 

(Figure 2C) to the catchment population of the UKF (290.000 people), we expected 103 incident cases on 

the day of the epidemic peak. 

 

In order to predict the expected bed and ventilator demand we chose to describe the expected COVID-19 

patient care-path on the basis of expert knowledge and opinion. The expert estimates were in general 

agreement on most of the care-path parameters, with a couple of exceptions (see table S2). We combined 

the assessments by averaging the individual parameter estimates of all 4 experts into a single consensus 

care-path. Combining the care-path with the results of the static incidence model, we predicted the 

demands for general ward and ICU beds to peak on April 9 (116 beds) and April 19 (47 beds), respectively 

(Figure 2D). 

 

By April 5, the availability of locally generated data provided the opportunity to populate the care-path 

model with empirical local data and offer the first predictions using the dynamic incidence model. At the 

time, 153 patients had been admitted to the UKF, of which 55 required ventilator support on ICUs. 28 were 

admitted directly to an ICU, whereas 27 had a prior stay on a GW. 14 had already been transferred to the 

SD. Of all admitted patients, 87 were still hospitalized (GW:48, ICU:29, SD:10). Based on the estimated 

hazard of end of stay on the GW (0.05678 d
-1

) and the hazard of transfer to the ICU (0.0307 d
-1

), we 

estimated that patients spent a mean of 11.4 days on the GW (Figure 3A&D). Similarly, we estimated 

patients stayed on average 14.7 days on the ICU (end of stay hazard: 0.03127, transfer hazard: 0.03648; 

Figure 3B&E), and 40.5 days on the step down unit (Figure 3C; based on 4 discharges). The hazard estimates 

stabilized over time, as more data were added (Figure 3F, table S3). 

 

On the same day, 1372 cumulative cases (Figure 4A) had been reported in the health district (2.8 per 1.000 

inhabitants). Since the onset of the epidemic the time-varying reproduction number (RT) showed a clear 

decline, starting at a median of 3.5, and decreased to 1.1 (Figure 4B). The dynamic incidence model 

projected a peak incidence of a median number of 90 cases for April 8 (Figure 4C). Although there was 

considerable variation between model simulations (the lowest peak was projected at 74 cases, the highest 

at 1186), 75% of the realizations suggested little or no further increase with an imminent saturation of the 

epidemic in the near future. Dynamic incidence forecasts could be produced from March 24, albeit without 

empirical local care path data until April 5. While adding daily reported cases to the dynamic incidence 

model, iterations generated fluctuations and occasional uncertainty (see Figure S4, Movie S5). The overall 



trajectory stabilized after April 6. Combining these projections with the empirically informed care-path, we 

estimated a peak demand of 102 general ward beds (IQR = 92-121) on April 17 and 49 ICU beds (IQR = 42-

58) on April 25 (Figure 4D). Observed bed occupancy peaked on April 8 for both the general wards (66 beds 

occupied) and the ICU (34 beds occupied). By April 14, the forecasted bed demand aligned with the 

observed occupancy (see figure S4, 5
th

 column), likely because the incidence model predicted the declining 

phase of the epidemic curve more precisely. 

 

Discussion 

During the current COVID-19 pandemic, hospitals have reported a break-down of services when the surge 

of patients in need of treatment and ventilator support outpaced available capacities21. Early predictions 

about the timing and volume of maximum service demand, i.e. expected general ward and ICU bed 

occupancy, are therefore critical in the early stages of an epidemic. These may help guide the upscaling of a 

hospital's bed capacity, redistributing personnel, and storage of crucial equipment. However, data that 

could provide a basis for predictions are often equivocal or insufficient in the incipient stages of an 

epidemic. In an attempt to decrease these uncertainties, we have utilized allopatric and locally available 

data for contingency planning for health care authorities and hospital management. 

 

We took advantage of antecedent epidemic waves in neighboring countries, especially in Northern Italy 

where daily case counts were available at the level or provinces with population sizes comparable to our 

own health district. When we normalized the epidemic trajectories between nations, regions and provinces, 

we found the notion confirmed that uncontrolled transmission in populations with similar contact 

patterns
22

 is comparable during early stages of epidemics. We therefore informed our local predictions by a 

static model calibrated by the per capita case counts and delay of onset in Lodi, Lombardy and Italy. This 

gave local health care authorities and hospital management of the UKF three weeks to prepare for the 

expected number of COVID-19 patients at the epidemic peak, ample time to call-off elective interventions, 

upscale ICU capacity, reallocate staff, take stock, and order essential equipment such as, disposables, 

personnel protective equipment (PPE), oxygen etc. Given the size of the epidemics in Lombardy and the 

neighboring department in France, the results of the static model were used as the lower bound of the 

required capacity, as it was uncertain if regional district hospitals would be able to cope with the likely 

caseloads in the larger region. The entire region consists of a catchment population three times the size of 

the UKF’s catchment (1 Mio vs 290k), which was forecasted to result in an additional demand for 284 GW 

and 121 ICU beds in the surrounding hospitals (Figure S6). 

 

The dynamic model required locally available data. After March 24, sufficient numbers of incident cases had 

been ascertained and moved through the UKF, allowing forecasts to be updated on a daily basis. This real-

time tracking provided us with the potential to adjust hospital planning. When forecasts became ambiguous 



between April 1 and April 6, the decision was taken to closely monitor the development at weekly intervals, 

since the planning based on the static model set aside enough ICU beds available for COVID-19 patients and 

regional district hospitals were still coping. In hindsight, our model predicted the peak to be higher and later 

than the one observed. 

 

The implicit continuity assumption of some of the parameters made our prediction models vulnerable to 

unforeseen changes in transmission dynamics, such as the introduction of NPIs. For Freiburg and 

surroundings, restrictions took effect on March 20, and included closures of schools, shops and restaurants, 

prohibition of large gatherings, and an obligation for social distancing. Our fitted trajectory to the estimated 

time-varying reproduction number (RT) may therefore initially have been too high, as pre-intervention RT 

estimates still carried too much weight. Additionally, random mixing assumed in the standard SIR model 

overestimates epidemic growth, since extant contact pattern are generally assortative. Furthermore, the 

incidence model assumes homogeneity in the patient population, i.e. each infected individual having the 

same probability of being admitted to hospital. In reality, risks are strongly associated with age23–25
, which 

skews hospitalization rates depending on demographic composition. We therefore suggest that improved 

prediction models should account for age stratified contact patterns, age structure of hospital catchment 

populations, and the effect of NPIs. 

 

Local data based short-term forecasts of hospital admissions are vital to epidemic planning of hospitals, as 

the onset of epidemics may vary greatly between different geographical regions. With that, local bed 

demand may peak at different times. The lack of local data in the early phase of an epidemic is challenging 

in this respect. We solved this issue by forecasting in two stages, with an early "crude" estimate based on 

observed COVID-19 outbreaks abroad, and a later, continuously adjusted nowcasting and forecasting by 

incorporating locally ascertained data. This way, we were able to navigate hospital capacities by setting 

weekly targets, while adjusting the elective admission and discharge policies according to the most current 

epidemic situation. 
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Figures 

  

 

Figure 1: Model structure. A) The COVID-19 care path, describes how patients progress from confirmed 

cases in the community (C), to be admitted on general wards (GW), to intensive care units (ICU), and to 

step-down units (SD). Some COVID-19 patients are admitted directly to the ICU from the community. The 

step-down unit was only included in the agent-based model. 

  



 

Figure 2: Early forecast using the static model. A) The trajectory of the number of confirmed cases in 

Germany, Italy, Region of Lombardy, and Province of Lodi were B) normalized and projected as a single 

curve by compensating for the apparent delay between locations, and C) the downward slope (grey) was 

predicted assuming a symmetry conjecture of the observed upward slope (black). D) Expected bed 

occupancy, (general wards in blue, ICU in red). Light shades 95% CI, dark shades interquartile ranges. 

Predictions are based on The COVID-19 care path using expert consensus. Bed demand peaked on the 

general wards at 116 beds on April 9 and in ICUs at 47 beds on April 19.  

  



 

Figure 3: Survival analysis A-E) Kaplan-Meier estimators for the stay on the general ward (A & D), ICU (B & 

C), and step-down unit (C), for patients that are discharged (A,B & C) and transferred to the following ward 

(D&E), based on the data observed on April 5. (F) The estimated rates of discharge/death and transfers over 

time, based on continuously accumulating data. 

  



 

Figure 4. Late forecast using the dynamic model based on locally available data on April 5. A) The observed 

incidence of confirmed cases in the health districts Freiburg/Breisgau/Hochschwarzwald combined. B) 

Backward model: Estimates of the time-varying Reproduction number (blue dots) over 100 stochastic 

simulations, with fitted Rf(t) trajectories (black lines). C) Forward model: Forecasted incidence of confirmed 

cases, grey lines show single simulation results, green line show the median, with green shade showing the 

interquartile range and green light shade 5%-95% of the simulation results. D) Estimated bed demand 

(median, IQR, 5%-95% range) for the general wards (blue) and ICU (red). Circles denote actual observed 

number of beds occupied (closed: past days, open: future days not know at the time of the analysis on April 

5). 


