Skip to main content
medRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search

Quantifying arbovirus disease and transmission risk at the municipality level in the Dominican Republic: the inception of Rm

Rhys Kingston, Isobel Routledge, Samir Bhatt, Leigh R Bowman
doi: https://doi.org/10.1101/2020.06.30.20143248
Rhys Kingston
1Department of Infectious Disease Epidemiology, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Isobel Routledge
1Department of Infectious Disease Epidemiology, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Samir Bhatt
1Department of Infectious Disease Epidemiology, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Leigh R Bowman
1Department of Infectious Disease Epidemiology, Imperial College London, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • For correspondence: leigh.bowman@gmail.com
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Data/Code
  • Preview PDF
Loading

Abstract

Arboviruses remain a significant cause of morbidity, mortality and economic cost across the global human population. Epidemics of arboviral disease, such as Zika and dengue, also cause significant disruption to health services at local and national levels. This study examined 2014-16 Zika and dengue epidemic data at the sub-national level to characterise transmission across the Dominican Republic.

For each municipality, spatio-temporal mapping was used to characterise disease burden, while data were age and sex standardised to quantify burden distributions among the population. In separate analyses, time-ordered data were combined with the underlying disease migration interval distribution to produce a network of likely transmission chain events, displayed using transmission chain likelihood matrices. Finally, municipal-specific reproduction numbers (Rm) were established using a Wallinga-Teunis matrix.

Dengue and Zika epidemics peaked during weeks 39-52 of 2015 and weeks 14-27 of 2016 respectively. At the provincial level, dengue attack rates were high in Hermanas Mirabal and San José de Ocoa (58.1 and 49.2 cases per 10,000 population respectively), compared with the Zika burden, which was highest in Independencia and San José de Ocoa (21.2 and 13.4 cases per 10,000 population respectively). Across municipalities, high disease burden was observed in Cotui (622 dengue cases per 10,000 population) and Jimani (32 Zika cases per 10,000 population). Municipal infector-infectee transmission likelihood matrices identified six 0% likelihood transmission events throughout the dengue epidemic and one 0% likelihood transmission event during the Zika epidemic. Municipality reproduction numbers (Rm) were consistently higher, and persisted for a greater duration during the Zika epidemic (Rm = 1.0), than during the dengue epidemic (Rm = <1.0).

This research highlights the importance of disease surveillance in land-border municipalities as an early warning for infectious disease transmission. It also demonstrates that a high number of importation events are required to sustain transmission in endemic settings, and vice versa for newly emerged diseases. The inception of a novel epidemiological metric, Rm, reports transmission risk using standardised spatial units, and can be used to identify high transmission risk municipalities to better focus public health interventions for dengue, Zika, and other infectious diseases.

Author Summary Arboviruses remain a significant cause of morbidity, mortality and economic cost. Between the years 2014-16, two large arbovirus outbreaks occurred in the Dominican Republic. The first was a wave of dengue cases, followed by a large Zika epidemic. Using various mathematical modelling and geospatial approaches, a number of analyses were undertaken to both characterise the pattern of disease transmission and identify high-burden municipalities. Throughout the process, a novel metric was developed: the Rm. This parameter was used to identify the transmission potential of any given municipality to surrounding municipalities, where >1.0 is high transmission risk, and <1.0 is low transmission risk. This is useful as it provides a standardised approach to determine where public health resources might be focussed to better impact ongoing disease transmission. Additionally, analyses demonstrated the importance of increased disease surveillance in municipalities that share land borders with neighbouring countries, and how relatively few disease importation events can spark and sustain an epidemic.

Competing Interest Statement

The authors have declared no competing interest.

Funding Statement

The author(s) received no specific funding for this work.

Author Declarations

I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.

Yes

The details of the IRB/oversight body that provided approval or exemption for the research described are given below:

Ethical clearance was granted by the Pan American Health Organization Ethics Review Committee (PAHO-ERC; Ref No. 2014-10-0023) and accepted by Dominican Republic Ministry of Health. De-identified and aggregated data were used throughout the study, no further ethical clearance was required.

All necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived.

Yes

I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).

Yes

I have followed all appropriate research reporting guidelines and uploaded the relevant EQUATOR Network research reporting checklist(s) and other pertinent material as supplementary files, if applicable.

Yes

Data Availability

All raw data files are available from the Open Science Data Framework: DOI 10.17605/OSF.IO/VYN2B.

https://osf.io/VYN2B/

Copyright 
The copyright holder for this preprint is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted July 01, 2020.
Download PDF
Data/Code
Email

Thank you for your interest in spreading the word about medRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Quantifying arbovirus disease and transmission risk at the municipality level in the Dominican Republic: the inception of Rm
(Your Name) has forwarded a page to you from medRxiv
(Your Name) thought you would like to see this page from the medRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Quantifying arbovirus disease and transmission risk at the municipality level in the Dominican Republic: the inception of Rm
Rhys Kingston, Isobel Routledge, Samir Bhatt, Leigh R Bowman
medRxiv 2020.06.30.20143248; doi: https://doi.org/10.1101/2020.06.30.20143248
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Quantifying arbovirus disease and transmission risk at the municipality level in the Dominican Republic: the inception of Rm
Rhys Kingston, Isobel Routledge, Samir Bhatt, Leigh R Bowman
medRxiv 2020.06.30.20143248; doi: https://doi.org/10.1101/2020.06.30.20143248

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Infectious Diseases (except HIV/AIDS)
Subject Areas
All Articles
  • Addiction Medicine (216)
  • Allergy and Immunology (495)
  • Anesthesia (106)
  • Cardiovascular Medicine (1101)
  • Dentistry and Oral Medicine (196)
  • Dermatology (141)
  • Emergency Medicine (274)
  • Endocrinology (including Diabetes Mellitus and Metabolic Disease) (502)
  • Epidemiology (9782)
  • Forensic Medicine (5)
  • Gastroenterology (481)
  • Genetic and Genomic Medicine (2318)
  • Geriatric Medicine (223)
  • Health Economics (463)
  • Health Informatics (1563)
  • Health Policy (737)
  • Health Systems and Quality Improvement (606)
  • Hematology (238)
  • HIV/AIDS (507)
  • Infectious Diseases (except HIV/AIDS) (11656)
  • Intensive Care and Critical Care Medicine (617)
  • Medical Education (239)
  • Medical Ethics (67)
  • Nephrology (258)
  • Neurology (2148)
  • Nursing (134)
  • Nutrition (338)
  • Obstetrics and Gynecology (427)
  • Occupational and Environmental Health (518)
  • Oncology (1183)
  • Ophthalmology (366)
  • Orthopedics (129)
  • Otolaryngology (220)
  • Pain Medicine (148)
  • Palliative Medicine (50)
  • Pathology (313)
  • Pediatrics (698)
  • Pharmacology and Therapeutics (302)
  • Primary Care Research (267)
  • Psychiatry and Clinical Psychology (2188)
  • Public and Global Health (4673)
  • Radiology and Imaging (781)
  • Rehabilitation Medicine and Physical Therapy (457)
  • Respiratory Medicine (624)
  • Rheumatology (274)
  • Sexual and Reproductive Health (226)
  • Sports Medicine (210)
  • Surgery (252)
  • Toxicology (43)
  • Transplantation (120)
  • Urology (94)